Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
1.
J Leukoc Biol ; 115(6): 1084-1093, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38372596

RESUMO

The cell surface molecule CD40 is a member of the tumor necrosis factor receptor superfamily and is broadly expressed by immune cells including B cells, dendritic cells, and monocytes, as well as other normal cells and some malignant cells. CD40 is constitutively expressed on antigen-presenting cells, and ligation promotes functional maturation, leading to an increase in antigen presentation and cytokine production, and a subsequent increase in the activation of antigen-specific T cells. It is postulated that CD40 agonists can mediate both T cell-dependent and T cell-independent immune mechanisms of tumor regression in mice and patients. In addition, it is believed that CD40 activation also promotes apoptotic death of tumor cells and that the presence of the molecule on the surface of cancer cells is an important factor in the generation of tumor-specific T cell responses that contribute to tumor cell elimination. Notably, CD40 agonistic therapies were evaluated in patients with solid tumors and hematologic malignancies with reported success as a single agent. Preclinical studies have shown that subcutaneous administration of CD40 agonistic antibodies reduces systemic toxicity and elicits a stronger and localized pharmacodynamic response. Two independent studies in cynomolgus macaque (Macaca fascicularis) were performed to further evaluate potentially immunotoxicological effects associated with drug-induced adverse events seen in human subjects. Studies conducted in monkeys showed that when selicrelumab is administered at doses currently used in clinical trial patients, via subcutaneous injection, it is safe and effective at stimulating a systemic immune response.


Assuntos
Antígenos CD40 , Macaca fascicularis , Animais , Antígenos CD40/agonistas , Antígenos CD40/imunologia , Humanos , Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Monoclonais/farmacologia , Neoplasias/imunologia , Neoplasias/tratamento farmacológico
2.
Cancer Res ; 82(20): 3785-3801, 2022 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-35979635

RESUMO

Agonistic αCD40 therapy has been shown to inhibit cancer progression in only a fraction of patients. Understanding the cancer cell-intrinsic and microenvironmental determinants of αCD40 therapy response is therefore crucial to identify responsive patient populations and to design efficient combinatorial treatments. Here, we show that the therapeutic efficacy of αCD40 in subcutaneous melanoma relies on preexisting, type 1 classical dendritic cell (cDC1)-primed CD8+ T cells. However, after administration of αCD40, cDC1s were dispensable for antitumor efficacy. Instead, the abundance of activated cDCs, potentially derived from cDC2 cells, increased and further activated antitumor CD8+ T cells. Hence, distinct cDC subsets contributed to the induction of αCD40 responses. In contrast, lung carcinomas, characterized by a high abundance of macrophages, were resistant to αCD40 therapy. Combining αCD40 therapy with macrophage depletion led to tumor growth inhibition only in the presence of strong neoantigens. Accordingly, treatment with immunogenic cell death-inducing chemotherapy sensitized lung tumors to αCD40 therapy in subcutaneous and orthotopic settings. These insights into the microenvironmental regulators of response to αCD40 suggest that different tumor types would benefit from different combinations of therapies to optimize the clinical application of CD40 agonists. SIGNIFICANCE: This work highlights the temporal roles of different dendritic cell subsets in promoting CD8+ T-cell-driven responses to CD40 agonist therapy in cancer.


Assuntos
Antígenos CD40 , Células Dendríticas , Macrófagos , Neoplasias , Animais , Antígenos CD40/agonistas , Linfócitos T CD8-Positivos , Células Dendríticas/metabolismo , Humanos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias/metabolismo
3.
Gastroenterology ; 162(2): 590-603.e14, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34627860

RESUMO

BACKGROUND AND AIMS: Patients with pancreatic ductal adenocarcinoma (PDA) have not yet benefitted from the revolution in cancer immunotherapy due in large part to a dominantly immunosuppressive tumor microenvironment. MEK inhibition combined with autophagy inhibition leads to transient tumor responses in some patients with PDA. We examined the functional effects of combined MEK and autophagy inhibition on the PDA immune microenvironment and the synergy of combined inhibition of MEK and autophagy with CD40 agonism (aCD40) against PDA using immunocompetent model systems. METHODS: We implanted immunologically "cold" murine PDA cells orthotopically in wide type C57BL/6J mice. We administered combinations of inhibitors of MEK1/2, inhibitors of autophagy, and aCD40 and measured anticancer efficacy and immune sequelae using mass cytometry and multiplexed immunofluorescence imaging analysis to characterize the tumor microenvironment. We also used human and mouse PDA cell lines and human macrophages in vitro to perform functional assays to elucidate the cellular effects induced by the treatments. RESULTS: We find that coinhibition of MEK (using cobimetinib) and autophagy (using mefloquine), but not either treatment alone, activates the STING/type I interferon pathway in tumor cells that in turn activates paracrine tumor associated macrophages toward an immunogenic M1-like phenotype. This switch is further augmented by aCD40. Triple therapy (cobimetinib + mefloquine + aCD40) achieved cytotoxic T-cell activation in an immunologically "cold" mouse PDA model, leading to enhanced antitumor immunity. CONCLUSIONS: MEK and autophagy coinhibition coupled with aCD40 invokes immune repolarization and is an attractive therapeutic approach for PDA immunotherapy development.


Assuntos
Autofagia/imunologia , Azetidinas/farmacologia , Antígenos CD40/agonistas , Carcinoma Ductal Pancreático/imunologia , Mefloquina/farmacologia , Neoplasias Pancreáticas/imunologia , Piperidinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Microambiente Tumoral/imunologia , Macrófagos Associados a Tumor/imunologia , Animais , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Sinergismo Farmacológico , Humanos , Hidroxicloroquina/farmacologia , Imunoterapia , Interferon Tipo I/efeitos dos fármacos , Interferon Tipo I/imunologia , MAP Quinase Quinase 1/antagonistas & inibidores , MAP Quinase Quinase 2/antagonistas & inibidores , Macrófagos , Proteínas de Membrana/efeitos dos fármacos , Proteínas de Membrana/imunologia , Camundongos , Comunicação Parácrina/efeitos dos fármacos , Comunicação Parácrina/imunologia , Evasão Tumoral , Microambiente Tumoral/efeitos dos fármacos , Macrófagos Associados a Tumor/efeitos dos fármacos
4.
J Immunol ; 207(8): 2060-2076, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34551965

RESUMO

CD40 is a potent activating receptor within the TNFR family expressed on APCs of the immune system, and it regulates many aspects of B and T cell immunity via interaction with CD40 ligand (CD40L; CD154) expressed on the surface of activated T cells. Soluble CD40L and agonistic mAbs directed to CD40 are being explored as adjuvants in therapeutic or vaccination settings. Some anti-CD40 Abs can synergize with soluble monomeric CD40L. We show that direct fusion of CD40L to certain agonistic anti-CD40 Abs confers superagonist properties, reducing the dose required for efficacy, notably greatly increasing total cytokine secretion by human dendritic cells. The tetravalent configuration of anti-CD40-CD40L Abs promotes CD40 cell surface clustering and internalization and is the likely mechanism of increased receptor activation. CD40L fused to either the L or H chain C termini, with or without flexible linkers, were all superagonists with greater potency than CD40L trimer. The increased anti-CD40-CD40L Ab potency was independent of higher order aggregation. Moreover, the anti-CD40-CD40L Ab showed higher potency in vivo in human CD40 transgenic mice compared with the parental anti-CD40 Ab. To broaden the concept of fusing agonistic Ab to natural ligand, we fused OX40L to an agonistic OX40 Ab, and this resulted in dramatically increased efficacy for proliferation and cytokine production of activated human CD4+ T cells as well as releasing the Ab from dependency on cross-linking. This work shows that directly fusing antireceptor Abs to ligand is a useful strategy to dramatically increase agonist potency.


Assuntos
Anticorpos Monoclonais/metabolismo , Linfócitos B/imunologia , Antígenos CD40/agonistas , Ligante de CD40/metabolismo , Células Dendríticas/imunologia , Proteínas Recombinantes de Fusão/metabolismo , Linfócitos T/imunologia , Animais , Anticorpos Monoclonais/genética , Antígenos CD40/imunologia , Ligante de CD40/genética , Células CHO , Diferenciação Celular , Cricetulus , Citocinas/metabolismo , Humanos , Ativação Linfocitária , Agregação de Receptores , Proteínas Recombinantes de Fusão/genética
5.
JCI Insight ; 6(14)2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34101617

RESUMO

Agonist CD40 antibodies are under clinical development in combination with chemotherapy as an approach to prime for antitumor T cell immunity. However, treatment with anti-CD40 is commonly accompanied by both systemic cytokine release and liver transaminase elevations, which together account for the most common dose-limiting toxicities. Moreover, anti-CD40 treatment increases the potential for chemotherapy-induced hepatotoxicity. Here, we report a mechanistic link between cytokine release and hepatotoxicity induced by anti-CD40 when combined with chemotherapy and show that toxicity can be suppressed without impairing therapeutic efficacy. We demonstrate in mice and humans that anti-CD40 triggers transient hepatotoxicity marked by increased serum transaminase levels. In doing so, anti-CD40 sensitizes the liver to drug-induced toxicity. Unexpectedly, this biology is not blocked by the depletion of multiple myeloid cell subsets, including macrophages, inflammatory monocytes, and granulocytes. Transcriptional profiling of the liver after anti-CD40 revealed activation of multiple cytokine pathways including TNF and IL-6. Neutralization of TNF, but not IL-6, prevented sensitization of the liver to hepatotoxicity induced with anti-CD40 in combination with chemotherapy without impacting antitumor efficacy. Our findings reveal a clinically feasible approach to mitigate toxicity without impairing efficacy in the use of agonist CD40 antibodies for cancer immunotherapy.


Assuntos
Anticorpos Monoclonais Humanizados/efeitos adversos , Antígenos CD40/agonistas , Carcinoma Ductal Pancreático/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Neoplasias Pancreáticas/tratamento farmacológico , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Animais , Anticorpos Monoclonais Humanizados/administração & dosagem , Antígenos CD40/imunologia , Carcinoma Ductal Pancreático/imunologia , Linhagem Celular Tumoral , Doença Hepática Induzida por Substâncias e Drogas/imunologia , Doença Hepática Induzida por Substâncias e Drogas/patologia , Humanos , Imunoterapia/métodos , Interleucina-6/antagonistas & inibidores , Interleucina-6/metabolismo , Fígado/efeitos dos fármacos , Fígado/imunologia , Fígado/patologia , Camundongos , Células Mieloides/efeitos dos fármacos , Células Mieloides/imunologia , Neoplasias Pancreáticas/imunologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Fator de Necrose Tumoral alfa/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Commun Biol ; 4(1): 772, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34162985

RESUMO

Monoclonal antibodies (mAb) and natural ligands targeting costimulatory tumor necrosis factor receptors (TNFR) exhibit a wide range of agonistic activities and antitumor responses. The mechanisms underlying these differential agonistic activities remain poorly understood. Here, we employ a panel of experimental and clinically-relevant molecules targeting human CD40, 4-1BB and OX40 to examine this issue. Confocal and STORM microscopy reveal that strongly agonistic reagents induce clusters characterized by small area and high receptor density. Using antibody pairs differing only in isotype we show that hIgG2 confers significantly more receptor clustering than hIgG1 across all three receptors, explaining its greater agonistic activity, with receptor clustering shielding the receptor-agonist complex from further molecular access. Nevertheless, discrete receptor clustering patterns are observed with different hIgG2 mAb, with a unique rod-shaped assembly observed with the most agonistic mAb. These findings dispel the notion that larger receptor clusters elicit greater agonism, and instead point to receptor density and subsequent super-structure as key determinants.


Assuntos
Receptores do Fator de Necrose Tumoral/agonistas , Animais , Anticorpos Monoclonais/farmacologia , Afinidade de Anticorpos , Antígenos CD40/agonistas , Antígenos CD40/química , Linhagem Celular , Humanos , Imunoglobulina G/farmacologia , Camundongos , Microscopia Confocal , Receptores OX40/agonistas , Receptores do Fator de Necrose Tumoral/química , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/agonistas
7.
J Cardiovasc Pharmacol ; 78(2): 228-234, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34029270

RESUMO

ABSTRACT: Epicardial adipose tissue (EAT) dysfunction mediates chronic inflammation by regulating inflammation-related adipokines and cytokines, and it further promotes coronary artery disease (CAD) development. CD40L/CD40 is involved in multiple inflammatory pathways that contribute to various pathophysiological processes. However, the function of CD40L/CD40 in the expression and production of adipokines and cytokines in epicardial adipocytes remains unclear. The purpose of the present study was to explore the role and underlying mechanisms of CD40L/CD40 in adipokine and cytokine expression and production. We isolated adipocytes from EAT tissues of CAD and non-CAD patients. We noticed that CD40 was dramatically increased in EAT tissues of CAD patients. Loss-of-function and gain-of-function studies were performed. The results showed that CD40 silencing reduced recombinant CD40 ligand (rCD40L)-induced upregulation of plasminogen activator inhibitor-1, leptin, interleukin-6, and monocyte chemotactic protein-1 messenger RNA levels and secretion. Overexpression of CD40 displayed the opposite results. In addition, rCD40L triggered mixed lineage leukemia protein-1 (MLL1) expression both in messenger RNA and protein levels. CD40 depletion apparently blocked MLL1 expression, whereas gain of function of CD40 resulted in augmentation of MLL1 levels. Interestingly, chromatin immunoprecipitation-quantitative real-time polymerase chain reaction analysis revealed that CD40 elimination dampened histone H3 lysine 4 trimethylation enrichment at plasminogen activator inhibitor-1, leptin, interleukin-6, and monocyte chemotactic protein-1 promoter regions in the presence of rCD40L. The reverse pattern was observed upon ectopic expression of CD40. Most important, MLL1 silencing effectively reversed the promotive effects of CD40 on adipokine and cytokine secretion. Taken together, our findings suggest that CD40L/CD40 regulates adipokine and cytokine expression by H3 lysine 4 trimethylation modification in adipocytes.


Assuntos
Adipócitos/efeitos dos fármacos , Adipocinas/metabolismo , Antígenos CD40/agonistas , Ligante de CD40/farmacologia , Doença da Artéria Coronariana/metabolismo , Citocinas/metabolismo , Histonas/metabolismo , Pericárdio/efeitos dos fármacos , Adipócitos/metabolismo , Adipocinas/genética , Idoso , Antígenos CD40/genética , Antígenos CD40/metabolismo , Estudos de Casos e Controles , Células Cultivadas , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Citocinas/genética , Feminino , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Leptina/genética , Leptina/metabolismo , Masculino , Metilação , Pessoa de Meia-Idade , Proteína de Leucina Linfoide-Mieloide/genética , Proteína de Leucina Linfoide-Mieloide/metabolismo , Pericárdio/metabolismo , Inibidor 1 de Ativador de Plasminogênio/genética , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Regiões Promotoras Genéticas , Processamento de Proteína Pós-Traducional
8.
Clin Cancer Res ; 27(14): 4054-4065, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-33903200

RESUMO

PURPOSE: The incidence of human papillomavirus-associated head and neck squamous cell carcinoma (HPV+-HNSCC) is rising worldwide and although current therapeutic modalities are efficient in the majority of patients, there is a high rate of treatment failures. Thus, novel combination approaches are urgently needed to achieve better disease control in patients with HPV+-HNSCC. We investigated the safety and therapeutic efficacy of a novel fibroblast activation protein (FAP)-targeted CD40 agonist (FAP-CD40) in combination with local hypofractionated radiation in a syngeneic HPV+-HNSCC model. EXPERIMENTAL DESIGN: Using an established orthotopic model, we treated tumor-bearing mice with local hypofractionated radiotherapy (2 × 6 Gy) alone or in combination with a systemic administration of the FAP-CD40 antibody. Following up the mice, we evaluated the changes in the tumor microenvironment (TME) by immunofluorescence, FACS, and NanoString RNA analysis. RESULTS: The suboptimal radiotherapy regimen chosen failed to control tumors in the treated mice. The FAP-CD40 administered in monotherapy transiently controlled tumor growth, whereas the combined therapy induced durable complete responses in more than 80% of the tumor-bearing mice. This notable efficacy relied on the radiotherapy-induced remodeling of the TME and activation of the CD8+ T-cell-cDC1 axis and was devoid of the systemic toxicity frequently associated with CD40-targeted therapy. Moreover, the robust immunologic memory developed effectively prevented tumor relapses, a common feature in patients with HNSCC. CONCLUSIONS: Our study provides proof of concept, as well as mechanistic insights of the therapeutic efficacy of a bispecific FAP-CD40 combined with local radiotherapy in a FAP+-HNSCC model increasing overall survival and inducing long-term antitumor immunity.


Assuntos
Antígenos CD40/agonistas , Endopeptidases/efeitos dos fármacos , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/radioterapia , Neoplasias de Cabeça e Pescoço/virologia , Proteínas de Membrana/efeitos dos fármacos , Papillomaviridae/isolamento & purificação , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/radioterapia , Carcinoma de Células Escamosas de Cabeça e Pescoço/virologia , Animais , Terapia Combinada , Camundongos
9.
Front Immunol ; 12: 627944, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33763072

RESUMO

Sickle cell disease (SCD) is an inherited hemolytic disorder, defined by a point mutation in the ß-globin gene. Stress conditions such as infection, inflammation, dehydration, and hypoxia trigger erythrocyte sickling. Sickled red blood cells (RBCs) hemolyze more rapidly, show impaired deformability, and increased adhesive properties to the endothelium. In a proinflammatory, pro-coagulative environment with preexisting endothelial dysfunction, sickled RBCs promote vascular occlusion. Hepatobiliary involvement related to the sickling process, such as an acute sickle hepatic crisis, is observed in about 10% of acute sickle cell crisis incidents. In mice, ligation of CD40 with an agonistic antibody leads to a macrophage activation in the liver, triggering a sequence of systemic inflammation, endothelial cell activation, thrombosis, and focal ischemia. We found that anti-CD40 antibody injection in sickle cell mice induces a systemic inflammatory and hemodynamic response with accelerated hemolysis, extensive vaso-occlusion, and large ischemic infarctions in the liver mimicking an acute hepatic crisis. Administration of the tumor necrosis factor-α (TNF-α) blocker, etanercept, and the heme scavenger protein, hemopexin attenuated end-organ damage. These data collectively suggest that anti-CD40 administration offers a novel acute liver crisis model in humanized sickle mice, allowing for evaluation of therapeutic proof-of-concept.


Assuntos
Anemia Falciforme/complicações , Anticorpos/toxicidade , Antígenos CD40/agonistas , Inflamação/etiologia , Hepatopatias/etiologia , Anemia Falciforme/sangue , Anemia Falciforme/tratamento farmacológico , Anemia Falciforme/imunologia , Animais , Antígenos CD40/imunologia , Antígenos CD40/metabolismo , Citocinas/sangue , Modelos Animais de Doenças , Etanercepte/farmacologia , Insuficiência Cardíaca/sangue , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/imunologia , Hemólise , Hemopexina/farmacologia , Humanos , Inflamação/sangue , Inflamação/imunologia , Inflamação/prevenção & controle , Mediadores da Inflamação/sangue , Hepatopatias/sangue , Hepatopatias/imunologia , Hepatopatias/prevenção & controle , Camundongos Transgênicos , Inibidores do Fator de Necrose Tumoral/farmacologia , Disfunção Ventricular Direita/sangue , Disfunção Ventricular Direita/etiologia , Disfunção Ventricular Direita/imunologia
10.
Clin Cancer Res ; 27(14): 4036-4053, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-33771854

RESUMO

PURPOSE: CD40 agonists hold great promise for cancer immunotherapy (CIT) as they enhance dendritic cell (DC) activation and concomitant tumor-specific T-cell priming. However, the broad expression of CD40 accounts for sink and side effects, hampering the efficacy of anti-CD40 antibodies. We hypothesized that these limitations can be overcome by selectively targeting CD40 agonism to the tumor. Therefore, we developed a bispecific FAP-CD40 antibody, which induces CD40 stimulation solely in presence of fibroblast activation protein α (FAP), a protease specifically expressed in the tumor stroma. EXPERIMENTAL DESIGN: FAP-CD40's in vitro activity and FAP specificity were validated by antigen-presenting cell (APC) activation and T-cell priming assays. In addition, FAP-CD40 was tested in subcutaneous MC38-FAP and KPC-4662-huCEA murine tumor models. RESULTS: FAP-CD40 triggered a potent, strictly FAP-dependent CD40 stimulation in vitro. In vivo, FAP-CD40 strongly enhanced T-cell inflammation and growth inhibition of KPC-4662-huCEA tumors. Unlike nontargeted CD40 agonists, FAP-CD40 mediated complete regression of MC38-FAP tumors, entailing long-term protection. A high dose of FAP-CD40 was indispensable for these effects. While nontargeted CD40 agonists induced substantial side effects, highly dosed FAP-CD40 was well tolerated. FAP-CD40 preferentially accumulated in the tumor, inducing predominantly intratumoral immune activation, whereas nontargeted CD40 agonists displayed strong systemic but limited intratumoral effects. CONCLUSIONS: FAP-CD40 abrogates the systemic toxicity associated with nontargeted CD40 agonists. This enables administration of high doses, essential for overcoming CD40 sink effects and inducing antitumor immunity. Consequently, FAP-targeted CD40 agonism represents a promising strategy to exploit the full potential of CD40 signaling for CIT.


Assuntos
Antineoplásicos Imunológicos/administração & dosagem , Antígenos CD40/agonistas , Endopeptidases/efeitos dos fármacos , Imunoterapia/métodos , Proteínas de Membrana/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Animais , Camundongos , Células Tumorais Cultivadas
11.
J Immunother Cancer ; 9(2)2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33608377

RESUMO

BACKGROUND: CD40 agonist immunotherapy can potentially license antigen-presenting cells to promote antitumor T-cell activation and re-educate macrophages to destroy tumor stroma. Systemic administration of CD40 agonists has historically been associated with considerable toxicity, providing the rationale for development of tumor-targeted immunomodulators to improve clinical safety and efficacy. This phase I study assessed the safety, tolerability, preliminary antitumor activity, and preliminary biomarkers of ABBV-428, a first-in-class, mesothelin-targeted, bispecific antibody designed for tumor microenvironment-dependent CD40 activation with limited systemic toxicity. METHODS: ABBV-428 was administered intravenously every 2 weeks to patients with advanced solid tumors. An accelerated titration (starting at a 0.01 mg/kg dose) and a 3+3 dose escalation scheme were used, followed by recommended phase II dose cohort expansions in ovarian cancer and mesothelioma, tumor types associated with high mesothelin expression. RESULTS: Fifty-nine patients were treated at doses between 0.01 and 3.6 mg/kg. The maximum tolerated dose was not reached, and 3.6 mg/kg was selected as the recommended phase II dose. Seven patients (12%) reported infusion-related reactions. Treatment-related grade ≥3 treatment-emergent adverse events were pericardial effusion, colitis, infusion-related reaction, and pleural effusion (n=1 each, 2%), with no cytokine release syndrome reported. The pharmacokinetic profile demonstrated roughly dose-proportional increases in exposure from 0.4 to 3.6 mg/kg. Best response was stable disease in 9/25 patients (36%) treated at the recommended phase II dose. CD40 receptor occupancy >90% was observed on peripheral B-cells starting from 0.8 mg/kg; however, no consistent changes from baseline in intratumoral CD8+ T-cells, programmed death ligand-1 (PD-L1+) cells, or immune-related gene expression were detected post-ABBV-428 treatment (cycle 2, day 1). Mesothelin membrane staining showed greater correlation with progression-free survival in ovarian cancer and mesothelioma than in the broader dose escalation population. CONCLUSIONS: ABBV-428 monotherapy exhibited dose-proportional pharmacokinetics and an acceptable safety profile, particularly for toxicities characteristic of CD40 agonism, illustrating that utilization of a tumor-targeted, bispecific antibody can improve the safety of CD40 agonism as a therapeutic approach. ABBV-428 monotherapy had minimal clinical activity in dose escalation and in a small expansion cohort of patients with advanced mesothelioma or ovarian cancer. TRIAL REGISTRATION NUMBER: NCT02955251.


Assuntos
Anticorpos Biespecíficos/uso terapêutico , Antineoplásicos Imunológicos/uso terapêutico , Antígenos CD40/agonistas , Mesotelina/agonistas , Neoplasias/tratamento farmacológico , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticorpos Biespecíficos/efeitos adversos , Anticorpos Biespecíficos/farmacocinética , Antineoplásicos Imunológicos/efeitos adversos , Antineoplásicos Imunológicos/farmacocinética , Feminino , França , Humanos , Masculino , Dose Máxima Tolerável , Pessoa de Meia-Idade , Neoplasias/imunologia , Neoplasias/mortalidade , Neoplasias/patologia , Intervalo Livre de Progressão , Fatores de Tempo , Microambiente Tumoral , Estados Unidos
12.
J Immunol ; 206(6): 1372-1384, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33558374

RESUMO

Pancreatic cancer is a particularly lethal malignancy that resists immunotherapy. In this study, using a preclinical pancreatic cancer murine model, we demonstrate a progressive decrease in IFN-γ and granzyme B and a concomitant increase in Tox and IL-10 in intratumoral tumor-specific T cells. Intratumoral myeloid cells produced elevated IL-27, a cytokine that correlates with poor patient outcome. Abrogating IL-27 signaling significantly decreased intratumoral Tox+ T cells and delayed tumor growth yet was not curative. Agonistic αCD40 decreased intratumoral IL-27-producing myeloid cells, decreased IL-10-producing intratumoral T cells, and promoted intratumoral Klrg1+Gzmb+ short-lived effector T cells. Combination agonistic αCD40+αPD-L1 cured 63% of tumor-bearing animals, promoted rejection following tumor rechallenge, and correlated with a 2-log increase in pancreas-residing tumor-specific T cells. Interfering with Ifngr1 expression in nontumor/host cells abrogated agonistic αCD40+αPD-L1 efficacy. In contrast, interfering with nontumor/host cell Tnfrsf1a led to cure in 100% of animals following agonistic αCD40+αPD-L1 and promoted the formation of circulating central memory T cells rather than long-lived effector T cells. In summary, we identify a mechanistic basis for T cell exhaustion in pancreatic cancer and a feasible clinical strategy to overcome it.


Assuntos
Antineoplásicos Imunológicos/farmacologia , Antígenos CD40/agonistas , Carcinoma Ductal Pancreático/tratamento farmacológico , Células Mieloides/efeitos dos fármacos , Neoplasias Pancreáticas/tratamento farmacológico , Animais , Antineoplásicos Imunológicos/uso terapêutico , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/patologia , Modelos Animais de Doenças , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Interleucinas/metabolismo , Ativação Linfocitária/efeitos dos fármacos , Linfócitos do Interstício Tumoral/imunologia , Masculino , Camundongos , Camundongos Transgênicos , Células Mieloides/imunologia , Células Mieloides/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/patologia , Cultura Primária de Células , Células Tumorais Cultivadas/transplante , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia
13.
Cancer Immunol Immunother ; 70(7): 1853-1865, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33392713

RESUMO

Targeting CD40 with agonist antibodies is a promising approach to cancer immunotherapy. CD40 acts as a master regulator of immunity by mobilizing multiple arms of the immune system to initiate highly effective CD8 + T-cell-mediated responses against foreign pathogens and tumors. The clinical development of CD40 agonist antibodies requires careful optimization of the antibody to maximize therapeutic efficacy while minimizing adverse effects. Both epitope specificity and isotype are critical for CD40 agonist antibody mechanism of action and potency. We developed a novel antibody, APX005M, which binds with high affinity to the CD40 ligand-binding site on CD40 and is optimized for selective interaction with Fcγ receptors to enhance agonistic potency while limiting less desirable Fc-effector functions like antibody-dependent cellular cytotoxicity of CD40-expressing immune cells. APX005M is a highly potent inducer of innate and adaptive immune effector responses and represents a promising CD40 agonist antibody for induction of an effective anti-tumor immune response with a favorable safety profile.


Assuntos
Anticorpos Monoclonais/farmacologia , Citotoxicidade Celular Dependente de Anticorpos , Linfócitos B/imunologia , Antígenos CD40/agonistas , Epitopos/imunologia , Imunoglobulina G/imunologia , Receptores Fc/metabolismo , Animais , Linfócitos B/efeitos dos fármacos , Linfócitos B/patologia , Antígenos CD40/imunologia , Linfócitos T CD8-Positivos , Epitopos/metabolismo , Feminino , Humanos , Macaca fascicularis , Masculino
14.
J Hepatol ; 74(5): 1145-1154, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33276030

RESUMO

BACKGROUND & AIMS: While cholangiocarcinomas (CCAs) commonly express programmed cell death 1 (PD-1) and its ligand (PD-L1), they respond poorly to immune checkpoint inhibitors (ICIs). We aimed to determine whether stimulating antigen-presenting cells, including macrophages and dendritic cells, using a CD40 agonist could improve this response. METHODS: We compared treatment responses in subcutaneous, orthotopic, and 2 plasmid-based murine intrahepatic CCA (iCCA) models. Mice were treated for 4 weeks with weekly IgG control, a CD40 agonistic antibody, anti-PD-1, or the combination of both (anti-CD40/PD-1). Flow cytometric (FACS) analysis of lymphocytes and myeloid cell populations (including activation status) was performed. We used dendritic cell knockout mice, and macrophage, CD4+ and CD8+ T cell depletion models to identify effector cells. Anti-CD40/PD-1 was combined with chemotherapy (gemcitabine/cisplatin) to test for improved therapeutic efficacy. RESULTS: In all 4 models, anti-PD-1 alone was minimally efficacious. Mice exhibited a moderate response to CD40 agonist monotherapy. Combination anti-CD40/PD-1 therapy led to a significantly greater reduction in tumor burden. FACS demonstrated increased number and activation of CD4+ and CD8+ T cells, natural killer cells, and myeloid cells in tumor and non-tumor liver tissue of tumor-bearing mice treated with anti-CD40/PD-1. Depletion of macrophages, dendritic cells, CD4+ T cells, or CD8+ T cells abrogated treatment efficacy. Combining anti-CD40/PD-1 with gemcitabine/cisplatin resulted in a significant survival benefit compared to gemcitabine/cisplatin alone. CONCLUSION: CD40-mediated activation of macrophages and dendritic cells in iCCA significantly enhances response to anti-PD-1 therapy. This regimen may enhance the efficacy of first-line chemotherapy. LAY SUMMARY: Checkpoint inhibition, a common form of immune therapy, is generally ineffective for the treatment of cholangiocarcinoma. These tumors suppress the infiltration and function of surrounding immune cells. Stimulating immune cells such as macrophages and dendritic cells via the CD40 receptor activates downstream immune cells and enhances the response to checkpoint inhibitors.


Assuntos
Antígenos CD40/agonistas , Colangiocarcinoma , Inibidores de Checkpoint Imunológico/farmacologia , Neoplasias Hepáticas , Ativação de Macrófagos/imunologia , Microambiente Tumoral , Animais , Antimetabólitos Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Colangiocarcinoma/imunologia , Colangiocarcinoma/patologia , Cisplatino/farmacologia , Células Dendríticas/imunologia , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Sensibilidade Colateral a Medicamentos , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/patologia , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Fatores Ativadores de Macrófagos/imunologia , Camundongos , Camundongos Knockout , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Gencitabina
15.
Cancer Immunol Res ; 8(9): 1180-1192, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32661095

RESUMO

Bladder cancer is one of the most common malignancies and has poor prognosis for patients with locally advanced, muscle-invasive, disease despite the efficacy of immune checkpoint blockade. To develop more effective immunotherapy strategies, we studied a genetic mouse model carrying deletion of Tp53 and Pten in the bladder, which recapitulates bladder cancer tumorigenesis and gene expression patterns found in patients. We discovered that tumor cells became more malignant and the tumor immune microenvironment evolved from an inflammatory to an immunosuppressive state. Accordingly, treatment with anti-PD1 was ineffective, but resistance to anti-PD1 therapy was overcome by combination with a CD40 agonist (anti-CD40), leading to strong antitumor immune responses. Mechanistically, this combination led to CD8+ T-cell recruitment from draining lymph nodes. CD8+ T cells induced an IFNγ-dependent repolarization toward M1-like/IFNß-producing macrophages. CD8+ T cells, macrophages, IFN I, and IFN II were all necessary for tumor control, as demonstrated in vivo by the administration of blocking antibodies. Our results identify essential cross-talk between innate and adaptive immunity to control tumor development in a model representative of anti-PD1-resistant human bladder cancer and provide scientific rationale to target CD40 in combination with blocking antibodies, such as anti-PD1/PD-L1, for muscle-invasive bladder cancer.


Assuntos
Antígenos CD40/agonistas , Imunoterapia/métodos , Neoplasias da Bexiga Urinária/imunologia , Neoplasias da Bexiga Urinária/terapia , Animais , Antígenos CD40/imunologia , Antígenos CD40/metabolismo , Modelos Animais de Doenças , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Camundongos
16.
Nat Commun ; 11(1): 2176, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32358491

RESUMO

Cancer types with lower mutational load and a non-permissive tumor microenvironment are intrinsically resistant to immune checkpoint blockade. While the combination of cytostatic drugs and immunostimulatory antibodies constitutes an attractive concept for overcoming this refractoriness, suppression of immune cell function by cytostatic drugs may limit therapeutic efficacy. Here we show that targeted inhibition of mitogen-activated protein kinase (MAPK) kinase (MEK) does not impair dendritic cell-mediated T cell priming and activation. Accordingly, combining MEK inhibitors (MEKi) with agonist antibodies (Abs) targeting the immunostimulatory CD40 receptor results in potent synergistic antitumor efficacy. Detailed analysis of the mechanism of action of MEKi shows that this drug exerts multiple pro-immunogenic effects, including the suppression of M2-type macrophages, myeloid derived suppressor cells and T-regulatory cells. The combination of MEK inhibition with agonist anti-CD40 Ab is therefore a promising therapeutic concept, especially for the treatment of mutant Kras-driven tumors such as pancreatic ductal adenocarcinoma.


Assuntos
Adenocarcinoma/tratamento farmacológico , Anticorpos Monoclonais/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Antígenos CD40/agonistas , Carcinoma Ductal Pancreático/tratamento farmacológico , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Animais , Anticorpos Monoclonais/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/química , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Biomarcadores Farmacológicos/metabolismo , Antígenos CD40/imunologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Sinergismo Farmacológico , Perfilação da Expressão Gênica , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/uso terapêutico , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Transcriptoma/genética
17.
Anticancer Res ; 40(5): 2707-2713, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32366416

RESUMO

BACKGROUND/AIM: Using a syngeneic tongue cancer mouse model, the effect of CD40 agonist and PD-1 antagonist combination therapy for local recurrence after surgery was evaluated in a partially depleted CD4 model. MATERIALS AND METHODS: C3H/HeN mice were injected with 0.05 mg of the anti-mouse CD4 clone GK1.5, causing partial depletion of CD4 cells. Tongue cancer was induced by injecting the squamous cell carcinoma (SCC) VII cell line, the tumor was resected by partial glossectomy, and CD40 agonist and/or PD-1 antagonist therapy was administered postoperatively. RESULTS: Partial depletion of CD4 cells resulted in faster growth of a recurring tumor in the tongue, faster loss of body weight, and decreased number of CD8a-positive cells in the tumor. Postoperative adjuvant therapy with a combination of CD40 agonist and PD-1 antagonist resulted in a significant increase in survival compared to the CD40 agonist single treatment. CONCLUSION: CD40 agonist and PD-1 antagonist combination therapy could be an effective postoperative adjuvant treatment, especially in cases with decreased CD4 T cell activity.


Assuntos
Antígenos CD40/agonistas , Cuidados Pós-Operatórios , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Neoplasias da Língua/terapia , Animais , Modelos Animais de Doenças , Feminino , Camundongos , Recidiva Local de Neoplasia/patologia , Neoplasias da Língua/patologia , Neoplasias da Língua/cirurgia
18.
Proc Natl Acad Sci U S A ; 117(14): 8022-8031, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32213589

RESUMO

Innate immune receptors such as toll-like receptors (TLRs) provide critical molecular links between innate cells and adaptive immune responses. Here, we studied the CD40 pathway as an alternative bridge between dendritic cells (DCs) and adaptive immunity in cancer. Using an experimental design free of chemo- or radiotherapy, we found CD40 activation with agonistic antibodies (⍺CD40) produced complete tumor regressions in a therapy-resistant pancreas cancer model, but only when combined with immune checkpoint blockade (ICB). This effect, unachievable with ICB alone, was independent of TLR, STING, or IFNAR pathways. Mechanistically, αCD40/ICB primed durable T cell responses, and efficacy required DCs and host expression of CD40. Moreover, ICB drove optimal generation of polyfunctional T cells in this "cold" tumor model, instead of rescuing T cell exhaustion. Thus, immunostimulation via αCD40 is sufficient to synergize with ICB for priming. Clinically, combination αCD40/ICB may extend efficacy in patients with "cold" and checkpoint-refractory tumors.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Antígenos CD40/agonistas , Carcinoma Ductal Pancreático/tratamento farmacológico , Neoplasias/tratamento farmacológico , Neoplasias Pancreáticas/tratamento farmacológico , Animais , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Antígenos CD40/imunologia , Antígenos CD40/metabolismo , Antígeno CTLA-4/antagonistas & inibidores , Antígeno CTLA-4/imunologia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/imunologia , Ensaios de Seleção de Medicamentos Antitumorais , Sinergismo Farmacológico , Feminino , Humanos , Ativação Linfocitária/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neoplasias/imunologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/patologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/imunologia , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia
19.
Proc Natl Acad Sci U S A ; 117(1): 541-551, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31889004

RESUMO

Cancer immunotherapies are increasingly combined with targeted therapies to improve therapeutic outcomes. We show that combination of agonistic anti-CD40 with antiangiogenic antibodies targeting 2 proangiogenic factors, vascular endothelial growth factor A (VEGFA) and angiopoietin 2 (Ang2/ANGPT2), induces pleiotropic immune mechanisms that facilitate tumor rejection in several tumor models. On the one hand, VEGFA/Ang2 blockade induced regression of the tumor microvasculature while decreasing the proportion of nonperfused vessels and reducing leakiness of the remaining vessels. On the other hand, both anti-VEGFA/Ang2 and anti-CD40 independently promoted proinflammatory macrophage skewing and increased dendritic cell activation in the tumor microenvironment, which were further amplified upon combination of the 2 treatments. Finally, combined therapy provoked brisk infiltration and intratumoral redistribution of cytotoxic CD8+ T cells in the tumors, which was mainly driven by Ang2 blockade. Overall, these nonredundant synergistic mechanisms endowed T cells with improved effector functions that were conducive to more efficient tumor control, underscoring the therapeutic potential of antiangiogenic immunotherapy in cancer.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Antígenos CD40/agonistas , Neoplasias/tratamento farmacológico , Neovascularização Patológica/tratamento farmacológico , Microambiente Tumoral/efeitos dos fármacos , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico , Angiopoietina-2/antagonistas & inibidores , Angiopoietina-2/metabolismo , Animais , Antineoplásicos Imunológicos/farmacologia , Antineoplásicos Imunológicos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Antígenos CD40/imunologia , Linhagem Celular Tumoral/transplante , Modelos Animais de Doenças , Sinergismo Farmacológico , Feminino , Humanos , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Linfócitos do Interstício Tumoral/imunologia , Camundongos , Neoplasias/irrigação sanguínea , Neoplasias/imunologia , Neoplasias/patologia , Linfócitos T Citotóxicos/efeitos dos fármacos , Linfócitos T Citotóxicos/imunologia , Microambiente Tumoral/imunologia , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/metabolismo
20.
Cancer Immunol Res ; 7(11): 1864-1875, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31462409

RESUMO

Agonistic CD40 monoclonal antibodies (mAb) have demonstrated some clinical activity, but with dose-limiting toxicity. To reduce systemic toxicity, we developed a bispecific molecule that was maximally active in the presence of a tumor antigen and had limited activity in the absence of the tumor antigen. LB-1 is a bispecific molecule containing single-chain Fv domains targeting mouse CD40 and the tumor antigen mesothelin. LB-1 exhibited enhanced activity upon binding to cell-surface mesothelin but was less potent in the absence of mesothelin binding. In a mouse model implanted with syngeneic 4T1 tumors expressing cell-surface mesothelin, LB-1 demonstrated comparable antitumor activity as an agonistic CD40 mAb but did not cause elevation of serum cytokines and liver enzymes, as was observed in anti-CD40-treated mice. The results from our study of LB-1 were used to develop a human cross-reactive bispecific molecule (ABBV-428) that targeted human CD40 and mesothelin. ABBV-428 demonstrated enhanced activation of antigen-presenting cells and T cells upon binding to cell-surface mesothelin, and inhibition of cultured or implanted PC3 tumor cell growth after immune activation. Although expression of cell-surface mesothelin is necessary, the bispecific molecules induced immune-mediated antitumor activity against both mesothelin+ and mesothelin- tumor cells. ABBV-428 represents a class of bispecific molecules with conditional activity dependent on the binding of a tumor-specific antigen, and such activity could potentially maximize antitumor potency while limiting systemic toxicity in clinical studies.


Assuntos
Anticorpos Biespecíficos/imunologia , Antígenos de Neoplasias/imunologia , Antineoplásicos Imunológicos/imunologia , Antígenos CD40/imunologia , Proteínas Ligadas por GPI/imunologia , Animais , Anticorpos Biespecíficos/química , Anticorpos Biespecíficos/farmacologia , Anticorpos Biespecíficos/uso terapêutico , Células Apresentadoras de Antígenos/efeitos dos fármacos , Células Apresentadoras de Antígenos/imunologia , Antígenos de Neoplasias/metabolismo , Antineoplásicos Imunológicos/química , Antineoplásicos Imunológicos/farmacologia , Antineoplásicos Imunológicos/uso terapêutico , Antígenos CD40/agonistas , Linhagem Celular Tumoral , Proteínas Ligadas por GPI/metabolismo , Humanos , Ativação Linfocitária/efeitos dos fármacos , Mesotelina , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Mutantes , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/imunologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA