Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.087
Filtrar
1.
Mikrochim Acta ; 191(5): 293, 2024 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-38691169

RESUMO

To address the need for facile, rapid detection of pathogens in water supplies, a fluorescent sensing array platform based on antibiotic-stabilized metal nanoclusters was developed for the multiplex detection of pathogens. Using five common antibiotics, eight different nanoclusters (NCs) were synthesized including ampicillin stabilized copper NCs, cefepime stabilized gold and copper NCs, kanamycin stabilized gold and copper NCs, lysozyme stabilized gold NCs, and vancomycin stabilized gold/silver and copper NCs. Based on the different interaction of each NC with the bacteria strains, unique patterns were generated. Various machine learning algorithms were employed for pattern discernment, among which the artificial neural networks proved to have the highest performance, with an accuracy of 100%. The developed prediction model performed well on an independent test dataset and on real samples gathered from drinking water, tap water and the Anzali Lagoon water, with prediction accuracy of 96.88% and 95.14%, respectively. This work demonstrates how generic antibiotics can be implemented for NC synthesis and used as recognition elements for pathogen detection. Furthermore, it displays how merging machine learning techniques can elevate sensitivity of analytical devices.


Assuntos
Antibacterianos , Cobre , Ouro , Nanopartículas Metálicas , Prata , Nanopartículas Metálicas/química , Antibacterianos/análise , Antibacterianos/química , Ouro/química , Cobre/química , Prata/química , Água Potável/microbiologia , Água Potável/análise , Redes Neurais de Computação , Espectrometria de Fluorescência/métodos , Aprendizado de Máquina , Bactérias/isolamento & purificação , Corantes Fluorescentes/química , Vancomicina/química , Microbiologia da Água , Canamicina/análise
2.
Mikrochim Acta ; 191(5): 294, 2024 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698253

RESUMO

Early transition metal carbides (MXene) hybridized by precious metals open a door for innovative electrochemical biosensing device design. Herein, we present a facile one-pot synthesis of gold nanoparticles (AuNPs)-doped two-dimensional (2D) titanium carbide MXene nanoflakes (Ti3C2Tx/Au). Ti3C2Tx MXene exhibits high electrical conductivity and yields synergistic signal amplification in conjunction with AuNPs leading to excellent electrochemical performance. Thus Ti3C2Tx/Au hybrid nanostructure can be used as an electrode platform for the electrochemical analysis of various targets. We used screen-printed electrodes modified with the Ti3C2Tx/Au electrode and functionalized with different biorecognition elements to detect and quantify an antibiotic, ampicillin (AMP), and a mycotoxin, fumonisin B1 (FB1). The ultralow limits of detection of 2.284 pM and 1.617 pg.mL-1, which we achieved respectively for AMP and FB1 are far lower than their corresponding maximum residue limits of 2.8 nM in milk and 2 to 4 mg kg-1 in corn products for human consumption set by the United States Food and Drug Administration. Additionally, the linear range of detection and quantification of AMP and FB1 were, respectively, 10 pM to 500 nM and 10 pg mL-1 to 1 µg mL-1. The unique structure and excellent electrochemical performance of Ti3C2Tx/Au nanocomposite suggest that it is highly suitable for anchoring biorecognition entities such as antibodies and oligonucleotides for monitoring various deleterious contaminants in agri-food products.


Assuntos
Ampicilina , Técnicas Eletroquímicas , Fumonisinas , Ouro , Limite de Detecção , Nanopartículas Metálicas , Titânio , Fumonisinas/análise , Ouro/química , Ampicilina/análise , Ampicilina/química , Nanopartículas Metálicas/química , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Titânio/química , Técnicas Biossensoriais/métodos , Leite/química , Antibacterianos/análise , Eletrodos , Contaminação de Alimentos/análise , Animais
3.
Sci Rep ; 14(1): 10592, 2024 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719900

RESUMO

Umbelliferous (Apiaceae) vegetables are widely consumed worldwide for their nutritive and health benefits. The main goal of the current study is to explore the compositional heterogeneity in four dried umbelliferous vegetables viz, celery, coriander, dill, and parsley targeting their volatile profile using gas chromatography-mass spectrometry (GC-MS). A total of 133 volatile metabolites were detected belonging to 12 classes. Aromatic hydrocarbons were detected as the major components of the analyzed vegetables accounting ca. 64.0, 62.4, 59.5, and 47.8% in parsley, dill, celery, and coriander, respectively. Aliphatic hydrocarbons were detected at ca. 6.39, 8.21, 6.16, and 6.79% in parsley, dill, celery, and coriander, respectively. Polyunsaturated fatty acids (PUFA) of various health benefits were detected in parsley and represented by roughanic acid and α-linolenic acid at 4.99 and 0.47%, respectively. Myristicin and frambinone were detected only in parsley at 0.45 and 0.56%. Investigation of antibacterial activity of umbelliferous vegetables n-hexane extract revealed a moderate antibacterial activity against Gram-positive and Gram-negative bacteria with higher activity for celery and dill against Staphylococcus aureus with inhibition zone 20.3 mm compared to 24.3 mm of the standard antibacterial drug.


Assuntos
Antibacterianos , Cromatografia Gasosa-Espectrometria de Massas , Hexanos , Compostos Fitoquímicos , Verduras , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/análise , Verduras/química , Compostos Fitoquímicos/química , Compostos Fitoquímicos/análise , Compostos Fitoquímicos/farmacologia , Hexanos/química , Apiaceae/química , Testes de Sensibilidade Microbiana , Derivados de Alilbenzenos , Ácido alfa-Linolênico/análise , Ácido alfa-Linolênico/farmacologia , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Óleos de Plantas/farmacologia , Óleos de Plantas/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Ácidos Graxos Insaturados/análise , Staphylococcus aureus/efeitos dos fármacos , Dioxolanos
4.
Mikrochim Acta ; 191(6): 304, 2024 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710810

RESUMO

Dual-emissive fluorescence probes were designed by integrating porphyrin into the frameworks of UiO-66 for ratiometric fluorescence sensing of amoxicillin (AMX). Porphyrin integrated UiO-66 showed dual emission in the blue and red region. AMX resulted in the quenching of blue fluorescence component, attributable to the charge neutralization and hydrogen bonds induced energy transfer. AMX was detected using (F438/F654) as output signals. Two linear relationships were observed (from 10 to 1000 nM and 1 to 100 µM), with a limit of detection of 27 nM. The porphyrin integrated UiO-66 probe was used to detect AMX in practical samples. This work widens the road for the development of dual/multiple emissive fluorescence sensors for analytical applications, providing materials and theoretical supporting for food, environmental, and human safety.


Assuntos
Amoxicilina , Antibacterianos , Corantes Fluorescentes , Leite , Porfirinas , Espectrometria de Fluorescência , Leite/química , Porfirinas/química , Antibacterianos/análise , Antibacterianos/química , Amoxicilina/análise , Amoxicilina/química , Corantes Fluorescentes/química , Animais , Espectrometria de Fluorescência/métodos , Limite de Detecção , Estruturas Metalorgânicas/química , Resíduos de Drogas/análise , Contaminação de Alimentos/análise
5.
Sci Rep ; 14(1): 10066, 2024 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698009

RESUMO

The global threat of antibiotic resistance has increased the importance of the detection of antibiotics. Conventional methods to detect antibiotics are time-consuming and require expensive specialized equipment. Here, we present a simple and rapid biosensor for detecting ampicillin, a commonly used antibiotic. Our method is based on the fluorescent properties of chitosan-coated Mn-doped ZnS micromaterials combined with the ß-lactamase enzyme. The biosensors exhibited the highest sensitivity in a linear working range of 13.1-72.2 pM with a limit of detection of 8.24 pM in deionized water. In addition, due to the biological specificity of ß-lactamase, the proposed sensors have demonstrated high selectivity over penicillin, tetracycline, and glucose through the enhancing and quenching effects at wavelengths of 510 nm and 614 nm, respectively. These proposed sensors also showed promising results when tested in various matrices, including tap water, bottled water, and milk. Our work reports for the first time the cost-effective (Mn:ZnS)Chitosan micromaterial was used for ampicillin detection. The results will facilitate the monitoring of antibiotics in clinical and environmental contexts.


Assuntos
Ampicilina , Técnicas Biossensoriais , Quitosana , Manganês , Sulfetos , Compostos de Zinco , Ampicilina/análise , Ampicilina/química , Quitosana/química , Técnicas Biossensoriais/métodos , Compostos de Zinco/química , Manganês/química , Sulfetos/química , Antibacterianos/análise , Antibacterianos/química , beta-Lactamases/análise , beta-Lactamases/metabolismo , beta-Lactamases/química , Leite/química , Limite de Detecção , Espectrometria de Fluorescência/métodos , Corantes Fluorescentes/química , Animais
6.
Anal Chim Acta ; 1306: 342598, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38692791

RESUMO

BACKGROUND: Carbon-based nanozymes have recently received enormous concern, however, there is still a huge challenge for inexpensive and large-scale synthesis of magnetic carbon-based "Two-in-One" mimics with both peroxidase (POD)-like and laccase-like activities, especially their potential applications in multi-mode sensing of antibiotics and neurotransmitters in biofluids. Although some progresses have been made in this field, the feasibility of biomass-derived carbon materials with both POD-like and laccase-like activities by polyatomic doping strategy is still unclear. In addition, multi-mode sensing platform can provide a more reliable result because of the self-validation, self-correction and mutual agreement. Nevertheless, the use of magnetic carbon-based nanozyme sensors for the multi-mode detection of antibiotics and neurotransmitters have not been investigated. RESULTS: We herein report a shrimp shell-derived N, O-codoped porous carbon confined magnetic CuFe2O4 nanosphere with outstanding laccase-like and POD-like activities for triple-mode sensing of antibiotic d-penicillamine (D-PA) and chloramphenicol (CPL), as well as colorimetric detection of neurotransmitters in biofluids. The magnetic CuFe2O4/N, O-codoped porous carbon (MCNPC) armored mimetics was successfully fabricated using a combined in-situ coordination and high-temperature crystallization method. The synthesized MCNPC composite with superior POD-like activity can be used for colorimetric/temperature/smartphone-based triple-mode detection of D-PA and CPL in goat serum. Importantly, the MCNPC nanozyme can also be used for colorimetric analysis of dopamine and epinephrine in human urine. SIGNIFICANCE: This work not only offered a novel strategy to large-scale, cheap synthesize magnetic carbon-based "Two-in-One" armored mimetics, but also established the highly sensitive and selective platforms for triple-mode monitoring D-PA and CPL, as well as colorimetric analysis of neurotransmitters in biofluids without any tanglesome sample pretreatment.


Assuntos
Antibacterianos , Carbono , Cobre , Neurotransmissores , Carbono/química , Antibacterianos/análise , Antibacterianos/urina , Antibacterianos/sangue , Neurotransmissores/urina , Neurotransmissores/análise , Neurotransmissores/sangue , Porosidade , Cobre/química , Humanos , Nanosferas/química , Colorimetria/métodos , Compostos Férricos/química , Materiais Biomiméticos/química , Animais , Técnicas Biossensoriais/métodos , Cloranfenicol/análise , Cloranfenicol/urina , Limite de Detecção
7.
Anal Chim Acta ; 1308: 342659, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38740459

RESUMO

BACKGROUND: Kanamycin is an antibiotic that can easily cause adverse side effects if used improperly. Due to the extremely low concentrations of kanamycin in food, quantitative detection of kanamycin becomes a challenge. As one of the DNA self-assembly strategies, entropy-driven strand displacement reaction (EDSDR) does not require enzymes or hairpins to participate in the reaction, which greatly reduces the instability of detection results. Therefore, it is a very beneficial attempt to construct a highly sensitive and specific fluorescence detection method based on EDSDR that can detect kanamycin easily and quickly while ensuring that the results are effective and stable. RESULTS: We created an enzyme-free fluorescent aptamer sensor with high specificity and sensitivity for detecting kanamycin in milk by taking advantage of EDSDR and the high specific binding between the target and its aptamer. The specific binding can result in the release of the promoter chain, which then sets off the pre-planned EDSDR cycle. Fluorescent label modification on DNA combined with the fluorescence quenching-recovery mechanism gives the sensor impressive fluorescence response capabilities. The research results showed that within the concentration range of 0.1 nM-50 nM, there was a good relationship between the fluorescence intensity of the solution and the concentration of kanamycin. Specificity experiments and actual sample detection experiments confirmed that the biosensor could achieve highly sensitive and specific detection of trace amounts of kanamycin in food, with a detection limit of 0.053 nM (S/N = 3). SIGNIFICANCE: To our knowledge, this is the first strategy to combine EDSDR with fluorescence to detect kanamycin in food. Accurate results can be obtained in as little as 90 min with no enzymes or hairpins involved in the reaction. Furthermore, our enzyme-free biosensing method is straightforward, highly sensitive, and extremely specific. It has many possible applications, including monitoring antibiotic residues and food safety.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Entropia , Corantes Fluorescentes , Canamicina , Leite , Canamicina/análise , Canamicina/química , Aptâmeros de Nucleotídeos/química , Leite/química , Corantes Fluorescentes/química , Técnicas Biossensoriais/métodos , Espectrometria de Fluorescência , Limite de Detecção , Animais , Antibacterianos/análise , Antibacterianos/química , Contaminação de Alimentos/análise
8.
Sci Total Environ ; 929: 172502, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38636872

RESUMO

Some antibiotics are used for the treatment of various bacterial crop diseases, and there is a concern that this practice may represent a selection pressure that increases the reservoir of antibiotic resistance carried by bacteria in crop production systems. Since the 1950s the aminoglycoside antibiotic streptomycin has been widely used for the treatment of some bacterial crop diseases such as fire blight in apples and pears. Following application, the time that bacteria will be exposed to the antibiotic, and therefore the pressure for selection of resistance, will vary according to the environmental persistence of the antibiotic. In the present study, the dissipation of streptomycin was examined in soils supplemented with 5 mg streptomycin/kg soil and incubated for 21 days under laboratory conditions. The impact of two key rate-controlling variables, soil texture (sandy loam, loam, clay loam) and temperature (4, 20, 30 °C) on streptomycin persistence were explored. -Robust methods for streptomycin extraction and analysis by LC-MS/MS were developed. Streptomycin dissipation followed first order kinetics, with the time to dissipate 50 % of the parent compound (DT50) in soils of varying texture incubated at 20 °C ranging from about seven to 15 days. In contrast, the DT50 of streptomycin in autoclaved loam soil incubated at 20 °C was about 111 days. At 4 °C the DT50 ranged from 49 to 137 days. Under no incubation conditions were any extractable transformation products obtained. Streptomycin was dissipated significantly more rapidly in field soil that had a prior history of exposure to the antibiotic than in soil that did not. Taken together, these results indicate that streptomycin is amenable to biodegradation in agricultural soils with DT50s of several days when temperature is permissive.


Assuntos
Agricultura , Antibacterianos , Biodegradação Ambiental , Microbiologia do Solo , Poluentes do Solo , Solo , Estreptomicina , Poluentes do Solo/análise , Solo/química , Antibacterianos/análise
9.
J Hazard Mater ; 470: 134218, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38581878

RESUMO

The development of high-performance sensors for doxycycline (DOX) detection is necessary because its residue accumulation will cause serious harm to human health and the environment. Here, a novel tri-emission ratiometric fluorescence sensor was proposed by using "post-mixing" strategy of different emissions fluorescence molecularly imprinted polymers with salicylamide as dummy template (DMIPs). BSA was chosen as assistant functional monomer, and also acted as sensitizers for the aggregation-induced emission (AIE) effect of DOX. The blue-emitting carbon dots and the red-emitting CdTe quantum dots were separately introduced into DMIPs as the response signals. Upon DOX recognition within 2 min, blue and red fluorescence of the tri-emission DMIPs sensor were quenched while green fluorescence of DOX was enhanced, resulting in a wide range of color variations observed over bluish violet-rosered-light pink-orange-yellow-green with a detection limit of 0.061 µM. The sensor possessed highly selective recognition and was successfully applied to detect DOX in complicated real samples. Moreover, with the fluorescent color collection and data processing, the smartphone-assisted visual detection of the sensors showed satisfied sensitivity with low detection limit. This work provides great potential applications for rapid and visual detection of antibiotics in complex substrates.


Assuntos
Antibacterianos , Compostos de Cádmio , Doxiciclina , Impressão Molecular , Pontos Quânticos , Espectrometria de Fluorescência , Telúrio , Doxiciclina/análise , Doxiciclina/química , Pontos Quânticos/química , Telúrio/química , Antibacterianos/análise , Compostos de Cádmio/química , Limite de Detecção , Fluorescência , Carbono/química , Corantes Fluorescentes/química , Polímeros Molecularmente Impressos/química , Smartphone
10.
Water Sci Technol ; 89(8): 2035-2043, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38678407

RESUMO

Antibiotics have been recognized as emerging pollutants due to their ecological and human health risks. This paper aims to enhance the ecological risk assessment (ERA) framework for antibiotics, to illustrate the distribution of these risks across different locations and seasons, and to identify the antibiotics that pose high ecological risk. This paper focuses on 52 antibiotics in seven major basins of China. Relying on the optimized approach of ERA and antibiotic monitoring data published from 2017 to 2021, the results of ERA are presented in multilevel. Across the study area, there are marked variations in the spatial distribution of antibiotics' ecological risks. The Huaihe River Basin, the Haihe River Basin, and the Liaohe River Basin are the top three in the ranking of present ecological risks. The research results also reveal significant differences in temporal variation, underscoring the need for increased attention during certain seasons. Ten antibiotics with high contribution rates to ecological risk are identified, which is an important reference to formulate an antibiotic control list. The multilevel results provided both risk values and their ubiquities across a broad study region, which is a powerful support for developing ecological risk management of antibiotics.


Assuntos
Antibacterianos , Monitoramento Ambiental , Rios , Poluentes Químicos da Água , Rios/química , China , Antibacterianos/análise , Medição de Risco , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Análise Espaço-Temporal , Estações do Ano
11.
ACS Appl Mater Interfaces ; 16(17): 22704-22714, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38640487

RESUMO

Balancing the accuracy and simplicity of aptasensors is a challenge in their construction. This study addresses this issue by leveraging the remarkable loading capacity and peroxidase-like catalytic activity of PtPdCu trimetallic nanoparticles, which reduces the reliance on precious metals. A dual-signal readout aptasensor for enrofloxacin (ENR) detection is designed, incorporating DNA dynamic network cascade reactions to further amplify the output signal. Exploiting the strong loading capacity of PtPdCu nanoparticles, they are self-assembled with thionine (Thi) to form a signal label capable of generating signals in two independent modes. The label exhibits excellent enzyme-like catalytic activity and enhances electron transfer capabilities. Differential pulse voltammetry (DPV) and square-wave voltammetry (SWV) are employed to independently read signals from the oxidation-reduction reaction of Thi and the catalytic oxidation of hydroquinone (HQ) to benzoquinone (BQ) by H2O2. The introduced DNA dynamic network cascade reaction modularizes sample processing and electrode surface signal generation, avoiding electrode contamination and efficiently increasing the output of the catalyzed hairpin assembly (CHA) cycle. Under optimized conditions, the developed aptasensor demonstrates detection limits of 0.112 (DPV mode) and 0.0203 pg/mL (SWV mode). Additionally, the sensor successfully detected enrofloxacin in real samples, expanding avenues for designing dual-mode signal amplification strategies.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Cobre , Enrofloxacina , Nanopartículas Metálicas , Platina , Enrofloxacina/análise , Aptâmeros de Nucleotídeos/química , Nanopartículas Metálicas/química , Técnicas Biossensoriais/métodos , Cobre/química , Platina/química , Rutênio/química , Técnicas Eletroquímicas/métodos , Limite de Detecção , Oxirredução , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/análise , Catálise , Antibacterianos/análise , Antibacterianos/química
12.
Vet Med Sci ; 10(3): e1459, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38654684

RESUMO

BACKGROUND: Antibiotics are commonly used drugs in farm animals for therapeutic, prophylactic and diagnosis purposes. As a result of the use of antibiotics in livestock, residues of antibiotics may be present in animal-derived foods, especially in meat. This study aimed at determining the antibiotic residues in cattle slaughtered at Nekemte municipal abattoir and assessing the knowledge, attitude and practice (KAP) level of the community about antibiotic residue in food of cattle origin. MATERIALS AND METHODS: A cross-sectional study was conducted on randomly selected kidney and muscle samples slaughtered at Nekemte municipal abattoir. The samples were collected aseptically and analysed using liquid chromatography mass spectrometer. In addition the KAP of cattle handlers, butcher men and meat users were collected using structured questionnaire. The data was analysed by SPSS and intercooled Stata version 7.0, 2001. RESULTS: Results are presented as percentages and frequency distributions in tabular and graphical form. From 120 individuals interviewed, only 25.83% knew about withdrawal time and had limited knowledge on effect of antibiotic residue on human health, whereas about 47.5% did not heard about antibiotic residue in meat. Tetracycline was detected in all the sampled meat 60 (100%), whereas oxytetracycline residues were detected in half 15 (50%) of the samples. In the current study doxycycline, sulphadiazine, penicillin G and enrofloxacin were not detected in all samples. Oxytetracycline residue levels ranged from 0.00 to 463.35 µg/kg for the kidney and 0.00 to 354.55 µg/kg for muscle samples. About 10% of kidney and 3.33% muscle samples collected had oxytetracycline residues above maximum residue limits. CONCLUSION: In general, the study revealed that oxytetracycline residues were prevalent among antimicrobial residues analysed from the study area. The study indicated the presence of high antimicrobial residue and hence exposes for antimicrobial resistance of pathogens warranting coordinated effort to mitigate its health effect on the animal and hence human being.


Assuntos
Matadouros , Antibacterianos , Resíduos de Drogas , Rim , Carne Vermelha , Animais , Etiópia , Bovinos , Estudos Transversais , Resíduos de Drogas/análise , Rim/química , Carne Vermelha/análise , Antibacterianos/análise , Masculino , Conhecimentos, Atitudes e Prática em Saúde , Feminino , Adulto
13.
Food Chem ; 449: 139291, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38608609

RESUMO

The residues of erythromycin (ERY) may have negative impacts on the ecological environment, health, and food safety. How to detect ERY effectively and visually is a challenging issue. Herein, we synthesized a molecularly imprinted polymer based nanozymes for selective detection of erythromycin (ERY-MIPNs) at neutral pH, and developed a mobile phone-assisted bicolor colorimetric detection system. This system produced a wide range of color changes from blue to pinkish purple as the ERY concentration increased, making it easy to capture the visualization result. Also, the system showed good sensitivity to ERY ranging from 15 to 135 µM, with a detection limit of 1.78 µM. In addition, the system worked well in the detection of ERY in river water and milk, with the recoveries of 95.57% âˆ¼ 103.20%. These data suggests that this strategy is of considerable potential for practical applications and it provides a new idea for visual detection with portable measurement.


Assuntos
Colorimetria , Eritromicina , Leite , Rios , Poluentes Químicos da Água , Leite/química , Colorimetria/métodos , Animais , Rios/química , Eritromicina/análise , Eritromicina/isolamento & purificação , Poluentes Químicos da Água/análise , Telefone Celular , Impressão Molecular , Contaminação de Alimentos/análise , Limite de Detecção , Antibacterianos/análise , Polímeros Molecularmente Impressos/química
14.
Chemosphere ; 357: 141981, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38626813

RESUMO

Metal-Organic Frameworks (MOFs) are extensively used as electrode material in various sensing applications due to their efficacious porous nature and tunable properties. However, pristine MOFs lack conductive attributes that hinder their wide usage in electrochemical applications. Electropolymerization of several aromatic monomers has been a widely used strategy for preparing conducting electrode materials for various sensing applications in the past decades. Herein, we report a similar approach by employing the electropolymerization method to create a functional polymer layer to enhance the sensitivity of an Aluminium Organic Framework (DUT-4) for the selective detection of Chloramphenicol (CAP) antibiotic in aqueous environment. The combined strategy using the conducting polymer layer with the porous Al MOF provides surpassing electrochemical performance for sensing CAP with regard to the very low detection limit (LOD = 39 nM) and exceptionally high sensitivity (11943 µA mM-1 cm-2). In addition, the fabricated sensor exhibited good selectivity, reproducibility and stability. The developed method was successfully evaluated in various real samples including lake water and river water for CAP detection with good recovery percentages even at lower concentrations.


Assuntos
Alumínio , Cloranfenicol , Técnicas Eletroquímicas , Limite de Detecção , Estruturas Metalorgânicas , Polímeros , Poluentes Químicos da Água , Cloranfenicol/análise , Estruturas Metalorgânicas/química , Poluentes Químicos da Água/análise , Alumínio/análise , Alumínio/química , Polímeros/química , Técnicas Eletroquímicas/métodos , Reprodutibilidade dos Testes , Antibacterianos/análise , Eletrodos , Rios/química , Lagos/química , Lagos/análise
15.
J Chromatogr A ; 1725: 464926, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38678693

RESUMO

Sulfonamide antibiotics (SAs) have been widely used as antibacterial drugs for the prevention and treatment of livestock and poultry diseases, but they seriously threaten human health because they can accumulate in humans. Therefore, it is highly important to develop methods for monitoring sulfonamide residues in aquaculture and food. In this research, based on the generation of porous carbon (PC) by the pyrolysis of sodium citrate, magnetic porous carbon (PC@Fe3O4) was synthesized by a solvothermal method and used as an adsorbent for the magnetic solid-phase extraction of SAs. The effects of the proportion of PC in PC@Fe3O4, adsorbent dosage, adsorption time, eluent type, extraction pH, salt concentration and eluent dosage on the extraction efficiency were systematically studied. The adsorption performance and behavior of PC@Fe3O4 on SAs were evaluated using adsorption kinetics and adsorption isotherms, and the adsorption mechanism was preliminarily discussed. Under optimal conditions, combined with capillary electrophoresis diode array detection, a sensitive detection method for SAs was developed. The proposed method can be used for the determination of six SAs in fishpond water and milk samples, with a linear range of 0.5-200 ng mL-1, detection limits of 0.24-0.34 ng mL-1, and spiked recoveries of 85.9-109.0 %.


Assuntos
Antibacterianos , Carbono , Eletroforese Capilar , Limite de Detecção , Leite , Extração em Fase Sólida , Sulfonamidas , Extração em Fase Sólida/métodos , Eletroforese Capilar/métodos , Sulfonamidas/análise , Sulfonamidas/isolamento & purificação , Sulfonamidas/química , Adsorção , Porosidade , Carbono/química , Antibacterianos/análise , Antibacterianos/isolamento & purificação , Antibacterianos/química , Leite/química , Animais , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/isolamento & purificação , Poluentes Químicos da Água/química
16.
Environ Int ; 186: 108654, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38621322

RESUMO

Investigating the occurrence of antibiotic-resistance genes (ARGs) in sedimentary archives provides opportunities for reconstructing the distribution and dissemination of historical (i.e., non-anthropogenic origin) ARGs. Although ARGs in freshwater environments have attracted great attention, historical variations in the diversity and abundance of ARGs over centuries to millennia remain largely unknown. In this study, we investigated the vertical change patterns of bacterial communities, ARGs and mobile genetic elements (MGEs) found in sediments of Lake Chenghai spanning the past 600 years. Within resistome preserved in sediments, 177 ARGs subtypes were found with aminoglycosides and multidrug resistance being the most abundant. The ARG abundance in the upper sediment layers (equivalent to the post-antibiotic era since the 1940s) was lower than those during the pre-antibiotic era, whereas the ARG diversity was higher during the post-antibiotic era, possibly because human-induced lake eutrophication over the recent decades facilitated the spread and proliferation of drug-resistant bacteria. Statistical analysis suggested that MGEs abundance and the bacterial community structure were significantly correlated with the abundance and diversity of ARGs, suggesting that the occurrence and distribution of ARGs may be transferred between different bacteria by MGEs. Our results provide new perspectives on the natural history of ARGs in freshwater environments and are essential for understanding the temporal dynamics and dissemination of ARGs.


Assuntos
Eutrofização , Sedimentos Geológicos , Lagos , Lagos/microbiologia , Sedimentos Geológicos/microbiologia , Sedimentos Geológicos/química , Bactérias/genética , Bactérias/efeitos dos fármacos , Resistência Microbiana a Medicamentos/genética , Antibacterianos/análise , Antibacterianos/farmacologia , Genes Bacterianos , China , Farmacorresistência Bacteriana/genética
17.
Spectrochim Acta A Mol Biomol Spectrosc ; 314: 124194, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38569387

RESUMO

Here, we demonstrated the synthesis of a zinc based luminescent MOF, 1 (NDC = 2,6- naphthalenedicarboxylate) for the ratiometric detection of biomarker riboflavin (RBF; vitamin B2) in water dispersed medium. Further, this MOF detected two other antibiotic drug molecules, nitrofurantoin (NFT) and nitrofurazone (NZF). The detection of these analytes is very quick (∼seconds), and the limit of detection (LOD) for RBF, NZF and NFT are calculated as 16.58 ppm, 47.63 ppb and 56.96 ppb, respectively. The detection of these analytes was also comprehended by solid, solution, cost-effective paper strip method i.e., triphasic identification capabilities. The sensor is reusable without losing its detection efficacy. The sensor further showed the recognition abilities of these antibiotics in real field samples (river water, urine and tablet) and RBF in vitamin B2 pills and food samples (milk and cold drinks). The sensing merit of 1 urged us to fabricate of 1@cotton fabric composite, which exhibited the colorimetric detection of these analytes. In-depth experimental analysis suggested that the occurrence of photo-induced electron transfer (PET), fluorescence resonance energy transfer (FRET), and the inner filter effect (IFE) are the possible sensing mechanisms for the recognition of the antibiotics drug. The FRET mechanism is responsible for the recognition of RBF. The sensing mechanism is further supported by the theoretical analysis and the excited lifetime measurement.


Assuntos
Antibacterianos , Transferência Ressonante de Energia de Fluorescência , Antibacterianos/análise , Nitrofurantoína , Corantes/análise , Água , Vitaminas/análise
18.
Anal Chim Acta ; 1304: 342524, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38637033

RESUMO

The inappropriate use of antibiotics undoubtedly poses a potential threat to public health, creating an increasing need to develop highly sensitive tests. In this study, we designed a new type of porphyrin metal-organic frameworks (Fe TCPP(Zn) MOFs) with homogeneous catalytic sites. The ferric-based metal ligands of Fe TCPP(Zn) MOFs acted as co-reaction accelerators, which effectively improved the conversion efficiency of H2O2 on the surface of MOFs, then increased the concentration of •OH surrounding porphyrin molecules to achieve self-enhanced electrochemiluminescence (ECL). Based on this, an aptasensor for the specific detection of kanamycin (KAN) in food and environmental water samples was constructed in combination with resonance energy transform (RET), in which Fe TCPP(Zn) MOFs were used as luminescence donor and AuNPs were used as acceptor. Under the best conditions, there was a good linear relationship between the ECL intensity and the logarithm of KAN concentration with a detection limit of 0.28 fM in the range of 1.0 × 10-7-1.0 × 10-13 M, demonstrating satisfactory selectivity and stability. At the same time, the complexity of the detection environment was reduced, which further realized the reliable analysis of KAN in milk, honey and pond water. Overall, this innovative self-enhanced ECL strategy provides a novel approach for constructing efficient ECL systems in MOFs, and also extends the application of MOFs to the analysis and detection of trace antibiotics in food and the environment.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Metaloporfirinas , Canamicina/análise , Ouro , Domínio Catalítico , Peróxido de Hidrogênio , Medições Luminescentes , Antibacterianos/análise , Técnicas Eletroquímicas , Água , Limite de Detecção
19.
Huan Jing Ke Xue ; 45(5): 2686-2693, 2024 May 08.
Artigo em Chinês | MEDLINE | ID: mdl-38629532

RESUMO

Riparian soil is a critical area of watersheds. The characteristics of biological contaminants in riparian soil affect the pollution control of the watershed water environment. Thus, the microbial community structure, antibiotic resistance genes (ARGs), and mobile genetic elements (MGEs) in the riparian soil of the Lanzhou section of the Yellow River were investigated by analyzing the characteristics of soil samples collected from farmland, mountains, and industrial land. The results showed that the Proteobacteria, Bacteroidetes, and Actinobacteria were the dominant phyla in the riparian soil of Lanzhou section of the Yellow River. The microbial structure in the riparian soil was significantly correlated with the land use type (P < 0.05). The α diversity index of bacterial communities in land types was in the order of farmland > mountain > industry. Sulfonamide-typed ARGs were the most dominant genes in the soil of the Lanzhou section of the Yellow River Basin, among which the sul1 gene had the highest abundance, 20-36 000 times that of other detected ARGs. Moreover, the total absolute abundance of ARGs in industrial soil was the highest. Principal coordinate analysis (PCoA) displayed that the ARGs characteristics had a significant correlation with land types (P < 0.05), and intl1 and tnpA-04 drove the diffuseness of sulfonamide and tetracycline ARGs, respectively. Redundancy analysis (RDA) demonstrated that the content of inorganic salt ions and total phosphorus in the soil of the riparian zone of the Yellow River Lanzhou section were the main environmental factors, modifying the distribution of the microbial structure. Halobacterota and Acidobacteriota were the main microflora that drove the structural change in ARGs.


Assuntos
Antibacterianos , Solo , Antibacterianos/análise , Solo/química , Genes Bacterianos , Rios/química , Bactérias/genética , Sulfanilamida/análise , Resistência Microbiana a Medicamentos/genética
20.
J Environ Manage ; 357: 120732, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38560954

RESUMO

Pharmaceutical compounds (PhCs) pose a growing concern with potential environmental impacts, commonly introduced into the environment via wastewater treatment plants (WWTPs). The occurrence, removal, and season variations of 60 different classes of PhCs were investigated in the baffled bioreactor (BBR) wastewater treatment process during summer and winter. The concentrations of 60 PhCs were 3400 ± 1600 ng/L in the influent, 2700 ± 930 ng/L in the effluent, and 2400 ± 120 ng/g dw in sludge. Valsartan (Val, 1800 ng/L) was the main contaminant found in the influent, declining to 520 ng/L in the effluent. The grit chamber and BBR tank were substantially conducive to the removal of VAL. Nonetheless, the BBR process showcased variable removal efficiencies across different PhC classes. Sulfadimidine had the highest removal efficiency of 87 ± 17% in the final effluent (water plus solid phase). Contrasting seasonal patterns were observed among PhC classes within BBR process units. The concentrations of many PhCs were higher in summer than in winter, while some macrolide antibiotics exhibited opposing seasonal fluctuations. A thorough mass balance analysis revealed quinolone and sulfonamide antibiotics were primarily eliminated through degradation and transformation in the BBR process. Conversely, 40.2 g/d of macrolide antibiotics was released to the natural aquatic environment via effluent discharge. Gastric acid and anticoagulants, as well as cardiovascular PhCs, primarily experienced removal through sludge adsorption. This study provides valuable insights into the intricate dynamics of PhCs in wastewater treatment, emphasizing the need for tailored strategies to effectively mitigate their release and potential environmental risks.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Águas Residuárias , Esgotos/análise , Eliminação de Resíduos Líquidos , Estações do Ano , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Antibacterianos/análise , Medição de Risco , Macrolídeos/análise , Preparações Farmacêuticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA