Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 662
Filtrar
1.
JCI Insight ; 9(17)2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39253973

RESUMO

Elevated numbers of antibody-secreting cells (ASCs) and anti-double-stranded DNA (anti-dsDNA) antibodies are found in nasal polyp (NP) tissue. The presence of anti-dsDNA IgG in tissue prospectively predicts recurrent NP but the characteristics of the source ASCs are unknown. Here, we investigated whether NP B cells expressing the extrafollicular marker EBI2 have increased propensity for autoantibody production and evaluated the molecular characteristics of NP ASCs. NPs showed increased frequencies of anti-dsDNA IgG and total IgG ASCs compared with tonsils, with more pronounced differences among EBI2+ cells. In NPs, EBI2+ cells were frequently double negative (IgD-CD27-) and ASCs. Single-cell RNA-Seq analysis of tonsils and NPs revealed substantial differences in B lineage composition, including differences in percentages of ASCs, germinal centers, proliferative cells, and non-ASCs. NPs exhibited higher expression of specific isotypes (IGHE, IGHA1, IGHA2, and IGHG4) and mature plasma genes, including SDC1 and XBP1, than tonsils. Gene Ontology biological processes indicated upregulated NF-κB and downregulated apoptosis pathways in NP ASCs. Together, these data indicate that NP EBI2+ ASCs secret increased total and anti-dsDNA IgG compared with those from tonsils and had molecular features of mature plasma cell differentiation.


Assuntos
Células Produtoras de Anticorpos , Imunoglobulina G , Pólipos Nasais , Humanos , Pólipos Nasais/imunologia , Pólipos Nasais/patologia , Pólipos Nasais/metabolismo , Células Produtoras de Anticorpos/imunologia , Células Produtoras de Anticorpos/metabolismo , Masculino , Feminino , Adulto , Imunoglobulina G/imunologia , Imunoglobulina G/metabolismo , Pessoa de Meia-Idade , Tonsila Palatina/imunologia , Tonsila Palatina/citologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/metabolismo , Antígenos de Histocompatibilidade Menor/imunologia , Anticorpos Antinucleares/imunologia , Idoso , Adulto Jovem
2.
Best Pract Res Clin Haematol ; 37(2): 101555, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39098803

RESUMO

Allogeneic hematopoietic cell transplantation (alloHCT) provides a potential curative treatment for haematological malignancies. The therapeutic Graft-versus-Leukaemia (GvL) effect is induced by donor T cells attacking patient hematopoietic (malignant) cells. However, if healthy non-hematopoietic tissues are targeted, Graft-versus-Disease (GvHD) may develop. After HLA-matched alloHCT, GvL and GvHD are induced by donor T cells recognizing polymorphic peptides presented by HLA on patient cells, so-called minor histocompatibility antigens (MiHAs). The balance between GvL and GvHD depends on the tissue distribution of MiHAs and T-cell frequencies targeting these MiHAs. T cells against broadly expressed MiHAs induce GvL and GvHD, whereas those targeting MiHAs with hematopoietic-restricted expression induce GvL without GvHD. Recently, the MiHA repertoire identified in natural immune responses after alloHCT was expanded to 159 total HLA-I-restricted MiHAs, including 14 hematopoietic-restricted MiHAs. This review explores their potential relevance to predict, monitor, and manipulate GvL and GvHD for improving clinical outcome after HLA-matched alloHCT.


Assuntos
Doença Enxerto-Hospedeiro , Efeito Enxerto vs Leucemia , Transplante de Células-Tronco Hematopoéticas , Antígenos de Histocompatibilidade Menor , Humanos , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Doença Enxerto-Hospedeiro/imunologia , Antígenos de Histocompatibilidade Menor/imunologia , Antígenos de Histocompatibilidade Menor/genética , Efeito Enxerto vs Leucemia/imunologia , Transplante Homólogo , Neoplasias Hematológicas/terapia , Neoplasias Hematológicas/imunologia , Linfócitos T/imunologia , Aloenxertos
3.
Best Pract Res Clin Rheumatol ; 38(2): 101977, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-39085016

RESUMO

Human leukocyte antigen (HLA) class I association is a well-established feature of common and uncommon inflammatory diseases, but it is unknown whether it impacts the pathogenesis of these disorders. The "arthritogenic peptide" hypothesis proposed initially for HLA-B27-associated ankylosing spondylitis (AS) seems the most intuitive to serve as a model for other HLA class I-associated diseases, but evidence supporting it has been scarce. Recent technological advances and the discovery of epistatic relationships between disease-associated HLA class I and endoplasmic reticulum aminopeptidase (ERAP) coding variants have led to the generation of new data and conceptual approaches to the problem requiring its re-examination. Continued success in these endeavors holds promise to resolve a Gordian Knot in human immunobiology. It may ultimately benefit patients by enabling the development of new therapies and precision tools for assessing disease risk and predicting treatment responses.


Assuntos
Aminopeptidases , Antígeno HLA-B27 , Espondilite Anquilosante , Humanos , Espondilite Anquilosante/imunologia , Espondilite Anquilosante/genética , Antígeno HLA-B27/genética , Antígeno HLA-B27/imunologia , Aminopeptidases/genética , Aminopeptidases/imunologia , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Predisposição Genética para Doença , Inflamação/imunologia , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/imunologia , Artrite Reumatoide/imunologia , Artrite Reumatoide/genética
4.
J Agric Food Chem ; 72(31): 17343-17355, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39024058

RESUMO

ERAP1 is an emerging target for a large subclass of severe autoimmune diseases known as "MHC-I-opathy", together with tumor immunity. Nevertheless, effective inhibitors targeting ERAP1 remain a challenge. In this study, a novel food-derived natural product ERAP1-targeting inhibitor, carnosic acid, was identified, and to our knowledge, it is one of the best active compounds among the highly selective inhibitors targeting the orthosteric site of ERAP1. The results reveal that carnosic acid could bind strongly, like a key to the ERAP1 active site in the biased S1' pocket, which is different from the binding mode of the existing orthosteric site inhibitors. HLA-B27-mediated cell modeling validated that carnosic acid has the activity to reverse the AS-associated cellular phenotype brought on by ERAP1 through inhibition. Our findings provide insights into the design of potent inhibitors against the ERAP1 orthosteric site and the discovery of a key direct target of carnosic acid.


Assuntos
Abietanos , Aminopeptidases , Apresentação de Antígeno , Antígenos de Histocompatibilidade Menor , Abietanos/farmacologia , Abietanos/química , Humanos , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/química , Antígenos de Histocompatibilidade Menor/metabolismo , Antígenos de Histocompatibilidade Menor/imunologia , Apresentação de Antígeno/efeitos dos fármacos , Aminopeptidases/antagonistas & inibidores , Aminopeptidases/imunologia , Aminopeptidases/metabolismo , Aminopeptidases/química , Ligação Proteica , Sítios de Ligação , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Simulação de Acoplamento Molecular
5.
Front Immunol ; 15: 1424987, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38979423

RESUMO

Mucosal-associated invariant T (MAIT) cells are a major subset of innate-like T cells that function at the interface between innate and acquired immunity. MAIT cells recognize vitamin B2-related metabolites produced by microbes, through semi-invariant T cell receptor (TCR) and contribute to protective immunity. These foreign-derived antigens are presented by a monomorphic antigen presenting molecule, MHC class I-related molecule 1 (MR1). MR1 contains a malleable ligand-binding pocket, allowing for the recognition of compounds with various structures. However, interactions between MR1 and self-derived antigens are not fully understood. Recently, bile acid metabolites were identified as host-derived ligands for MAIT cells. In this review, we will highlight recent findings regarding the recognition of self-antigens by MAIT cells.


Assuntos
Antígenos de Histocompatibilidade Classe I , Células T Invariantes Associadas à Mucosa , Células T Invariantes Associadas à Mucosa/imunologia , Células T Invariantes Associadas à Mucosa/metabolismo , Humanos , Animais , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade Menor/imunologia , Antígenos de Histocompatibilidade Menor/metabolismo , Autoantígenos/imunologia , Apresentação de Antígeno/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo
6.
J Immunol ; 213(5): 553-558, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38984869

RESUMO

The importance of unconventional T cells for mucosal immunity is firmly established but for systemic bacterial infection remains less well defined. In this study, we explored the role of various T cell subsets in murine Bartonella infection, which establishes persistent bacteremia unless controlled by antibacterial Abs. We found that αß T cells are essential for Ab production against and clearance of B. taylorii, whereas MHC class I (MHC-I)- or MHC class II (MHC-II)-deficient mice eliminated B. taylorii infection with normal kinetics. Similarly, animals lacking either CD1d or MR1 suppressed bacteremia with normal kinetics. Interestingly, mice with a combined deficiency of either MHC-II and CD1d or MHC-II and MR1 failed to clear the infection, indicating that the combination of CD1d- and MR1-restricted T cells can compensate for the lack of MHC-II in this model. Our data document a previously underappreciated contribution of unconventional T cells to the control of systemic bacterial infection, supposedly as helper cells for antibacterial Ab production.


Assuntos
Antígenos CD1d , Infecções por Bartonella , Bartonella , Antígenos de Histocompatibilidade Classe I , Camundongos Knockout , Antígenos de Histocompatibilidade Menor , Animais , Camundongos , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos CD1d/imunologia , Bartonella/imunologia , Infecções por Bartonella/imunologia , Antígenos de Histocompatibilidade Menor/imunologia , Antígenos de Histocompatibilidade Menor/metabolismo , Antígenos de Histocompatibilidade Menor/genética , Camundongos Endogâmicos C57BL , Antígenos de Histocompatibilidade Classe II/imunologia , Subpopulações de Linfócitos T/imunologia
7.
J Med Chem ; 67(14): 11597-11621, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39011823

RESUMO

Endoplasmic reticulum aminopeptidases ERAP1 and 2 are intracellular aminopeptidases that trim antigenic precursors and generate antigens presented by major histocompatibility complex class I (MHC-I) molecules. They thus modulate the antigenic repertoire and drive the adaptive immune response. ERAPs are considered as emerging targets for precision immuno-oncology or for the treatment of autoimmune diseases, in particular MHC-I-opathies. This perspective covers the structural and biological characterization of ERAP, their relevance to these diseases and the ongoing research on small-molecule inhibitors. We describe the chemical and pharmacological space explored by medicinal chemists to exploit the potential of these targets given their localization, biological functions, and family depth. Specific emphasis is put on the binding mode, potency, selectivity, and physchem properties of inhibitors featuring diverse scaffolds. The discussion provides valuable insights for the future development of ERAP inhibitors and analysis of persisting challenges for the translation for clinical applications.


Assuntos
Aminopeptidases , Antígenos de Histocompatibilidade Menor , Animais , Humanos , Aminopeptidases/antagonistas & inibidores , Aminopeptidases/metabolismo , Doenças Autoimunes/tratamento farmacológico , Doenças Autoimunes/imunologia , Autoimunidade/efeitos dos fármacos , Química Farmacêutica , Antígenos de Histocompatibilidade Menor/metabolismo , Antígenos de Histocompatibilidade Menor/imunologia , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química , Inibidores de Proteases/uso terapêutico , Antígenos de Histocompatibilidade Classe I
8.
J Control Release ; 373: 568-582, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39067792

RESUMO

Cancer vaccine is regarded as an effective immunotherapy approach mediated by dendritic cells (DCs) which are crucial for antigen presentation and the initiation of adaptive immune responses. However, lack of DC-targeting properties significantly hampers the efficacy of cancer vaccines. Here, by using the phage display technique, peptides targeting the endocytic receptor DEC-205 primarily found on cDC1s were initially screened. An optimized hydrolysis-resistant peptide, hr-8, was identified and conjugated to PLGA-loaded antigen (Ag) and CpG adjuvant nanoparticles, resulting in a DC-targeting nanovaccine. The nanovaccine hr-8-PLGA@Ag/CpG facilitates dendritic cell maturation and improves antigen cross-presentation. The nanovaccine can enhance the antitumor immune response mediated by CD8+ T cells by encapsulating the nanovaccine with either exogenous OVA protein antigen or endogenous gp100/E7 antigenic peptide. As a result, strong antitumor effects are observed in both anti-PD-1 responsive B16-OVA and anti-PD-1 non-responsive B16 and TC1 immunocompetent tumor models. In summary, this study presents the initial documentation of a nanovaccine that targets dendritic cells via the novel DEC-205 binding peptide. This approach offers a new method for developing cancer vaccines that can potentially improve the effectiveness of cancer immunotherapy.


Assuntos
Vacinas Anticâncer , Células Dendríticas , Imunoterapia , Lectinas Tipo C , Camundongos Endogâmicos C57BL , Antígenos de Histocompatibilidade Menor , Nanopartículas , Peptídeos , Receptores de Superfície Celular , Células Dendríticas/imunologia , Vacinas Anticâncer/administração & dosagem , Vacinas Anticâncer/imunologia , Animais , Lectinas Tipo C/imunologia , Receptores de Superfície Celular/imunologia , Imunoterapia/métodos , Nanopartículas/química , Peptídeos/química , Peptídeos/administração & dosagem , Antígenos de Histocompatibilidade Menor/imunologia , Linhagem Celular Tumoral , Ovalbumina/imunologia , Ovalbumina/administração & dosagem , Feminino , Melanoma Experimental/terapia , Melanoma Experimental/imunologia , Camundongos , Antígenos CD/imunologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Linfócitos T CD8-Positivos/imunologia , Nanovacinas
9.
Sci Immunol ; 9(95): eadn0126, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38728413

RESUMO

MR1T cells are a recently found class of T cells that recognize antigens presented by the major histocompatibility complex-I-related molecule MR1 in the absence of microbial infection. The nature of the self-antigens that stimulate MR1T cells remains unclear, hampering our understanding of their physiological role and therapeutic potential. By combining genetic, pharmacological, and biochemical approaches, we found that carbonyl stress and changes in nucleobase metabolism in target cells promote MR1T cell activation. Stimulatory compounds formed by carbonyl adducts of nucleobases were detected within MR1 molecules produced by tumor cells, and their abundance and antigenicity were enhanced by drugs that induce carbonyl accumulation. Our data reveal carbonyl-nucleobase adducts as MR1T cell antigens. Recognizing cells under carbonyl stress allows MR1T cells to monitor cellular metabolic changes with physiological and therapeutic implications.


Assuntos
Antígenos de Histocompatibilidade Classe I , Antígenos de Histocompatibilidade Menor , Animais , Humanos , Camundongos , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Ativação Linfocitária/imunologia , Antígenos de Histocompatibilidade Menor/metabolismo , Antígenos de Histocompatibilidade Menor/imunologia , Linfócitos T/imunologia
10.
JCI Insight ; 9(9)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38716731

RESUMO

T cells are required for protective immunity against Mycobacterium tuberculosis. We recently described a cohort of Ugandan household contacts of tuberculosis cases who appear to "resist" M. tuberculosis infection (resisters; RSTRs) and showed that these individuals harbor IFN-γ-independent T cell responses to M. tuberculosis-specific peptide antigens. However, T cells also recognize nonprotein antigens via antigen-presenting systems that are independent of genetic background, known as donor-unrestricted T cells (DURTs). We used tetramer staining and flow cytometry to characterize the association between DURTs and "resistance" to M. tuberculosis infection. Peripheral blood frequencies of most DURT subsets were comparable between RSTRs and latently infected controls (LTBIs). However, we observed a 1.65-fold increase in frequency of MR1-restricted T (MR1T) cells among RSTRs in comparison with LTBIs. Single-cell RNA sequencing of 18,251 MR1T cells sorted from 8 donors revealed 5,150 clonotypes that expressed a common transcriptional program, the majority of which were private. Sequencing of the T cell receptor α/T cell receptor δ (TCRα/δ) repertoire revealed several DURT clonotypes were expanded among RSTRs, including 2 MR1T clonotypes that recognized mycobacteria-infected cells in a TCR-dependent manner. Overall, our data reveal unexpected donor-specific diversity in the TCR repertoire of human MR1T cells as well as associations between mycobacteria-reactive MR1T clonotypes and resistance to M. tuberculosis infection.


Assuntos
Mycobacterium tuberculosis , Humanos , Mycobacterium tuberculosis/imunologia , Uganda , Adulto , Masculino , Antígenos de Histocompatibilidade Menor/imunologia , Antígenos de Histocompatibilidade Menor/genética , Feminino , Tuberculose/imunologia , Tuberculose/microbiologia , Linfócitos T/imunologia , Tuberculose Latente/imunologia , Tuberculose Latente/microbiologia , Células Clonais/imunologia , Resistência à Doença/imunologia , Resistência à Doença/genética , Adulto Jovem , Antígenos de Histocompatibilidade Classe I
11.
J Biol Chem ; 300(6): 107338, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705391

RESUMO

Mucosal-associated invariant T (MAIT) cells are a subset of unconventional T cells that recognize small molecule metabolites presented by major histocompatibility complex class I related protein 1 (MR1), via an αß T cell receptor (TCR). MAIT TCRs feature an essentially invariant TCR α-chain, which is highly conserved between mammals. Similarly, MR1 is the most highly conserved major histocompatibility complex-I-like molecule. This extreme conservation, including the mode of interaction between the MAIT TCR and MR1, has been shown to allow for species-mismatched reactivities unique in T cell biology, thereby allowing the use of selected species-mismatched MR1-antigen (MR1-Ag) tetramers in comparative immunology studies. However, the pattern of cross-reactivity of species-mismatched MR1-Ag tetramers in identifying MAIT cells in diverse species has not been formally assessed. We developed novel cattle and pig MR1-Ag tetramers and utilized these alongside previously developed human, mouse, and pig-tailed macaque MR1-Ag tetramers to characterize cross-species tetramer reactivities. MR1-Ag tetramers from each species identified T cell populations in distantly related species with specificity that was comparable to species-matched MR1-Ag tetramers. However, there were subtle differences in staining characteristics with practical implications for the accurate identification of MAIT cells. Pig MR1 is sufficiently conserved across species that pig MR1-Ag tetramers identified MAIT cells from the other species. However, MAIT cells in pigs were at the limits of phenotypic detection. In the absence of sheep MR1-Ag tetramers, a MAIT cell population in sheep blood was identified phenotypically, utilizing species-mismatched MR1-Ag tetramers. Collectively, our results validate the use and define the limitations of species-mismatched MR1-Ag tetramers in comparative immunology studies.


Assuntos
Antígenos de Histocompatibilidade Classe I , Antígenos de Histocompatibilidade Menor , Células T Invariantes Associadas à Mucosa , Especificidade da Espécie , Animais , Células T Invariantes Associadas à Mucosa/imunologia , Células T Invariantes Associadas à Mucosa/metabolismo , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Camundongos , Bovinos , Antígenos de Histocompatibilidade Menor/metabolismo , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/imunologia , Antígenos de Histocompatibilidade Menor/química , Suínos , Macaca , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Receptores de Antígenos de Linfócitos T alfa-beta/genética
12.
Blood ; 144(10): 1069-1082, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38683966

RESUMO

ABSTRACT: Relapse is the leading cause of death after allogeneic hematopoietic stem cell transplantation (HCT) for leukemia. T cells engineered by gene transfer to express T cell receptors (TCR; TCR-T) specific for hematopoietic-restricted minor histocompatibility (H) antigens may provide a potent selective antileukemic effect post-HCT. We conducted a phase 1 clinical trial using a novel TCR-T product targeting the minor H antigen, HA-1, to treat or consolidate treatment of persistent or recurrent leukemia and myeloid neoplasms. The primary objective was to evaluate the feasibility and safety of administration of HA-1 TCR-T after HCT. CD8+ and CD4+ T cells expressing the HA-1 TCR and a CD8 coreceptor were successfully manufactured from HA-1-disparate HCT donors. One or more infusions of HA-1 TCR-T following lymphodepleting chemotherapy were administered to 9 HCT recipients who had developed disease recurrence after HCT. TCR-T cells expanded and persisted in vivo after adoptive transfer. No dose-limiting toxicities occurred. Although the study was not designed to assess efficacy, 4 patients achieved or maintained complete remissions following lymphodepletion and HA-1 TCR-T, with 1 patient still in remission at >2 years. Single-cell RNA sequencing of relapsing/progressive leukemia after TCR-T therapy identified upregulated molecules associated with T-cell dysfunction or cancer cell survival. HA-1 TCR-T therapy appears feasible and safe and shows preliminary signals of efficacy. This clinical trial was registered at ClinicalTrials.gov as #NCT03326921.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Leucemia , Receptores de Antígenos de Linfócitos T , Humanos , Transplante de Células-Tronco Hematopoéticas/métodos , Feminino , Masculino , Adulto , Pessoa de Meia-Idade , Leucemia/terapia , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/imunologia , Imunoterapia Adotiva/métodos , Imunoterapia Adotiva/efeitos adversos , Recidiva , Idoso , Receptores de Antígenos Quiméricos/imunologia , Oligopeptídeos
13.
Immunol Rev ; 323(1): 138-149, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38520075

RESUMO

Mucosal-associated invariant T (MAIT) cells have a semi-invariant T-cell receptor that allows recognition of antigen in the context of the MHC class I-related (MR1) protein. Metabolic intermediates of the riboflavin synthesis pathway have been identified as MR1-restricted antigens with agonist properties. As riboflavin synthesis occurs in many bacterial species, but not human cells, it has been proposed that the main purpose of MAIT cells is antibacterial surveillance and protection. The majority of human MAIT cells secrete interferon-gamma (IFNg) upon activation, while some MAIT cells in tissues can also express IL-17. Given that MAIT cells are present in human barrier tissues colonized by a microbiome, MAIT cells must somehow be able to distinguish colonization from infection to ensure effector functions are only elicited when necessary. Importantly, MAIT cells have additional functional properties, including the potential to contribute to restoring tissue homeostasis by expression of CTLA-4 and secretion of the cytokine IL-22. A recent study provided compelling data indicating that the range of human MAIT cell functional properties is explained by plasticity rather than distinct lineages. This further underscores the necessity to better understand how different signals regulate MAIT cell function. In this review, we highlight what is known in regards to activating and inhibitory signals for MAIT cells with a specific focus on signals relevant to healthy and inflamed tissues. We consider the quantity, quality, and the temporal order of these signals on MAIT cell function and discuss the current limitations of computational tools to extrapolate which signals are received by MAIT cells in human tissues. Using lessons learned from conventional CD8 T cells, we also discuss how TCR signals may integrate with cytokine signals in MAIT cells to elicit distinct functional states.


Assuntos
Células T Invariantes Associadas à Mucosa , Transdução de Sinais , Humanos , Células T Invariantes Associadas à Mucosa/imunologia , Células T Invariantes Associadas à Mucosa/metabolismo , Animais , Inflamação/imunologia , Ativação Linfocitária/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Menor/metabolismo , Antígenos de Histocompatibilidade Menor/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo
14.
J Biol Chem ; 300(5): 107229, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38537698

RESUMO

Mucosal-associated invariant T (MAIT) cells can elicit immune responses against riboflavin-based antigens presented by the evolutionary conserved MHC class I related protein, MR1. While we have an understanding of the structural basis of human MAIT cell receptor (TCR) recognition of human MR1 presenting a variety of ligands, how the semi-invariant mouse MAIT TCR binds mouse MR1-ligand remains unknown. Here, we determine the crystal structures of 2 mouse TRAV1-TRBV13-2+ MAIT TCR-MR1-5-OP-RU ternary complexes, whose TCRs differ only in the composition of their CDR3ß loops. These mouse MAIT TCRs mediate high affinity interactions with mouse MR1-5-OP-RU and cross-recognize human MR1-5-OP-RU. Similarly, a human MAIT TCR could bind mouse MR1-5-OP-RU with high affinity. This cross-species recognition indicates the evolutionary conserved nature of this MAIT TCR-MR1 axis. Comparing crystal structures of the mouse versus human MAIT TCR-MR1-5-OP-RU complexes provides structural insight into the conserved nature of this MAIT TCR-MR1 interaction and conserved specificity for the microbial antigens, whereby key germline-encoded interactions required for MAIT activation are maintained. This is an important consideration for the development of MAIT cell-based therapeutics that will rely on preclinical mouse models of disease.


Assuntos
Antígenos de Histocompatibilidade Classe I , Antígenos de Histocompatibilidade Menor , Células T Invariantes Associadas à Mucosa , Ribitol , Animais , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe I/química , Antígenos de Histocompatibilidade Menor/metabolismo , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/imunologia , Antígenos de Histocompatibilidade Menor/química , Camundongos , Células T Invariantes Associadas à Mucosa/imunologia , Células T Invariantes Associadas à Mucosa/metabolismo , Humanos , Ribitol/análogos & derivados , Ribitol/metabolismo , Ribitol/química , Uracila/análogos & derivados , Uracila/metabolismo , Uracila/química , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos de Linfócitos T/imunologia , Cristalografia por Raios X
15.
Blood ; 143(18): 1856-1872, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38427583

RESUMO

ABSTRACT: Allogeneic stem cell transplantation (alloSCT) is a curative treatment for hematological malignancies. After HLA-matched alloSCT, antitumor immunity is caused by donor T cells recognizing polymorphic peptides, designated minor histocompatibility antigens (MiHAs), that are presented by HLA on malignant patient cells. However, T cells often target MiHAs on healthy nonhematopoietic tissues of patients, thereby inducing side effects known as graft-versus-host disease. Here, we aimed to identify the dominant repertoire of HLA-I-restricted MiHAs to enable strategies to predict, monitor or modulate immune responses after alloSCT. To systematically identify novel MiHAs by genome-wide association screening, T-cell clones were isolated from 39 transplanted patients and tested for reactivity against 191 Epstein-Barr virus transformed B cell lines of the 1000 Genomes Project. By discovering 81 new MiHAs, we more than doubled the antigen repertoire to 159 MiHAs and demonstrated that, despite many genetic differences between patients and donors, often the same MiHAs are targeted in multiple patients. Furthermore, we showed that one quarter of the antigens are cryptic, that is translated from unconventional open reading frames, for example long noncoding RNAs, showing that these antigen types are relevant targets in natural immune responses. Finally, using single cell RNA-seq data, we analyzed tissue expression of MiHA-encoding genes to explore their potential role in clinical outcome, and characterized 11 new hematopoietic-restricted MiHAs as potential targets for immunotherapy. In conclusion, we expanded the repertoire of HLA-I-restricted MiHAs and identified recurrent, cryptic and hematopoietic-restricted antigens, which are fundamental to predict, follow or manipulate immune responses to improve clinical outcome after alloSCT.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Antígenos de Histocompatibilidade Classe I , Antígenos de Histocompatibilidade Menor , Humanos , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe I/genética , Neoplasias Hematológicas/imunologia , Neoplasias Hematológicas/terapia , Neoplasias Hematológicas/genética , Linfócitos T/imunologia , Estudo de Associação Genômica Ampla , Transplante Homólogo , Feminino , Masculino
16.
Am J Gastroenterol ; 119(8): 1496-1505, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38314748

RESUMO

INTRODUCTION: The aim of this study is to describe the presenting features, genetic factors, and outcomes of 23 adults who developed liver injury after coronavirus disease 2019 (COVID-19) mRNA vaccination. METHODS: Patients with suspected COVID-19 vaccine hepatitis were enrolled into the Drug-Induced Liver Injury Network. Causality was assessed using the Drug-Induced Liver Injury Network expert opinion score. High-resolution HLA sequencing was undertaken using Illumina platform. RESULTS: Amongst the 16 high causality cases, median time to onset was 16 days, median age was 63 years, and 75% were female. The injury was hepatocellular in 75% with a median alanine aminotransferase of 497 U/L, and 37% had jaundice. An antinuclear antibody and smooth muscle antibody were detectable in 27% and 36%, but only 12% had an elevated immunoglobulin G level. During follow-up, 37% received a short course of corticosteroids, and 88% fully recovered by 6 months with no deaths observed. HLA alleles associated with autoimmune hepatitis were not overrepresented compared with controls, but an ERAP-2 variant (rs1263907) and the ERAP-1 Hap6 haplotype were significantly overrepresented in the high causality cases vs controls ( P = 0.026 and 5 × 10 -5 , respectively). DISCUSSION: Acute liver injury may arise within 8 weeks of COVID-19 mRNA vaccination that is generally mild and self-limited in most patients. The absence of an association with the AIH HLA alleles combined with the significant ERAP-2 and ERAP-1 Hap6 haplotype associations implicates a unique but very rare host immune response to vaccine-derived antigens in the pathogenesis of COVID-19 vaccine hepatotoxicity.


Assuntos
Aminopeptidases , Vacinas contra COVID-19 , COVID-19 , Doença Hepática Induzida por Substâncias e Drogas , Antígenos de Histocompatibilidade Menor , Humanos , Feminino , Masculino , Pessoa de Meia-Idade , Doença Hepática Induzida por Substâncias e Drogas/genética , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Aminopeptidases/genética , COVID-19/prevenção & controle , Idoso , Vacinas contra COVID-19/efeitos adversos , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/imunologia , Estados Unidos/epidemiologia , SARS-CoV-2 , Adulto , Vacina de mRNA-1273 contra 2019-nCoV , Vacinação/efeitos adversos , Vacina BNT162/efeitos adversos , Vacinas Sintéticas/efeitos adversos
17.
Blood Adv ; 7(9): 1635-1649, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-36477467

RESUMO

T-cell responses to minor histocompatibility antigens (mHAs) mediate graft-versus-leukemia (GVL) effects and graft-versus-host disease (GVHD) in allogeneic hematopoietic cell transplantation. Therapies that boost T-cell responses improve allogeneic hematopoietic cell transplant (alloHCT) efficacy but are limited by concurrent increases in the incidence and severity of GVHD. mHAs with expression restricted to hematopoietic tissue (GVL mHAs) are attractive targets for driving GVL without causing GVHD. Prior work to identify mHAs has focused on a small set of mHAs or population-level single-nucleotide polymorphism-association studies. We report the discovery of a large set of novel GVL mHAs based on predicted immunogenicity, tissue expression, and degree of sharing among donor-recipient pairs (DRPs) in the DISCOVeRY-BMT data set of 3231 alloHCT DRPs. The total number of predicted mHAs varied by HLA allele, and the total number and number of each class of mHA significantly differed by recipient genomic ancestry group. From the pool of predicted mHAs, we identified the smallest sets of GVL mHAs needed to cover 100% of DRPs with a given HLA allele. We used mass spectrometry to search for high-population frequency mHAs for 3 common HLA alleles. We validated 24 predicted novel GVL mHAs that are found cumulatively within 98.8%, 60.7%, and 78.9% of DRPs within DISCOVeRY-BMT that express HLA-A∗02:01, HLA-B∗35:01, and HLA-C∗07:02, respectively. We confirmed the immunogenicity of an example novel mHA via T-cell coculture with peptide-pulsed dendritic cells. This work demonstrates that the identification of shared mHAs is a feasible and promising technique for expanding mHA-targeting immunotherapeutics.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Leucemia , Humanos , Doença Enxerto-Hospedeiro/imunologia , Leucemia/genética , Leucemia/terapia , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/imunologia , Transplante Homólogo , Masculino , Feminino , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Antígenos HLA/imunologia , Linfócitos T/imunologia , Células Dendríticas/imunologia
18.
Mol Genet Genomic Med ; 10(7): e1964, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35603962

RESUMO

BACKGROUND: Although B-acute lymphoblastic leukemia (B-ALL) patients' survival has been improved dramatically, some cases still relapse. This study aimed to explore the prognosis-related novel differentially expressed genes (DEGs) for predicting the overall survival (OS) of children and young adults (CAYAs) with B-ALL and analyze the immune-related factors contributing to poor prognosis. METHODS: GSE48558 and GSE79533 from Gene Expression Omnibus (GEO) and clinical sample information and mRNA-seq from Therapeutically Applicable Research to Generate Effective Treatments (TARGET) database were retrieved. Prognosis-related key genes were enrolled to build a Cox proportional model using multivariate Cox regression. Five-year OS of patients, clinical characteristic relevance and clinical independence were assessed based on the model. The mRNA levels of prognosis-related genes were validated in our samples and the difference of immune cells composition between high-risk and low-risk patients were compared. RESULTS: One hundred and twelve DEGs between normal B cells and B-ALL cells were identified based on GSE datasets. They were mainly participated in protein binding and HIF-1 signaling pathway. One hundred and eighty-nine clinical samples were enrolled in the study, both Kaplan-Meier (KM) analysis and univariate Cox regression analysis showed that CYBB, BCL2A1, IFI30, and EFNB1 were associated with prognosis, CYBB, BCL2A1, and EFNB1 were used to construct prognostic risk model. Moreover, compared to clinical indicators, the three-gene signature was an independent prognostic factor for CAYAs with B-ALL. Finally, the mRNA levels of CYBB, BCL2A1, and EFNB1 were significantly lower in B-ALL group as compared to controls. The high-risk group had a significantly higher percentage of infiltrated immune cells. CONCLUSION: We constructed a novel three-gene signature with independent prognostic factor for predicting 5-year OS of CAYAs with B-ALL. Additionally, we discovered the difference of immune cells composition between high-risk and low-risk groups. This study may help to customize individual treatment and improve prognosis of CAYAs with B-ALL.


Assuntos
Biomarcadores Tumorais , Efrina-B1 , Antígenos de Histocompatibilidade Menor , NADPH Oxidase 2 , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Proteínas Proto-Oncogênicas c-bcl-2 , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/imunologia , Criança , Efrina-B1/genética , Efrina-B1/imunologia , Humanos , Sistema Imunitário/imunologia , Sistema Imunitário/patologia , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/imunologia , NADPH Oxidase 2/genética , NADPH Oxidase 2/imunologia , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/imunologia , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/imunologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Prognóstico , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/imunologia , RNA Mensageiro/genética , Adulto Jovem
19.
J Biol Chem ; 298(2): 101542, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34968463

RESUMO

The monomorphic antigen-presenting molecule major histocompatibility complex-I-related protein 1 (MR1) presents small-molecule metabolites to mucosal-associated invariant T (MAIT) cells. The MR1-MAIT cell axis has been implicated in a variety of infectious and noncommunicable diseases, and recent studies have begun to develop an understanding of the molecular mechanisms underlying this specialized antigen presentation pathway. However, proteins regulating MR1 folding, loading, stability, and surface expression remain to be identified. Here, we performed a gene trap screen to discover novel modulators of MR1 surface expression through insertional mutagenesis of an MR1-overexpressing clone derived from the near-haploid human cell line HAP1 (HAP1.MR1). The most significant positive regulators identified included ß2-microglobulin, a known regulator of MR1 surface expression, and ATP13A1, a P5-type ATPase in the endoplasmic reticulum (ER) not previously known to be associated with MR1-mediated antigen presentation. CRISPR/Cas9-mediated knockout of ATP13A1 in both HAP1.MR1 and THP-1 cell lines revealed a profound reduction in MR1 protein levels and a concomitant functional defect specific to MR1-mediated antigen presentation. Collectively, these data are consistent with the ER-resident ATP13A1 being a key posttranscriptional determinant of MR1 surface expression.


Assuntos
Apresentação de Antígeno , Antígenos de Histocompatibilidade Classe I , Complexo Principal de Histocompatibilidade , Antígenos de Histocompatibilidade Menor , ATPases do Tipo-P , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Complexo Principal de Histocompatibilidade/imunologia , Antígenos de Histocompatibilidade Menor/imunologia , ATPases do Tipo-P/imunologia
20.
Front Immunol ; 12: 782152, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34868058

RESUMO

Minor histocompatibility antigens (mHAg) composed of peptides presented by HLA molecules can cause immune responses involved in graft-versus-host disease (GVHD) and graft-versus-leukemia effects after allogeneic hematopoietic cell transplantation (HCT). The current study was designed to identify individual graft-versus-host genomic mismatches associated with altered risks of acute or chronic GVHD or relapse after HCT between HLA-genotypically identical siblings. Our results demonstrate that in allogeneic HCT between a pair of HLA-identical siblings, a mHAg manifests as a set of peptides originating from annotated proteins and non-annotated open reading frames, which i) are encoded by a group of highly associated recipient genomic mismatches, ii) bind to HLA allotypes in the recipient, and iii) evoke a donor immune response. Attribution of the immune response and consequent clinical outcomes to individual peptide components within this set will likely differ from patient to patient according to their HLA types.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Antígenos de Histocompatibilidade Menor/imunologia , Imunologia de Transplantes , Adolescente , Adulto , Idoso , Alelos , Criança , Pré-Escolar , Suscetibilidade a Doenças/imunologia , Feminino , Predisposição Genética para Doença , Variação Genética , Doença Enxerto-Hospedeiro/epidemiologia , Doença Enxerto-Hospedeiro/etiologia , Antígenos HLA/genética , Antígenos HLA/imunologia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Transplante de Células-Tronco Hematopoéticas/métodos , Humanos , Incidência , Lactente , Recém-Nascido , Desequilíbrio de Ligação , Masculino , Pessoa de Meia-Idade , Antígenos de Histocompatibilidade Menor/genética , Peptídeos/genética , Peptídeos/imunologia , Transplante Homólogo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA