Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 672
Filtrar
1.
Viruses ; 16(5)2024 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-38793684

RESUMO

Hepatitis C virus (HCV) is a major medical health burden and the leading cause of chronic liver disease and cancer worldwide. More than 58 million people are chronically infected with HCV, with 1.5 million new infections occurring each year. An effective HCV vaccine is a major public health and medical need as recognized by the World Health Organization. However, due to the high variability of the virus and its ability to escape the immune response, HCV rapidly accumulates mutations, making vaccine development a formidable challenge. An effective vaccine must elicit broadly neutralizing antibodies (bnAbs) in a consistent fashion. After decades of studies from basic research through clinical development, the antigen of choice is considered the E1E2 envelope glycoprotein due to conserved, broadly neutralizing antigenic domains located in the constituent subunits of E1, E2, and the E1E2 heterodimeric complex itself. The challenge has been elicitation of robust humoral and cellular responses leading to broad virus neutralization due to the relatively low immunogenicity of this antigen. In view of this challenge, structure-based vaccine design approaches to stabilize key antigenic domains have been hampered due to the lack of E1E2 atomic-level resolution structures to guide them. Another challenge has been the development of a delivery platform in which a multivalent form of the antigen can be presented in order to elicit a more robust anti-HCV immune response. Recent nanoparticle vaccines are gaining prominence in the field due to their ability to facilitate a controlled multivalent presentation and trafficking to lymph nodes, where they can interact with both the cellular and humoral components of the immune system. This review focuses on recent advances in understanding the E1E2 heterodimeric structure to facilitate a rational design approach and the potential for development of a multivalent nanoparticle-based HCV E1E2 vaccine. Both aspects are considered important in the development of an effective HCV vaccine that can effectively address viral diversity and escape.


Assuntos
Hepacivirus , Hepatite C , Desenvolvimento de Vacinas , Proteínas do Envelope Viral , Vacinas contra Hepatite Viral , Hepacivirus/imunologia , Hepacivirus/genética , Hepacivirus/química , Humanos , Proteínas do Envelope Viral/imunologia , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética , Vacinas contra Hepatite Viral/imunologia , Hepatite C/prevenção & controle , Hepatite C/imunologia , Hepatite C/virologia , Anticorpos Neutralizantes/imunologia , Animais , Anticorpos Anti-Hepatite C/imunologia
2.
J Virol ; 98(1): e0084923, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38174935

RESUMO

Hepatitis C virus (HCV) is a member of the Flaviviridae family; however, unlike other family members, the HCV virion has an unusually high lipid content. HCV has two envelope glycoproteins, E1 and E2. E2 contributes to receptor binding, cell membrane attachment, and immune evasion. In contrast, the functions of E1 are poorly characterized due, in part, to challenges in producing the protein. This manuscript describes the expression and purification of a soluble E1 ectodomain (eE1) that is recognized by conformational, human monoclonal antibodies. eE1 forms a complex with apolipoproteins AI and AII, cholesterol, and phospholipids by recruiting high-density lipoprotein (HDL) from the extracellular media. We show that HDL binding is a function specific to eE1 and HDL hinders recognition of E1 by a neutralizing monoclonal antibody. Either low-density lipoprotein or HDL increases the production and infectivity of cell culture-produced HCV, but E1 preferentially selects HDL, influencing both viral life cycle and antibody evasion.IMPORTANCEHepatitis C virus (HCV) infection is a significant burden on human health, but vaccine candidates have yet to provide broad protection against this infection. We have developed a method to produce high quantities of soluble E1 or E2, the viral proteins located on the surface of HCV. HCV has an unusually high lipid content due to the recruitment of apolipoproteins. We found that E1 (and not E2) preferentially recruits host high-density lipoprotein (HDL) extracellularly. This recruitment of HDL by E1 prevents binding of E1 by a neutralizing antibody and furthermore prevents antibody-mediated neutralization of the virus. By comparison, low-density lipoprotein does not protect the virus from antibody-mediated neutralization. Our findings provide mechanistic insight into apolipoprotein recruitment, which may be critical for vaccine development.


Assuntos
Hepacivirus , Hepatite C , Evasão da Resposta Imune , Lipoproteínas HDL , Proteínas do Envelope Viral , Humanos , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Apolipoproteínas/metabolismo , Hepacivirus/patogenicidade , Hepatite C/imunologia , Hepatite C/virologia , Anticorpos Anti-Hepatite C/imunologia , Lipoproteínas HDL/metabolismo , Lipoproteínas LDL/metabolismo , Proteínas do Envelope Viral/metabolismo , Células HEK293
3.
PLoS Pathog ; 18(1): e1010179, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34990486

RESUMO

Antibodies targeting the hepatitis C virus (HCV) envelope glycoprotein E2 are associated with delayed disease progression, and these antibodies can also facilitate spontaneous clearance of infection in some individuals. However, many infected people demonstrate low titer and delayed anti-E2 antibody responses. Since a goal of HCV vaccine development is induction of high titers of anti-E2 antibodies, it is important to define the mechanisms underlying these suboptimal antibody responses. By staining lymphocytes with a cocktail of soluble E2 (sE2) glycoproteins, we detected HCV E2-specific (sE2+) B cells directly ex vivo at multiple acute infection timepoints in 29 HCV-infected subjects with a wide range of anti-E2 IgG titers, including 17 persistently infected subjects and 12 subjects with spontaneous clearance of infection. We performed multi-dimensional flow cytometric analysis of sE2+ and E2-nonspecific (sE2-) class-switched B cells (csBC). In sE2+ csBC from both persistence and clearance subjects, frequencies of resting memory B cells (rMBC) were reduced, frequencies of activated MBC (actMBC) and tissue-like MBC (tlMBC) were increased, and expression of FCRL5, an IgG receptor, was significantly upregulated. Across all subjects, plasma anti-E2 IgG levels were positively correlated with frequencies of sE2+ rMBC and sE2+ actMBC, while anti-E2 IgG levels were negatively correlated with levels of FCRL5 expression on sE2+ rMBC and PD-1 expression on sE2+ actMBC. Upregulation of FCRL5 on sE2+ rMBC and upregulation of PD-1 on sE2+ actMBC may limit anti-E2 antibody production in vivo. Strategies that limit upregulation of these molecules could potentially generate higher titers of protective antibodies against HCV or other pathogens.


Assuntos
Linfócitos B/imunologia , Anticorpos Anti-Hepatite C/imunologia , Hepatite C/imunologia , Receptor de Morte Celular Programada 1/imunologia , Receptores Fc/imunologia , Hepacivirus/imunologia , Humanos , Proteínas do Envelope Viral/imunologia
4.
Immunity ; 55(2): 341-354.e7, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-34990590

RESUMO

The high genetic diversity of hepatitis C virus (HCV) complicates effective vaccine development. We screened a cohort of 435 HCV-infected individuals and found that 2%-5% demonstrated outstanding HCV-neutralizing activity. From four of these patients, we isolated 310 HCV antibodies, including neutralizing antibodies with exceptional breadth and potency. High neutralizing activity was enabled by the use of the VH1-69 heavy-chain gene segment, somatic mutations within CDRH1, and CDRH2 hydrophobicity. Structural and mutational analyses revealed an important role for mutations replacing the serines at positions 30 and 31, as well as the presence of neutral and hydrophobic residues at the tip of the CDRH3. Based on these characteristics, we computationally created a de novo antibody with a fully synthetic VH1-69 heavy chain that efficiently neutralized multiple HCV genotypes. Our findings provide a deep understanding of the generation of broadly HCV-neutralizing antibodies that can guide the design of effective vaccine candidates.


Assuntos
Anticorpos Amplamente Neutralizantes/genética , Hepacivirus/imunologia , Anticorpos Anti-Hepatite C/genética , Linfócitos B/imunologia , Anticorpos Amplamente Neutralizantes/química , Anticorpos Amplamente Neutralizantes/imunologia , Regiões Determinantes de Complementaridade/química , Regiões Determinantes de Complementaridade/genética , Regiões Determinantes de Complementaridade/imunologia , Epitopos , Feminino , Genótipo , Hepacivirus/genética , Hepatite C/imunologia , Anticorpos Anti-Hepatite C/química , Anticorpos Anti-Hepatite C/imunologia , Humanos , Cadeias Pesadas de Imunoglobulinas/química , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Pesadas de Imunoglobulinas/imunologia , Masculino , Pessoa de Meia-Idade , Mutação , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/imunologia
5.
J Virol ; 96(5): e0167521, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-34986001

RESUMO

A vaccine to prevent hepatitis C virus (HCV) infection is urgently needed for use alongside direct-acting antiviral drugs to achieve elimination targets. We have previously shown that a soluble recombinant form of the glycoprotein E2 ectodomain (residues 384 to 661) that lacks three variable regions (Δ123) is able to elicit a higher titer of broadly neutralizing antibodies (bNAbs) than the parental form (receptor-binding domain [RBD]). In this study, we engineered a viral nanoparticle that displays HCV glycoprotein E2 on a duck hepatitis B virus (DHBV) small surface antigen (S) scaffold. Four variants of E2-S virus-like particles (VLPs) were constructed: Δ123-S, RBD-S, Δ123A7-S, and RBDA7-S; in the last two, 7 cysteines were replaced with alanines. While all four E2-S variant VLPs display E2 as a surface antigen, the Δ123A7-S and RBDA7-S VLPs were the most efficiently secreted from transfected mammalian cells and displayed epitopes recognized by cross-genotype broadly neutralizing monoclonal antibodies (bNMAbs). Both Δ123A7-S and RBDA7-S VLPs were immunogenic in guinea pigs, generating high titers of antibodies reactive to native E2 and able to prevent the interaction between E2 and the cellular receptor CD81. Four out of eight animals immunized with Δ123A7-S elicited neutralizing antibodies (NAbs), with three of those animals generating bNAbs against 7 genotypes. Immune serum generated by animals with NAbs mapped to major neutralization epitopes located at residues 412 to 420 (epitope I) and antigenic region 3. VLPs that display E2 glycoproteins represent a promising vaccine platform for HCV and could be adapted to large-scale manufacturing in yeast systems. IMPORTANCE There is currently no vaccine to prevent hepatitis C virus infection, which affects more than 71 million people globally and is a leading cause of progressive liver disease, including cirrhosis and cancer. Broadly neutralizing antibodies that recognize the E2 envelope glycoprotein can protect against heterologous viral infection and correlate with viral clearance in humans. However, broadly neutralizing antibodies are difficult to generate due to conformational flexibility of the E2 protein and epitope occlusion. Here, we show that a VLP vaccine using the duck hepatitis B virus S antigen fused to HCV glycoprotein E2 assembles into virus-like particles that display epitopes recognized by broadly neutralizing antibodies and elicit such antibodies in guinea pigs. This platform represents a novel HCV vaccine candidate amenable to large-scale manufacture at low cost.


Assuntos
Hepacivirus , Hepatite C , Proteínas do Envelope Viral , Vacinas contra Hepatite Viral , Animais , Antígenos de Superfície/imunologia , Anticorpos Amplamente Neutralizantes/imunologia , Epitopos/imunologia , Cobaias , Hepacivirus/genética , Hepacivirus/imunologia , Antígenos de Superfície da Hepatite B/química , Hepatite C/imunologia , Anticorpos Anti-Hepatite C/imunologia , Humanos , Proteínas do Envelope Viral/imunologia , Vacinas contra Hepatite Viral/imunologia
6.
PLoS One ; 16(10): e0257917, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34634039

RESUMO

INTRODUCTION: As part of the integration of refugees into Rwanda's national hepatitis C elimination agenda, a mass screening campaign for hepatitis B (HBV) and hepatitis C (HCV) was conducted among Burundian refugees living in Mahama Camp, Eastern Rwanda. This cross-sectional survey used data from the screening campaign to report on the epidemiology of viral hepatitis in this setting. METHODS: Rapid diagnostic tests (RDTs) were used to screen for hepatitis B surface antigen (HBsAg) and hepatitis C antibody (anti-HCV) among people of ≥15years old. We calculated seroprevalence for HBsAg and anti-HCV by age and sex and also calculated age-and-sex adjusted risk ratios (ARR) for other possible risk factors. RESULTS: Of the 26,498 screened refugees, 1,006 (3.8%) and 297 (1.1%) tested positive for HBsAg and Anti-HCV, respectively. HBsAg was more prevalent among men than women and most common among people 25-54 years old. Anti-HCV prevalence increased with age group with no difference between sexes. After adjusting for age and sex, having a household contact with HBsAg was associated with 1.59 times higher risk of having HBsAg (95% CI: 1.27, 1.99) and having a household contact with anti-HCV was associated with 3.66 times higher risk of Anti-HCV (95% CI: 2.26, 5.93). Self-reporting having HBV, HCV, liver disease, or previously screened for HBV and HCV were significantly associated with both HBsAg and anti-HCV, but RDT-confirmed HBsAg and anti-HCV statuses were not associated with each other. Other risk factors for HBsAg included diabetes (ARR = 1.97, 95% CI: 1.08, 3.59) and family history of hepatitis B (ARR = 1.32, 95% CI: 1.11, 1.56) and for anti-HCV included heart disease (ARR = 1.91, 95% CI: 1.30, 2.80) and history of surgery (ARR = 1.70, 95% CI: 1.24, 2.32). CONCLUSION: Sero-prevalence and risks factors for hepatitis B and C among Burundian were comparable to that in the Rwandan general population. Contact tracing among household members of identified HBsAg and anti-HCV infected case may be an effective approach to targeted hepatitis screening given the high risk among self-reported cases. Expanded access to voluntary testing may be needed to improve access to hepatitis treatment and care in other refugee settings.


Assuntos
Hepacivirus/imunologia , Vírus da Hepatite B/imunologia , Hepatite B/epidemiologia , Hepatite C/epidemiologia , Refugiados , Adolescente , Adulto , Idoso , Estudos Transversais , Características da Família , Feminino , Hepatite B/virologia , Antígenos de Superfície da Hepatite B/imunologia , Hepatite C/virologia , Anticorpos Anti-Hepatite C/imunologia , Humanos , Masculino , Programas de Rastreamento/métodos , Pessoa de Meia-Idade , Prevalência , Fatores de Risco , Ruanda/epidemiologia , Estudos Soroepidemiológicos , Adulto Jovem
7.
Viruses ; 13(7)2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34372558

RESUMO

Thirty years after its discovery, the hepatitis C virus (HCV) remains a leading cause of liver disease worldwide. Given that many countries continue to experience high rates of transmission despite the availability of potent antiviral therapies, an effective vaccine is seen as critical for the elimination of HCV. The recent failure of the first vaccine efficacy trial for the prevention of chronic HCV confirmed suspicions that this virus will be a challenging vaccine target. Here, we examine the published data from this first efficacy trial along with the earlier clinical and pre-clinical studies of the vaccine candidate and then discuss three key research directions expected to be important in ongoing and future HCV vaccine development. These include the following: 1. design of novel immunogens that generate immune responses to genetically diverse HCV genotypes and subtypes, 2. strategies to elicit broadly neutralizing antibodies against envelope glycoproteins in addition to cytotoxic and helper T cell responses, and 3. consideration of the unique immunological status of individuals most at risk for HCV infection, including those who inject drugs, in vaccine platform development and early immunogenicity trials.


Assuntos
Hepacivirus/genética , Hepatite C/prevenção & controle , Vacinas contra Hepatite Viral/imunologia , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Hepacivirus/imunologia , Hepacivirus/patogenicidade , Hepatite C/virologia , Anticorpos Anti-Hepatite C/imunologia , Antígenos da Hepatite C/imunologia , Humanos , Proteínas do Envelope Viral/genética , Vacinas contra Hepatite Viral/farmacologia
8.
PLoS One ; 16(8): e0256816, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34449828

RESUMO

BACKGROUND: Around 30% of the HCV infected patients can spontaneously clear the virus. Cumulative evidence suggests the role of neutralizing antibodies in such spontaneous resolution. Understanding the epitope specificity of such antibodies will inform the rational vaccine design as such information is limited to date. In addition to conformational epitope targeted antibodies, linear epitope specific antibodies have been identified that are broadly cross reactive against diverse HCV strains. In this study, we have characterized the potential role of three conserved linear epitopes in the spontaneous clearance of HCV. METHODS: We tested the reactivity of sera from chronic patients (CP) and spontaneous resolvers (SR) with linear peptides corresponding to three conserved regions of HCV envelope protein E2 spanning amino acids 412-423, 523-532 and 432-443 using ELISA. Subsequently, we characterized the dependency of HCV neutralization by the reactive serum samples on the antibodies specific for these epitopes using pseudoparticle-based neutralization assay. In ELISA most of the CP sera showed reactivity to multiple peptides while most of the SR samples were reactive to a single peptide suggesting presence of more specific antibodies in the SR sera. In most of the HCVpp neutralizing sera of particular peptide reactivity the neutralization was significantly affected by the presence of respective peptide. HCV neutralization by CP sera was affected by multiple peptides while 75% of the HCVpp neutralizing SR sera were competed by the 432 epitope. CONCLUSIONS: These findings suggest that individuals who spontaneously resolve HCV infection at the acute phase, can produce antibodies specific for conserved linear epitopes, and those antibodies can potentially play a role in the spontaneous viral clearance. The epitope present in the 432-443 region of E2 was identified as the primary neutralizing epitope with potential role in spontaneous viral clearance and this epitope potentiates for the design of immunogen for prophylactic vaccine.


Assuntos
Anticorpos Neutralizantes/imunologia , Epitopos/imunologia , Anticorpos Anti-Hepatite C/imunologia , Hepatite C/prevenção & controle , Vacinas contra Hepatite Viral/imunologia , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/genética , Reações Cruzadas/genética , Reações Cruzadas/imunologia , Epitopos/genética , Genótipo , Hepacivirus/genética , Hepacivirus/imunologia , Hepacivirus/patogenicidade , Hepatite C/genética , Hepatite C/imunologia , Hepatite C/virologia , Anticorpos Anti-Hepatite C/genética , Humanos , Testes de Neutralização , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia , Vacinas contra Hepatite Viral/genética
9.
Viruses ; 13(8)2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-34452460

RESUMO

Unless urgently needed to prevent a pandemic, the development of a viral vaccine should follow a rigorous scientific approach. Each vaccine candidate should be designed considering the in-depth knowledge of protective immunity, followed by preclinical studies to assess immunogenicity and safety, and lastly, the evaluation of selected vaccines in human clinical trials. The recently concluded first phase II clinical trial of a human hepatitis C virus (HCV) vaccine followed this approach. Still, despite promising preclinical results, it failed to protect against chronic infection, raising grave concerns about our understanding of protective immunity. This setback, combined with the lack of HCV animal models and availability of new highly effective antivirals, has fueled ongoing discussions of using a controlled human infection model (CHIM) to test new HCV vaccine candidates. Before taking on such an approach, however, we must carefully weigh all the ethical and health consequences of human infection in the absence of a complete understanding of HCV immunity and pathogenesis. We know that there are significant gaps in our knowledge of adaptive immunity necessary to prevent chronic HCV infection. This review discusses our current understanding of HCV immunity and the critical gaps that should be filled before embarking upon new HCV vaccine trials. We discuss the importance of T cells, neutralizing antibodies, and HCV genetic diversity. We address if and how the animal HCV-like viruses can be used for conceptualizing effective HCV vaccines and what we have learned so far from these HCV surrogates. Finally, we propose a logical but narrow path forward for HCV vaccine development.


Assuntos
Hepacivirus/imunologia , Hepatite C/imunologia , Hepatite C/prevenção & controle , Desenvolvimento de Vacinas/estatística & dados numéricos , Vacinas contra Hepatite Viral/imunologia , Animais , Anticorpos Monoclonais/imunologia , Antivirais/uso terapêutico , Ensaios Clínicos como Assunto , Modelos Animais de Doenças , Hepatite C/tratamento farmacológico , Anticorpos Anti-Hepatite C/imunologia , Antígenos da Hepatite C/imunologia , Hepatite C Crônica/imunologia , Hepatite C Crônica/prevenção & controle , Humanos , Infecção Persistente , Desenvolvimento de Vacinas/métodos , Desenvolvimento de Vacinas/normas , Desenvolvimento de Vacinas/tendências
10.
Virol J ; 18(1): 137, 2021 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-34217305

RESUMO

BACKGROUND: All commercial Hepatitis C virus antibody (anti-HCV) assays use a combination of recombinant antigens to detect antibody response. Antibody responses to individual antigenic regions (core, NS3/4 and NS5) used in assays have not been investigated. METHODS: In this study, we quantified HCV viral load, tested anti-HCV with four commercial assays (Ortho-ELISA, Murex-ELISA, Architect-CMIA and Elecsys-ECLIA) in 682 plasma specimens. In antigenic region ELISA platform, microwells were coated with three antigens: core (c22-3), NS3/4 (c200) and NS5 individually. The signal-to-cutoff (S/Co) values of different assays, and antibody responses to individual antigens were compared. The specimens were divided into HCV RNA positive group, anti-HCV consistent group, and anti-HCV discrepant group. RESULTS: Anti-core and anti-NS3/4 were simultaneously detected in 99.2% of HCV RNA positive specimens and showed great consistency with total anti-HCV signals. Responses to the core region were more robust than those to the NS3/4 region in anti-HCV consistent group (p < 0.001). Anti-NS5 only occurred in companying with responses to the core and NS3/4 antigens, and failed to affect the final anti-HCV positive signals. In anti-HCV discrepant group, 39.0% of positive signals could not be traced back to any single antigenic region. CONCLUSION: Antibody responses to the core and NS3/4 antigens were stronger, whereas responses to the NS5 antigen were the weakest, indicating that individual antigenic regions played different roles in total anti-HCV signals. This study provides an impetus for optimizing commercial anti-HCV assays.


Assuntos
Anticorpos Anti-Hepatite C/imunologia , Hepatite C , Imunoensaio , Hepacivirus/genética , Hepatite C/diagnóstico , Antígenos da Hepatite C/imunologia , Humanos , RNA Viral
11.
PLoS One ; 16(7): e0255336, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34329365

RESUMO

Yearly, about 1.5 million people become chronically infected with hepatitis C virus (HCV) and for the 71 million with chronic HCV infection about 400,000 die from related morbidities, including liver cirrhosis and cancer. Effective treatments exist, but challenges including cost-of-treatment and wide-spread undiagnosed infection, necessitates the development of vaccines. Vaccines should induce neutralizing antibodies (NAbs) against the HCV envelope (E) transmembrane glycoprotein 2, E2, which partly depends on its interaction partner, E1, for folding. Here, we generated three soluble HCV envelope protein antigens with the transmembrane regions deleted (i.e., fused peptide backbones), termed sE1E2 (E1 followed by E2), sE2E1 (E2 followed by E1), and sE21E (E2 followed by inverted E1). The E1 inversion for sE21E positions C-terminal residues of E1 near C-terminal residues of E2, which is in analogy to how they likely interact in native E1/E2 complexes. Probing conformational E2 epitope binding using HCV patient-derived human monoclonal antibodies, we show that sE21E was superior to sE2E1, which was consistently superior to sE1E2. This correlated with improved induction of NAbs by sE21E compared with sE2E1 and especially compared with sE1E2 in female BALB/c mouse immunizations. The deletion of the 27 N-terminal amino acids of E2, termed hypervariable region 1 (HVR1), conferred slight increases in antigenicity for sE2E1 and sE21E, but severely impaired induction of antibodies able to neutralize in vitro viruses retaining HVR1. Finally, comparing sE21E with sE2 in mouse immunizations, we show similar induction of heterologous NAbs. In summary, we find that C-terminal E2 fusion of E1 or 1E is superior to N-terminal fusion, both in terms of antigenicity and the induction of heterologous NAbs. This has relevance when designing HCV E1E2 vaccine antigens.


Assuntos
Antígenos Virais , Hepacivirus , Anticorpos Anti-Hepatite C/imunologia , Proteínas do Envelope Viral , Vacinas contra Hepatite Viral , Animais , Antígenos Virais/genética , Antígenos Virais/imunologia , Antígenos Virais/farmacologia , Avaliação de Medicamentos , Feminino , Células HEK293 , Hepacivirus/genética , Hepacivirus/imunologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Solubilidade , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia , Proteínas do Envelope Viral/farmacologia , Vacinas contra Hepatite Viral/genética , Vacinas contra Hepatite Viral/imunologia , Vacinas contra Hepatite Viral/farmacologia
12.
Viruses ; 13(5)2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-34063143

RESUMO

A hepatitis C virus (HCV) vaccine is a critical yet unfulfilled step in addressing the global disease burden of HCV. While decades of research have led to numerous clinical and pre-clinical vaccine candidates, these efforts have been hindered by factors including HCV antigenic variability and immune evasion. Structure-based and rational vaccine design approaches have capitalized on insights regarding the immune response to HCV and the structures of antibody-bound envelope glycoproteins. Despite successes with other viruses, designing an immunogen based on HCV glycoproteins that can elicit broadly protective immunity against HCV infection is an ongoing challenge. Here, we describe HCV vaccine design approaches where immunogens were selected and optimized through analysis of available structures, identification of conserved epitopes targeted by neutralizing antibodies, or both. Several designs have elicited immune responses against HCV in vivo, revealing correlates of HCV antigen immunogenicity and breadth of induced responses. Recent studies have elucidated the functional, dynamic and immunological features of key regions of the viral envelope glycoproteins, which can inform next-generation immunogen design efforts. These insights and design strategies represent promising pathways to HCV vaccine development, which can be further informed by successful immunogen designs generated for other viruses.


Assuntos
Hepacivirus/química , Hepacivirus/imunologia , Antígenos da Hepatite C/química , Antígenos da Hepatite C/imunologia , Desenvolvimento de Vacinas/métodos , Animais , Anticorpos Neutralizantes/imunologia , Ensaios Clínicos como Assunto , Anticorpos Anti-Hepatite C/imunologia , Humanos , Camundongos , Modelos Moleculares , Conformação Proteica , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/imunologia , Vacinas contra Hepatite Viral/imunologia
13.
Viruses ; 13(5)2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-34064532

RESUMO

Hepatitis C virus (HCV) is a serious and growing public health problem despite recent developments of antiviral therapeutics. To achieve global elimination of HCV, an effective cross-genotype vaccine is needed. The failure of previous vaccination trials to elicit an effective cross-reactive immune response demands better vaccine antigens to induce a potent cross-neutralizing response to improve vaccine efficacy. HCV E1 and E2 envelope (Env) glycoproteins are the main targets for neutralizing antibodies (nAbs), which aid in HCV clearance and protection. Therefore, a molecular-level understanding of the nAb responses against HCV is imperative for the rational design of cross-genotype vaccine antigens. Here we summarize the recent advances in structural studies of HCV Env and Env-nAb complexes and how they improve our understanding of immune recognition of HCV. We review the structural data defining HCV neutralization epitopes and conformational plasticity of the Env proteins, and the knowledge applicable to rational vaccine design.


Assuntos
Epitopos/imunologia , Hepacivirus/imunologia , Antígenos da Hepatite C/química , Desenvolvimento de Vacinas , Vacinas contra Hepatite Viral/química , Animais , Anticorpos Neutralizantes/imunologia , Reações Cruzadas , Epitopos/química , Genótipo , Hepacivirus/genética , Anticorpos Anti-Hepatite C/imunologia , Antígenos da Hepatite C/imunologia , Humanos , Camundongos , Eficácia de Vacinas , Vacinas contra Hepatite Viral/análise
14.
Viruses ; 13(6)2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34070572

RESUMO

Despite the advent of effective, curative treatments for hepatitis C virus (HCV), a preventative vaccine remains essential for the global elimination of HCV. It is now clear that the induction of broadly neutralising antibodies (bNAbs) is essential for the rational design of such a vaccine. This review details the current understanding of epitopes on the HCV envelope, characterising the potency, breadth and immunodominance of antibodies induced against these epitopes, as well as describing the interactions between B-cell receptors and HCV infection, with a particular focus on bNAb heavy and light chain variable gene usage. Additionally, we consider the importance of a public repertoire for antibodies against HCV, compiling current knowledge and suggesting that further research in this area may be critical to the rational design of an effective HCV vaccine.


Assuntos
Linfócitos B/imunologia , Hepacivirus/imunologia , Epitopos Imunodominantes/imunologia , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Linfócitos B/classificação , Anticorpos Amplamente Neutralizantes/imunologia , Mapeamento de Epitopos , Hepacivirus/genética , Hepatite C/virologia , Anticorpos Anti-Hepatite C/imunologia , Humanos , Vacinas contra Hepatite Viral/imunologia
15.
J Immunol Methods ; 495: 113087, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34147479

RESUMO

Lack of a simple, high throughput antibody-dependent cellular phagocytosis (ADCP) assay has limited our understanding of its potential role of in hepatitis C (HCV) infection. Here, we optimised a flow-cytometry based ADCP assay using HCV envelope (E2)-protein coated microbeads that were opsonised with anti-E2 monoclonal IgG antibody (αE2 mAb) and the THP-1 monocyte cell line as effector cells. We found 1.5 × 109/ml microbeads opsonised with 5 µg/ml αE2 mAb and 1.6 × 106/ml THP-1 cells were optimal conditions to distinguish between healthy controls and patients with HCV. This optimised assay was then used to investigate ADCP in plasma obtained from 72 patients with chronic HCV infection and 15 healthy controls. We found that 75% of patients with genotype 1 and 87% of patients with genotype 3 HCV infection had significantly higher levels of ADCP compared to healthy controls. In patients, there was a significant correlation between increase in ADCP and higher concentrations of anti-E2 IgG antibodies in the plasma. Taken together, we established a simple, quick and high throughput ADCP assay for HCV infection that can readily be used for screening of large cohorts of patients and investigation of the role of ADCP in the pathogenesis or protection from this disease.


Assuntos
Citometria de Fluxo , Hepacivirus/imunologia , Anticorpos Anti-Hepatite C/imunologia , Hepatite C/diagnóstico , Imunoglobulina G/imunologia , Fagocitose , Proteínas do Envelope Viral/imunologia , Estudos de Casos e Controles , Genótipo , Hepacivirus/genética , Hepatite C/sangue , Hepatite C/imunologia , Hepatite C/virologia , Anticorpos Anti-Hepatite C/sangue , Ensaios de Triagem em Larga Escala , Interações Hospedeiro-Patógeno , Humanos , Imunoglobulina G/sangue , Valor Preditivo dos Testes , Reprodutibilidade dos Testes , Células THP-1 , Proteínas do Envelope Viral/genética , Fluxo de Trabalho
16.
Hepatology ; 74(5): 2366-2379, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34105797

RESUMO

BACKGROUND AND AIMS: Between 2014 and 2019, the SToP-C trial observed a halving in HCV incidence in four Australian prisons following scale-up of direct-acting antiviral (DAA) therapy. However, the contribution of HCV treatment to this decline is unclear because the study did not have a control group. We used modeling to consider this question. APPROACH AND RESULTS: We parameterized and calibrated a dynamic model of HCV transmission in prisons to data from each SToP-C prison on incarceration dynamics, injecting drug use, HCV prevalence trends among prison entrants, baseline HCV incidence before treatment scale-up, and subsequent HCV treatment scale-up. The model projected the decrease in HCV incidence resulting from increases in HCV treatment and other effects. We assessed whether the model agreed better with observed reductions in HCV incidence overall and by prison if we included HCV treatment scale-up, and its prevention benefits, or did not. The model estimated how much of the observed decrease in HCV incidence was attributable to HCV treatment in prison. The model projected a decrease in HCV incidence of 48.5% (95% uncertainty interval [UI], 41.9-54.1) following treatment scale-up across the four prisons, agreeing with the observed HCV incidence decrease (47.6%; 95% CI, 23.4-64.2) from the SToP-C trial. Without any in-prison HCV treatment, the model indicated that incidence would have decreased by 7.2% (95% UI, -0.3 to 13.6). This suggests that 85.1% (95% UI, 72.6-100.6) of the observed halving in incidence was from HCV treatment scale-up, with the remainder from observed decreases in HCV prevalence among prison entrants (14.9%; 95% UI, -0.6 to 27.4). CONCLUSIONS: Our results demonstrate the prevention benefits of scaling up HCV treatment in prison settings. Prison-based DAA scale-up should be an important component of HCV elimination strategies.


Assuntos
Antivirais/uso terapêutico , Hepacivirus/genética , Hepacivirus/imunologia , Hepatite C Crônica/tratamento farmacológico , Hepatite C Crônica/prevenção & controle , Prisioneiros , Prisões , Austrália/epidemiologia , Comorbidade , Usuários de Drogas , Feminino , Seguimentos , Anticorpos Anti-Hepatite C/imunologia , Hepatite C Crônica/epidemiologia , Hepatite C Crônica/virologia , Humanos , Incidência , Masculino , Modelos Teóricos , Prevalência , Estudos Prospectivos , RNA Viral/genética , Abuso de Substâncias por Via Intravenosa/epidemiologia , Resposta Viral Sustentada
17.
Curr Opin Virol ; 49: 92-101, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34091143

RESUMO

The molecular mechanisms of hepatitis C virus (HCV) persistence and pathogenesis are poorly understood. The design of an effective HCV vaccine is challenging despite a robust humoral immune response against closely related strains of HCV. This is primarily because of the huge genetic diversity of HCV and the molecular evolution of various virus escape mechanisms. These mechanisms are steered by the presence of a high mutational rate in HCV, structural plasticity of the immunodominant regions on the virion surface of diverse HCV genotypes, and constant amino acid substitutions on key structural components of HCV envelope glycoproteins. Here, we review the molecular basis of neutralizing antibody (nAb)-mediated immune response against diverse HCV variants, HCV-steered humoral immune evasion strategies and explore the essential structural elements to consider for designing a universal HCV vaccine. Structural perspectives on key escape pathways mediated by a point mutation within the epitope, allosteric modulation of the epitope by distant mutations and glycan shift on envelope glycoproteins will be highlighted (abstract graphic).


Assuntos
Hepacivirus/imunologia , Hepatite C Crônica/imunologia , Hepatite C Crônica/virologia , Evasão da Resposta Imune , Proteínas do Envelope Viral/imunologia , Anticorpos Neutralizantes/imunologia , Antígenos Virais/química , Antígenos Virais/genética , Antígenos Virais/imunologia , Epitopos , Variação Genética , Hepacivirus/química , Hepacivirus/genética , Anticorpos Anti-Hepatite C/imunologia , Humanos , Imunidade Humoral , Epitopos Imunodominantes , Mutação , Conformação Proteica , Domínios Proteicos , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética
18.
Viruses ; 13(5)2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33946211

RESUMO

Direct-acting antiviral agents have proven highly effective at treating existing hepatitis C infections but despite their availability most countries will not reach the World Health Organization targets for elimination of HCV by 2030. A prophylactic vaccine remains a high priority. Whilst early vaccines focused largely on generating T cell immunity, attention is now aimed at vaccines that generate humoral immunity, either alone or in combination with T cell-based vaccines. High-resolution structures of hepatitis C viral glycoproteins and their interaction with monoclonal antibodies isolated from both cleared and chronically infected people, together with advances in vaccine technologies, provide new avenues for vaccine development.


Assuntos
Bioengenharia , Hepacivirus/imunologia , Hepatite C/imunologia , Hepatite C/prevenção & controle , Interações Hospedeiro-Patógeno/imunologia , Imunidade Humoral , Vacinas contra Hepatite Viral/imunologia , Anticorpos Neutralizantes/imunologia , Antígenos Virais/química , Antígenos Virais/imunologia , Epitopos/química , Epitopos/imunologia , Anticorpos Anti-Hepatite C/imunologia , Humanos , Modelos Moleculares , Pesquisa , Relação Estrutura-Atividade , Vacinologia , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/imunologia , Vacinas contra Hepatite Viral/classificação
19.
Protein Expr Purif ; 183: 105864, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33677084

RESUMO

In this study, we describe an optimized method of obtaining virus-like particles (VLPs) of the recombinant hepatitis C virus (HCV) core protein (HCcAg) expressed in yeast cells (Pichia pastoris), which can be used for the construction of diagnostic test systems and vaccine engineering. The described simplified procedure was developed to enable in vitro self-assembly of HCcAg molecules into VLPs during protein purification. In brief, the HCcAg protein was precipitated from yeast cell lysates with ammonium sulfate and renatured by gel filtration on Sephadex G-25 under reducing conditions. VLPs were self-assembled after the removal of the reducing agent by gel filtration on Sephadex G-25. Protein purity and specificity were evaluated by SDS-PAGE and immunoblotting analysis. The molecular mass of VLPs and their relative quantity were measured by HPLC, followed by confirmation of VLPs production and estimation of their shape and size by transmission electron microscopy. As a result, we obtained recombinant HCcAg preparation (with ~90% purity) in the form of VLPs and monomers, which has been used to produce hybridomas secreting monoclonal antibodies (mAbs) against HCcAg.


Assuntos
Anticorpos Monoclonais Murinos/imunologia , Hepacivirus , Anticorpos Anti-Hepatite C/imunologia , Saccharomycetales , Vacinas de Partículas Semelhantes a Vírus , Proteínas do Core Viral , Vacinas contra Hepatite Viral , Animais , Feminino , Hepacivirus/genética , Hepacivirus/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Saccharomycetales/genética , Saccharomycetales/metabolismo , Vacinas de Partículas Semelhantes a Vírus/biossíntese , Vacinas de Partículas Semelhantes a Vírus/genética , Vacinas de Partículas Semelhantes a Vírus/imunologia , Vacinas de Partículas Semelhantes a Vírus/isolamento & purificação , Proteínas do Core Viral/biossíntese , Proteínas do Core Viral/genética , Proteínas do Core Viral/imunologia , Proteínas do Core Viral/isolamento & purificação , Vacinas contra Hepatite Viral/biossíntese , Vacinas contra Hepatite Viral/genética , Vacinas contra Hepatite Viral/imunologia , Vacinas contra Hepatite Viral/isolamento & purificação
20.
J Immunol Res ; 2021: 3108157, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33532506

RESUMO

Currently, no vaccine to prevent hepatitis C virus (HCV) infection is available. A major challenge in developing an HCV vaccine is the high diversity of HCV sequences. The purpose of immunization with viral glycoproteins is to induce a potent and long-lasting cellular and humoral immune response. However, this strategy only achieves limited protection, and antigen selection plays a crucial role in vaccine design. In this study, we investigated the humoral immune responses induced by intraperitoneal injection of keyhole limpet hemocyanin conjugated with 4 highly conserved peptides, including amino acids [aa]317-325 from E1 and aa418-429, aa502-518, and aa685-693 from E2, or 3 peptides from hypervariable region 1 (HVR1) of E2, including the N terminus of HVR1 (N-HVR1, aa384-396), C terminus of HVR1 (C-HVR1, aa397-410), and HVR1 in BALB/c mice. The neutralizing activity against HCV genotypes 1-6 was assessed using the cell culture HCV (HCVcc) system. The results showed that the 4 conserved peptides efficiently induced antibodies with potent neutralizing activity against 3 or 4 genotypes. Antibodies induced by aa685-693 conferred potent protection (>50%) against genotypes 2, 4, and 5. Peptide N-HVR1 elicited antibodies with the most potent neutralization activities against 3 HCV genotypes: TNcc(1a), S52(3a), and ED43(4a). These findings suggested that peptides within HCV glycoproteins could serve as potent immunogens for vaccine design and development.


Assuntos
Anticorpos Neutralizantes/imunologia , Hepacivirus/imunologia , Anticorpos Anti-Hepatite C/imunologia , Hepatite C/imunologia , Proteínas do Envelope Viral/imunologia , Vacinas contra Hepatite Viral/imunologia , Adjuvantes Imunológicos , Sequência de Aminoácidos , Animais , Linhagem Celular , Feminino , Genótipo , Hemocianinas , Hepacivirus/genética , Humanos , Soros Imunes/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Testes de Neutralização , Peptídeos/química , Peptídeos/imunologia , Vacinas Conjugadas/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA