Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.941
Filtrar
1.
Nat Commun ; 15(1): 3851, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719803

RESUMO

Current guidelines advise against primaquine treatment for breastfeeding mothers to avoid the potential for haemolysis in infants with G6PD deficiency. To predict the haemolytic risk, the amount of drug received from the breast milk and the resulting infant drug exposure need to be characterised. Here, we develop a pharmacokinetic model to describe the drug concentrations in breastfeeding women using venous, capillary, and breast milk data. A mother-to-infant model is developed to mimic the infant feeding pattern and used to predict their drug exposures. Primaquine and carboxyprimaquine exposures in infants are <1% of the exposure in mothers. Therefore, even in infants with the most severe G6PD deficiency variants, it is highly unlikely that standard doses of primaquine (0.25-1 mg base/kg once daily given to the mother for 1-14 days) would cause significant haemolysis. After the neonatal period, primaquine should not be restricted for breastfeeding women (Clinical Trials Registration: NCT01780753).


Assuntos
Antimaláricos , Aleitamento Materno , Lactação , Leite Humano , Primaquina , Humanos , Feminino , Primaquina/farmacocinética , Primaquina/administração & dosagem , Antimaláricos/farmacocinética , Antimaláricos/administração & dosagem , Lactente , Leite Humano/química , Leite Humano/metabolismo , Adulto , Recém-Nascido , Hemólise/efeitos dos fármacos , Modelos Biológicos
2.
Nat Commun ; 15(1): 3817, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714692

RESUMO

Standard diagnostics used in longitudinal antimalarial studies are unable to characterize the complexity of submicroscopic parasite dynamics, particularly in high transmission settings. We use molecular markers and amplicon sequencing to characterize post-treatment stage-specific malaria parasite dynamics during a 42 day randomized trial of 3- versus 5 day artemether-lumefantrine in 303 children with and without HIV (ClinicalTrials.gov number NCT03453840). The prevalence of parasite-derived 18S rRNA is >70% in children throughout follow-up, and the ring-stage marker SBP1 is detectable in over 15% of children on day 14 despite effective treatment. We find that the extended regimen significantly lowers the risk of recurrent ring-stage parasitemia compared to the standard 3 day regimen, and that higher day 7 lumefantrine concentrations decrease the probability of ring-stage parasites in the early post-treatment period. Longitudinal amplicon sequencing reveals remarkably dynamic patterns of multiclonal infections that include new and persistent clones in both the early post-treatment and later time periods. Our data indicate that post-treatment parasite dynamics are highly complex despite efficacious therapy, findings that will inform strategies to optimize regimens in the face of emerging partial artemisinin resistance in Africa.


Assuntos
Antimaláricos , Combinação Arteméter e Lumefantrina , Plasmodium falciparum , Humanos , Combinação Arteméter e Lumefantrina/uso terapêutico , Antimaláricos/uso terapêutico , Antimaláricos/administração & dosagem , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Pré-Escolar , Criança , Masculino , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Feminino , Parasitemia/tratamento farmacológico , Parasitemia/parasitologia , RNA Ribossômico 18S/genética , Malária/tratamento farmacológico , Malária/parasitologia , Lactente , Infecções por HIV/tratamento farmacológico , Artemisininas/uso terapêutico , Artemisininas/administração & dosagem
3.
Malar J ; 23(1): 145, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38741094

RESUMO

A single 300 mg dose of tafenoquine (an 8-aminoquinoline), in combination with a standard 3-day course of chloroquine, is approved in several countries for the radical cure (prevention of relapse) of Plasmodium vivax malaria in patients aged ≥ 16 years. Despite this, questions have arisen on the optimal dose of tafenoquine. Before the availability of tafenoquine, a 3-day course of chloroquine in combination with the 8-aminoquinoline primaquine was the only effective radical cure for vivax malaria. The World Health Organization (WHO)-recommended standard regimen is 14 days of primaquine 0.25 mg/kg/day or 7 days of primaquine 0.5 mg/kg/day in most regions, or 14 days of primaquine 0.5 mg/kg/day in East Asia and Oceania, however the long treatment courses of 7 or 14 days may result in poor adherence and, therefore, low treatment efficacy. A single dose of tafenoquine 300 mg in combination with a 3-day course of chloroquine is an important advancement for the radical cure of vivax malaria in patients without glucose-6-phosphate dehydrogenase (G6PD) deficiency, as the use of a single-dose treatment will improve adherence. Selection of a single 300 mg dose of tafenoquine for the radical cure of P. vivax malaria was based on collective efficacy and safety data from 33 studies involving more than 4000 trial participants who received tafenoquine, including over 800 subjects who received the 300 mg single dose. The safety profile of single-dose tafenoquine 300 mg is similar to that of standard-dosage primaquine 0.25 mg/kg/day for 14 days. Both primaquine and tafenoquine can cause acute haemolytic anaemia in individuals with G6PD deficiency; severe haemolysis can lead to anaemia, kidney damage, and, in some cases, death. Therefore, relapse prevention using an 8-aminoquinoline must be balanced with the need to avoid clinical haemolysis associated with G6PD deficiency. To minimize this risk, the WHO recommends G6PD testing for all individuals before the administration of curative doses of 8-aminoquinolines. In this article, the authors review key efficacy and safety data from the pivotal trials of tafenoquine and argue that the currently approved dose represents a favourable benefit-risk profile.


Assuntos
Aminoquinolinas , Antimaláricos , Malária Vivax , Malária Vivax/tratamento farmacológico , Aminoquinolinas/administração & dosagem , Aminoquinolinas/efeitos adversos , Aminoquinolinas/uso terapêutico , Humanos , Antimaláricos/uso terapêutico , Antimaláricos/administração & dosagem , Antimaláricos/efeitos adversos , Primaquina/administração & dosagem , Primaquina/uso terapêutico , Primaquina/efeitos adversos , Medição de Risco , Resultado do Tratamento , Quimioterapia Combinada , Plasmodium vivax/efeitos dos fármacos , Cloroquina/uso terapêutico , Cloroquina/efeitos adversos , Cloroquina/administração & dosagem
4.
JCI Insight ; 9(9)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38716733

RESUMO

Vaccination of malaria-naive volunteers with a high dose of Plasmodium falciparum sporozoites chemoattenuated by chloroquine (CQ) (PfSPZ-CVac [CQ]) has previously demonstrated full protection against controlled human malaria infection (CHMI). However, lower doses of PfSPZ-CVac [CQ] resulted in incomplete protection. This provides the opportunity to understand the immune mechanisms needed for better vaccine-induced protection by comparing individuals who were protected with those not protected. Using mass cytometry, we characterized immune cell composition and responses of malaria-naive European volunteers who received either lower doses of PfSPZ-CVac [CQ], resulting in 50% protection irrespective of the dose, or a placebo vaccination, with everyone becoming infected following CHMI. Clusters of CD4+ and γδ T cells associated with protection were identified, consistent with their known role in malaria immunity. Additionally, EMRA CD8+ T cells and CD56+CD8+ T cell clusters were associated with protection. In a cohort from a malaria-endemic area in Gabon, these CD8+ T cell clusters were also associated with parasitemia control in individuals with lifelong exposure to malaria. Upon stimulation with P. falciparum-infected erythrocytes, CD4+, γδ, and EMRA CD8+ T cells produced IFN-γ and/or TNF, indicating their ability to mediate responses that eliminate malaria parasites.


Assuntos
Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Vacinas Antimaláricas , Malária Falciparum , Plasmodium falciparum , Esporozoítos , Humanos , Vacinas Antimaláricas/imunologia , Vacinas Antimaláricas/administração & dosagem , Malária Falciparum/imunologia , Malária Falciparum/prevenção & controle , Plasmodium falciparum/imunologia , Linfócitos T CD8-Positivos/imunologia , Adulto , Esporozoítos/imunologia , Masculino , Linfócitos T CD4-Positivos/imunologia , Cloroquina/uso terapêutico , Cloroquina/farmacologia , Feminino , Adulto Jovem , Gabão , Vacinação/métodos , Antimaláricos/uso terapêutico , Antimaláricos/administração & dosagem , Europa (Continente) , Parasitemia/imunologia , Adolescente , Vacinas Atenuadas/imunologia , Vacinas Atenuadas/administração & dosagem , População Europeia
5.
J Vector Borne Dis ; 61(1): 81-89, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38648409

RESUMO

BACKGROUND OBJECTIVES: Malaria due to Plasmodium falciparum (Pf) remains a major public threat in India. Artemisinin-based combination therapy (ACT) has been the country's first-line drug for uncomplicated Pf malaria. In 2013-2014, Artesunate plus sulfadoxine (AS+SP) was replaced by Artemether Lumefantrine (AL) as the first- line antimalarial in North East (NE) states of the country which are endemic for Pf malaria. Regular monitoring of antimalarial drugs is of utmost importance to achieve the goal of elimination. This study aimed to assess the efficacy and safety of ACT for treating uncomplicated Pf malaria in the NE states of India. METHODS: A prospective study of 28-day follow-up was conducted to monitor the efficacy and safety of AL from 2018-2019 in four districts, Udalgiri, Meghalaya, Lawngtlai, and Dhalai of NE, India. The clinical and parasitological response and the polymorphism analysis of the Pfdhps, P/dhfr, and Pfkelch 13 gene were evaluated. RESULTS: A total of 234 patients were enrolled in the study out of 216 patients who completed the follow-up to 28 days. One-hundred percent adequate clinical and parasitological responses (ACPR) were observed with polymerase chain reaction (PCR) correction. The genotype results suggest no recrudescence in the treatment-failure patients. The classical single nucleotide polymorphisms (SNP) in the Pfdhfr gene was S108N (94.9%), followed by C59R (91.5%), whereas, in the Pfdhps gene, the common SNP was A437G (79.6%), followed by S3436A. No associated or validated mutations were found in the propeller region of the PfKelch13 gene. INTERPRETATION CONCLUSION: AL was efficacious and safe in uncomplicated P. falciparum malaria in North East India. In contrast, mutations in the genes responsible for sulfadoxine and pyrimethamine resistance have been fixed in northeast India's population.


Assuntos
Antimaláricos , Artemisininas , Quimioterapia Combinada , Malária Falciparum , Plasmodium falciparum , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Índia , Humanos , Artemisininas/uso terapêutico , Artemisininas/efeitos adversos , Antimaláricos/uso terapêutico , Antimaláricos/administração & dosagem , Antimaláricos/efeitos adversos , Feminino , Masculino , Plasmodium falciparum/genética , Plasmodium falciparum/efeitos dos fármacos , Estudos Prospectivos , Adulto , Adulto Jovem , Adolescente , Pessoa de Meia-Idade , Resultado do Tratamento , Criança , Pré-Escolar , Combinação Arteméter e Lumefantrina/uso terapêutico , Sulfadoxina/uso terapêutico , Combinação de Medicamentos
7.
Lancet Infect Dis ; 24(5): 476-487, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38224706

RESUMO

BACKGROUND: The cornerstone of malaria prevention in pregnancy, intermittent preventive treatment (IPTp) with sulfadoxine-pyrimethamine, is contraindicated in women with HIV who are receiving co-trimoxazole prophylaxis. We assessed whether IPTp with dihydroartemisinin-piperaquine is safe and effective in reducing the risk of malaria infection in women with HIV receiving co-trimoxazole prophylaxis and antiretroviral drugs. METHODS: For this randomised, double-blind, placebo-controlled clinical trial, women with HIV attending the first antenatal care clinic visit, resident in the study area, and with a gestational age up to 28 weeks were enrolled at five sites in Gabon and Mozambique. Participants were randomly assigned (1:1) to receive either IPTp with dihydroartemisinin-piperaquine at each scheduled antenatal care visit plus daily co-trimoxazole (intervention group) or placebo at each scheduled antenatal care visit plus daily co-trimoxazole (control group). Randomisation was done centrally via block randomisation (block sizes of eight), stratified by country. IPTp was given over 3 days under direct observation by masked study personnel. The number of daily IPTp tablets was based on bodyweight and according to the treatment guidelines set by WHO (target dose of 4 mg/kg per day [range 2-10 mg/kg per day] of dihydroartemisinin and 18 mg/kg per day [range 16-27 mg/kg per day] of piperaquine given once a day for 3 days). At enrolment, all participants received co-trimoxazole (fixed combination drug containing 800 mg trimethoprim and 160 mg sulfamethoxazole) for daily intake. The primary study outcome was prevalence of peripheral parasitaemia detected by microscopy at delivery. The modified intention-to-treat population included all randomly assigned women who had data for the primary outcome. Secondary outcomes included frequency of adverse events, incidence of clinical malaria during pregnancy, and frequency of poor pregnancy outcomes. All study personnel, investigators, outcome assessors, data analysts, and participants were masked to treatment assignment. This study is registered with ClinicalTrials.gov, NCT03671109. FINDINGS: From Sept 18, 2019, to Nov 26, 2021, 666 women (mean age 28·5 years [SD 6·4]) were enrolled and randomly assigned to the intervention (n=332) and control (n=334) groups. 294 women in the intervention group and 308 women in the control group had peripheral blood samples taken at delivery and were included in the primary analysis. Peripheral parasitaemia at delivery was detected in one (<1%) of 294 women in the intervention group and none of 308 women in the control group. The incidence of clinical malaria during pregnancy was lower in the intervention group than in the control group (one episode in the intervention group vs six in the control group; relative risk [RR] 0·12, 95% CI 0·03-0·52, p=0·045). In a post-hoc analysis, the composite outcome of overall malaria infection (detected by any diagnostic test during pregnancy or delivery) was lower in the intervention group than in the control group (14 [5%] of 311 women vs 31 [10%] of 320 women; RR 0·48, 95% CI 0·27-0·84, p=0·010). The frequency of serious adverse events and poor pregnancy outcomes (such as miscarriages, stillbirths, premature births, and congenital malformations) did not differ between groups. The most frequently reported drug-related adverse events were gastrointestinal disorder (reported in less than 4% of participants) and headache (reported in less than 2% of participants), with no differences between study groups. INTERPRETATION: In the context of low malaria transmission, the addition of IPTp with dihydroartemisinin-piperaquine to co-trimoxazole prophylaxis in pregnant women with HIV did not reduce peripheral parasitaemia at delivery. However, the intervention was safe and associated with a decreased risk of clinical malaria and overall Plasmodium falciparum infection, so it should be considered as a strategy to protect pregnant women with HIV from malaria. FUNDING: European and Developing Countries Clinical Trials Partnership 2 (EDCTP2) and Medicines for Malaria Venture. TRANSLATIONS: For the Portuguese and French translations of the abstract see Supplementary Materials section.


Assuntos
Antimaláricos , Artemisininas , Infecções por HIV , Malária , Piperazinas , Quinolinas , Combinação Trimetoprima e Sulfametoxazol , Humanos , Feminino , Gravidez , Moçambique/epidemiologia , Quinolinas/uso terapêutico , Quinolinas/administração & dosagem , Quinolinas/efeitos adversos , Artemisininas/uso terapêutico , Artemisininas/administração & dosagem , Artemisininas/efeitos adversos , Antimaláricos/uso terapêutico , Antimaláricos/administração & dosagem , Antimaláricos/efeitos adversos , Método Duplo-Cego , Adulto , Infecções por HIV/complicações , Gabão/epidemiologia , Malária/prevenção & controle , Malária/tratamento farmacológico , Combinação Trimetoprima e Sulfametoxazol/administração & dosagem , Combinação Trimetoprima e Sulfametoxazol/uso terapêutico , Combinação Trimetoprima e Sulfametoxazol/efeitos adversos , Adulto Jovem , Complicações Parasitárias na Gravidez/prevenção & controle , Complicações Parasitárias na Gravidez/tratamento farmacológico , Resultado do Tratamento , Complicações Infecciosas na Gravidez/tratamento farmacológico , Complicações Infecciosas na Gravidez/prevenção & controle , Combinação de Medicamentos
8.
Telemed J E Health ; 30(5): 1436-1442, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38215269

RESUMO

Background: Growth of international travel to malarial areas over the last decades has contributed to more travelers taking malaria prophylaxis. Travel-related symptoms may be wrongly attributed to malaria prophylaxis and hinder compliance. Here, we aimed to assess the frequency of real-time reporting of symptoms by travelers following malaria prophylaxis using a smartphone app. Method: Adult international travelers included in this single-center study (Barcelona, Spain) used the smartphone Trip Doctor® app developed by our group for real-time tracking of symptoms and adherence to prophylaxis. Results: Six hundred four (n = 604) international travelers were included in the study; 74.3% (449) used the app daily, and for one-quarter of travelers, malaria prophylaxis was prescribed. Participants from the prophylaxis group traveled more to Africa (86.7% vs. 4.3%; p < 0.01) and to high travel medical risk countries (60.8% vs. 18%; p < 0.01) and reported more immunosuppression (30.8% vs. 23.1% p < 0.01). Regarding symptoms, no significant intergroup differences were observed, and no relationship was found between the total number of malarial pills taken and reported symptoms. Conclusions: In our cohort, the number of symptoms due to malaria prophylaxis was not significantly higher than in participants for whom prophylaxis was not prescribed, and the overall proportion of symptoms is higher compared with other studies.


Assuntos
Antimaláricos , Malária , Aplicativos Móveis , Smartphone , Humanos , Malária/prevenção & controle , Feminino , Masculino , Antimaláricos/efeitos adversos , Antimaláricos/administração & dosagem , Antimaláricos/uso terapêutico , Adulto , Pessoa de Meia-Idade , Espanha , Viagem , Adesão à Medicação/estatística & dados numéricos , Adulto Jovem
9.
Trials ; 24(1): 257, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37016392

RESUMO

BACKGROUND: An estimated 300,000 babies are born with sickle cell anaemia (SCA) annually. Affected children have chronic ill health and suffer premature death. Febrile illnesses such as malaria commonly precipitate acute crises in children with SCA. Thus, chemoprophylaxis for malaria is an important preventive strategy, but current regimes are either sub-optimally effective (e.g. monthly sulphadoxine-pyrimethamine, SP) or difficult to adhere to (e.g. daily proguanil). We propose dihydroartemisinin-piperaquine (DP) as the agent with the most potential to be used across Africa. METHODS: This will be a randomised, double-blind, parallel-group superiority trial of weekly single-day courses of DP compared to monthly single-day courses of SP in children with SCA. The study will be conducted in eastern (Uganda) and southern (Malawi) Africa using randomisation stratified by body weight and study centre. Participants will be randomised using an allocation of 1:1 to DP or SP. We will investigate the efficacy, safety, acceptability and uptake and cost-effectiveness of malaria chemoprevention with weekly courses of DP vs monthly SP in 548 to 824 children with SCA followed up for 12-18 months. We will also assess toxicity from cumulative DP dosing and the development of resistance. Participant recruitment commenced on 30 April 2021; follow-up is ongoing. DISCUSSION: At the end of this study, findings will be used to inform regional health policy. This manuscript is prepared from protocol version 2.1 dated 1 January 2022. TRIAL REGISTRATION: The trial was registered at ClinicalTrials.gov, NCT04844099 . Registered on 08 April 2021.


Assuntos
Anemia Falciforme , Antimaláricos , Malária , Quinolinas , Criança , Humanos , África Austral , Anemia Falciforme/complicações , Anemia Falciforme/diagnóstico , Antimaláricos/administração & dosagem , Quimioprevenção , Combinação de Medicamentos , Malária/prevenção & controle , Malária/tratamento farmacológico , Estudos Multicêntricos como Assunto , Quinolinas/administração & dosagem , Ensaios Clínicos Controlados Aleatórios como Assunto
10.
Macromol Biosci ; 23(5): e2200518, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36999404

RESUMO

Uncomplicated malaria is effectively treated with oral artemisinin-based combination therapy (ACT). Yet, there is an unmet clinical need for the intravenous treatment of the more fatal severe malaria. There is no combination intravenous therapy for uncomplicated due to the nonavailability of a water-soluble partner drug for the artemisinin, artesunate. The currently available treatment is a two-part regimen split into an intravenous artesunate followed by the conventional oral ACT . In a novel application of polymer therapeutics, the aqueous insoluble antimalarial lumefantrine is conjugated to a carrier polymer to create a new water-soluble chemical entity suitable for intravenous administration in a clinically relevant formulation . The conjugate is characterized by spectroscopic and analytical techniques, and the aqueous solubility of lumefantrine is determined to have increased by three orders of magnitude. Pharmacokinetic studies in mice indicate that there is a significant plasma release of lumefantrine and production its metabolite desbutyl-lumefantrine (area under the curve of metabolite is ≈10% that of the parent). In a Plasmodium falciparum malaria mouse model, parasitemia clearance is 50% higher than that of reference unconjugated lumefantrine. The polymer-lumefantrine shows potential for entering the clinic to meet the need for a one-course combination treatment for severe malaria.


Assuntos
Antimaláricos , Lumefantrina , Malária , Polímeros , Animais , Camundongos , Administração Intravenosa , Antimaláricos/administração & dosagem , Antimaláricos/síntese química , Antimaláricos/farmacocinética , Antimaláricos/uso terapêutico , Antimaláricos/toxicidade , Área Sob a Curva , Modelos Animais de Doenças , Combinação de Medicamentos , Lumefantrina/administração & dosagem , Lumefantrina/análogos & derivados , Lumefantrina/síntese química , Lumefantrina/farmacocinética , Lumefantrina/uso terapêutico , Lumefantrina/toxicidade , Malária/tratamento farmacológico , Camundongos Endogâmicos BALB C , Parasitemia , Plasmodium falciparum , Polímeros/química , Polímeros/farmacologia , Polímeros/uso terapêutico , Solubilidade , Água/química , Masculino
11.
N Engl J Med ; 386(13): 1244-1253, 2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35353962

RESUMO

BACKGROUND: In most of the Americas, the recommended treatment to prevent relapse of Plasmodium vivax malaria is primaquine at a total dose of 3.5 mg per kilogram of body weight, despite evidence of only moderate efficacy. METHODS: In this trial conducted in Brazil, we evaluated three primaquine regimens to prevent relapse of P. vivax malaria in children at least 5 years of age and in adults with microscopy-confirmed P. vivax monoinfection. All the patients received directly observed chloroquine for 3 days (total dose, 25 mg per kilogram). Group 1 received a total primaquine dose of 3.5 mg per kilogram (0.5 mg per kilogram per day) over 7 days with unobserved administration; group 2 received the same regimen as group 1 but with observed administration; and group 3 received a total primaquine dose of 7.0 mg per kilogram over 14 days (also 0.5 mg per kilogram per day) with observed administration. We monitored the patients for 168 days. RESULTS: We enrolled 63 patients in group 1, 96 in group 2, and 95 in group 3. The median age of the patients was 22.4 years (range, 5.4 to 79.8). By day 28, three P. vivax recurrences were observed: 2 in group 1 and 1 in group 2. By day 168, a total of 70 recurrences had occurred: 24 in group 1, 34 in group 2, and 12 in group 3. No serious adverse events were noted. On day 168, the percentage of patients without recurrence was 58% (95% confidence interval [CI], 44 to 70) in group 1, 59% (95% CI, 47 to 69) in group 2, and 86% (95% CI, 76 to 92) in group 3. Survival analysis showed a difference in the day 168 recurrence-free percentage of 27 percentage points (97.5% CI, 10 to 44; P<0.001) between group 1 and group 3 and a difference of 27 percentage points (97.5% CI, 12 to 42; P<0.001) between group 2 and group 3. CONCLUSIONS: The administration of primaquine at a total dose of 7.0 mg per kilogram had higher efficacy in preventing relapse of P. vivax malaria than a total dose of 3.5 mg per kilogram through day 168. (Supported by the U.S. Agency for International Development; ClinicalTrials.gov number, NCT03610399.).


Assuntos
Antimaláricos , Cloroquina , Malária Vivax , Primaquina , Adolescente , Adulto , Idoso , Antimaláricos/administração & dosagem , Antimaláricos/efeitos adversos , Antimaláricos/uso terapêutico , Brasil , Criança , Pré-Escolar , Cloroquina/administração & dosagem , Cloroquina/efeitos adversos , Cloroquina/uso terapêutico , Terapia Diretamente Observada , Relação Dose-Resposta a Droga , Esquema de Medicação , Humanos , Malária Vivax/tratamento farmacológico , Malária Vivax/prevenção & controle , Pessoa de Meia-Idade , Primaquina/administração & dosagem , Primaquina/efeitos adversos , Primaquina/uso terapêutico , Recidiva , Prevenção Secundária , Adulto Jovem
12.
BMC Pregnancy Childbirth ; 22(1): 223, 2022 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-35305604

RESUMO

BACKGROUND: Low birth weight is a public health problem in Africa with the cause attributable to malaria in pregnancy. World Health Organization recommends the use of intermittent preventive treatment in pregnancy (IPTp) with sulfadoxine-pyrimethamine to prevent malaria during pregnancy. The objective of this study was to evaluate the prevalence and trajectories of birth weight and the direct impact and relationship between sulfadoxine-pyrimethamine and birth weight in Ghana since 2003. METHOD: This study used secondary data obtained from the Demographic and Health Survey conducted in Ghana since 2003. Low birth weight was defined as weight < 2500 g irrespective of the gestational age of the foetus, while normal birth weight was between 2500 g to < 4000 g and macrosomia was = > 4000 g. In all the analysis, we adjusted for clustering, stratification and weighting to reduce bias and improve precision of the estimates. Analysis was performed on each survey year as well as the pooled dataset. The generalized ordered partial proportional odds model was used due to violations of the parallel regression model assumptions. Efforts were made to identify all confounding variables and these were adjusted for. Predictive analysis was also executed. RESULTS: The overall prevalence of low birth weight was 9% while that of macrosomia was 13%. The low birth weight for 2003 was 12% while in 2008 it was 21% and then 68% in 2014. The mean birth weight of the children in 2014 was 3.16 (3.14, 3.19), 2008 was 3.37 (3.28, 3.45) and 2003 was 3.59 (3.49, 3.69) while that of the pooled data was 3.28 (3.25, 3.30). The adjusted model (taking into consideration all confounding variables) showed that non-uptake of SP could result in 51% odds of giving birth to a low-birth-weight compared with normal birth weight child. An insignificant result was observed between macrosomia and low birth weight. CONCLUSION: There is higher probability that low birth weight could increase over the next couple of years if measures are not taking to reverse the current trajectories. The uptake of sulfadoxine-pyrimethamine should continue to be encouraged and recommended because it has a direct beneficial effect on the weight of the child.


Assuntos
Antimaláricos/administração & dosagem , Peso ao Nascer , Modelos Estatísticos , Pirimetamina/administração & dosagem , Sulfadoxina/administração & dosagem , Adulto , Demografia , Combinação de Medicamentos , Feminino , Macrossomia Fetal , Gana/epidemiologia , Humanos , Recém-Nascido de Baixo Peso , Malária/prevenção & controle , Gravidez , Complicações Parasitárias na Gravidez/prevenção & controle
13.
AAPS J ; 24(1): 33, 2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-35132508

RESUMO

In vitro screening for pharmacological activity of existing drugs showed chloroquine and hydroxychloroquine to be effective against severe acute respiratory syndrome coronavirus 2. Oral administration of these compounds to obtain desired pulmonary exposures resulted in dose-limiting systemic toxicity in humans. However, pulmonary drug delivery enables direct and rapid administration to obtain higher local tissue concentrations in target tissue. In this work, inhalable formulations for thermal aerosolization of chloroquine and hydroxychloroquine were developed, and their physicochemical properties were characterized. Thermal aerosolization of 40 mg/mL chloroquine and 100 mg/mL hydroxychloroquine formulations delivered respirable aerosol particle sizes with 0.15 and 0.33 mg per 55 mL puff, respectively. In vitro toxicity was evaluated by exposing primary human bronchial epithelial cells to aerosol generated from Vitrocell. An in vitro exposure to 7.24 µg of chloroquine or 7.99 µg hydroxychloroquine showed no significant changes in cilia beating, transepithelial electrical resistance, and cell viability. The pharmacokinetics of inhaled aerosols was predicted by developing a physiologically based pharmacokinetic model that included a detailed species-specific respiratory tract physiology and lysosomal trapping. Based on the model predictions, inhaling emitted doses comprising 1.5 mg of chloroquine or 3.3 mg hydroxychloroquine three times a day may yield therapeutically effective concentrations in the lung. Inhalation of higher doses further increased effective concentrations in the lung while maintaining lower systemic concentrations. Given the theoretically favorable risk/benefit ratio, the clinical significance for pulmonary delivery of aerosolized chloroquine and hydroxychloroquine to treat COVID-19 needs to be established in rigorous safety and efficacy studies. Graphical abstract.


Assuntos
Antimaláricos/administração & dosagem , Tratamento Farmacológico da COVID-19 , Cloroquina/administração & dosagem , Hidroxicloroquina/administração & dosagem , Modelos Químicos , Administração por Inalação , Animais , Antimaláricos/farmacocinética , Antimaláricos/toxicidade , Células Cultivadas , Avaliação Pré-Clínica de Medicamentos , Humanos , Hidroxicloroquina/farmacocinética , Hidroxicloroquina/toxicidade , Masculino , Camundongos , Pessoa de Meia-Idade , Ratos
14.
Regul Toxicol Pharmacol ; 129: 105114, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35007669

RESUMO

Artemisinin-hydroxychloroquine sulfate tablets (AH) are considered a relatively inexpensive and novel combination therapy for treating all forms of malaria, especially aminoquinoline drugs-resistant strains of P.falciparum. We aim to carry out acute and subacute oral toxicity studies in rats to acquire preclinical data on the safety of AH. Acute toxicity was evaluated in Sprague-Dawley (SD) rats at a single dose of 1980, 2970, 4450, 6670, and 10000 mg/kg. A 14-days subacute toxicity was assessed in SD rats at doses of 0, 146, 219, 328, and 429 mg/kg. The median lethal dose (LD50) of acute oral administration of AH in rats is found to be 3119 mg/kg, and toxic symptoms include decreased spontaneous activity, dyspnea, bristling, soft feces, spasticity, and convulsion. Repeated doses of AH have toxic effects on the nervous system, skin, blood system, liver, kidney, and spleen in rats. The main toxic reactions include epilation, emaciation, mental irritability, decreased body weight gain and food consumption, changes in the hematological and biochemical parameters, especially pathological lesions in the liver, kidney, and spleen. The no-observed-adverse-effect level (NOAEL) and lowest-observed-adverse-effect level (LOAEL) of AH are considered to be 219 mg/kg and 328 mg/kg, respectively.


Assuntos
Antimaláricos/toxicidade , Artemisininas/toxicidade , Hidroxicloroquina/toxicidade , Administração Oral , Animais , Antimaláricos/administração & dosagem , Antimaláricos/farmacologia , Artemisininas/administração & dosagem , Artemisininas/farmacologia , Relação Dose-Resposta a Droga , Combinação de Medicamentos , Feminino , Hidroxicloroquina/administração & dosagem , Hidroxicloroquina/farmacologia , Dose Letal Mediana , Masculino , Nível de Efeito Adverso não Observado , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Testes de Toxicidade Aguda , Testes de Toxicidade Subaguda
15.
CPT Pharmacometrics Syst Pharmacol ; 11(1): 104-115, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34730282

RESUMO

Patients with cerebral malaria with polymorphic Cytochrome P450 2C19 (CYP2C19) genotypes who receive concurrent treatment with quinine are at risk of inadequate or toxic therapeutic drug concentrations due to metabolic drug interactions. The study aimed to predict the potential dose regimens of quinine when coadministered with phenobarbital in adult patients with cerebral malaria and complications (e.g., lactic acidosis and acute renal failure) and concurrent with seizures and acute renal failure who carry wild-type and polymorphic CYP2C19. The whole-body physiologically based pharmacokinetic (PBPK) models for quinine, phenobarbital, and quinine-phenobarbital coadministration were constructed based on the previously published information using Simbiology®. Four published articles were used for model validation. A total of 100 virtual patients were simulated based on the 14-day and 3-day courses of treatment. using the drug-drug interaction approach. The predicted results were within 15% of the observed values. Standard phenobarbital dose, when administered with quinine, is suitable for all groups with single or continuous seizures regardless of CYP2C19 genotype, renal failure, and lactic acidosis. Dose adjustment based on area under the curve ratio provided inappropriate quinine concentrations. The recommended dose of quinine when coadministered with phenobarbital based on the PBPK model for all groups is a loading dose of 2000 mg intravenous (i.v.) infusion rate 250 mg/h followed by 1200 mg i.v. rate 150 mg/h. The developed PBPK models are credible for further simulations. Because the predicted quinine doses in all groups were similar regardless of the CYP2C19 genotype, genotyping may not be required.


Assuntos
Anticonvulsivantes/administração & dosagem , Antimaláricos/administração & dosagem , Malária Cerebral/tratamento farmacológico , Fenobarbital/administração & dosagem , Quinina/administração & dosagem , Convulsões/tratamento farmacológico , Acidose Láctica/epidemiologia , Acidose Láctica/patologia , Injúria Renal Aguda/epidemiologia , Injúria Renal Aguda/patologia , Adolescente , Adulto , Anticonvulsivantes/uso terapêutico , Antimaláricos/uso terapêutico , Área Sob a Curva , Simulação por Computador , Citocromo P-450 CYP2C19/genética , Relação Dose-Resposta a Droga , Interações Medicamentosas , Quimioterapia Combinada , Feminino , Genótipo , Humanos , Malária Cerebral/complicações , Malária Cerebral/epidemiologia , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Fenobarbital/uso terapêutico , Quinina/uso terapêutico , Convulsões/etiologia , Adulto Jovem
17.
Lancet Child Adolesc Health ; 6(2): 86-95, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34871570

RESUMO

BACKGROUND: Single-dose tafenoquine 300 mg is approved for Plasmodium vivax malaria relapse prevention in patients at least 16 years old. We aimed to determine appropriate oral tafenoquine paediatric dosing regimens, including a dispersible formulation, and evaluated tafenoquine efficacy and safety in children infected with P vivax. METHODS: This open-label, single-arm, non-comparative, multicentre, pharmacokinetic bridging, phase 2 study enrolled children (2-15 years) who weighed 5 kg or more, with glucose-6-phosphate dehydrogenase activity more than 70% of the local population median, and P vivax malaria infection, from three community health centres in Vietnam and one in Colombia. Patients received 3-day chloroquine plus oral single-dose tafenoquine as dispersible tablets (50 mg) or film-coated tablets (150 mg). Dosing groups were assigned by body weight, predicted to achieve similar median exposures as the approved 300 mg dose for adults: patients who weighed 5 kg or more to 10 kg received 50 mg, those who weighed more than 10 to 20 kg received 100 or 150 mg, those who weighed more than 20 to 35 kg received 200 mg, and patients who weighed more than 35 kg received 300 mg. Population pharmacokinetic analysis was done to develop a paediatric population pharmacokinetic model. The primary outcome was the tafenoquine area under the concentration-time curve extrapolated to infinity (AUC[0-∞]) by patient body weight in the pharmacokinetic population (all patients who received tafenoquine with at least one valid pharmacokinetic sample) estimated from a paediatric population pharmacokinetic model. A key prespecified secondary outcome was 4-month recurrence-free efficacy. This trial is registered with ClinicalTrials.gov, NCT02563496. FINDINGS: Between Feb 6, 2017, and Feb 17, 2020, 60 patients were enrolled into the study: 14 (23%) received tafenoquine 100 mg, five (8%) 150 mg, 22 (36%) 200 mg, and 19 (32%) 300 mg. The paediatric population pharmacokinetic model predicted adequate tafenoquine exposure at all doses. The predicted median AUC(0-∞) was 73·8 (90% prediction interval [PI] 46·9-117·0) µg × h/mL with the 50 mg dose for patients who weighed 5 kg or more to 10 kg, 87·5 (55·4-139·0) µg × h/mL with the 100 mg dose for body weight more than 10 to 20 kg, 110·7 (70·9-174·0) µg × h/mL with the 200 mg dose for body weight more than 20 to 35 kg, and 85·7 (50·6-151·0) µg × h/mL with the 300 mg dose for body weight more than 35 kg. 4-month recurrence-free efficacy was 94·7% (95% CI 84·6-98·3). Adverse events were consistent with previous studies, except for the seven (12%) of 60 patients who had post-dose vomiting or spitting with the 50 mg dispersed tablet. Following mitigation strategies, there were no additional occurrences of this adverse event. There were no deaths during the study. INTERPRETATION: For the prevention of P vivax relapse in children, single-dose tafenoquine, including a dispersible formulation, had exposure, safety, and efficacy consistent with observations in adolescents and adults, notwithstanding post-dose vomiting. FUNDING: GlaxoSmithKline and Medicines for Malaria Venture. TRANSLATIONS: For the Vietnamese and Spanish translations of the abstract see Supplementary Materials section.


Assuntos
Aminoquinolinas/administração & dosagem , Aminoquinolinas/farmacocinética , Aminoquinolinas/uso terapêutico , Antimaláricos/administração & dosagem , Antimaláricos/farmacocinética , Antimaláricos/uso terapêutico , Malária Vivax/tratamento farmacológico , Adolescente , Área Sob a Curva , Criança , Pré-Escolar , Cloroquina/administração & dosagem , Feminino , Humanos , Masculino , Recidiva , Prevenção Secundária , Comprimidos
18.
J Ethnopharmacol ; 287: 114931, 2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-34942322

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Aconitum heterophyllum Wall. ex Royle is a traditionally important medicinal plant having numerous therapeutic actions as documented in Ayurveda. This plant is traditionally known for combating worm infestation, fever, respiratory tract disease, vomiting, diarrhoea, diabetes, skin disorders, anaemia, and joint disorders. Further, it has been used alone and in combination with other plants to prepare various anti-malarial formulations. However, there is no report on the assessment of its anti-plasmodial activity, and the metabolite(s) responsible for this activity. AIM OF THE STUDY: The main aim of this study was to conduct phytochemical investigation of A. heterophyllum roots for the preparation of extract, fractions, and isolation of pure molecules to identify active fractions/molecules responsible for the anti-plasmodial activity, and development of UHPLC-DAD based analytical method which can be used for the quantification of marker compounds in the extracts and fractions. MATERIALS AND METHODS: Hydroalcoholic extract (1:1 v/v) and fractions (n-hexane, chloroform, ethyl acetate, n-butanol, and water) were prepared from the dried powdered roots of A. heterophyllum. Fractions were further subjected to silica gel column chromatography to isolate pure specialized secondary metabolites from this plant. All extracts, fractions, and pure molecules were evaluated against the chloroquine resistant Pf INDO and chloroquine sensitive Pf3D7 strains in culture for calculating their IC50 values. UHPLC-DAD based analytical method was also developed for the first time for the quantification of marker compounds and quality assessment of this commercially important Himalayan medicinal plant. RESULTS: Phytochemical investigation of A. heterophyllum root led to the isolation of six specialized metabolites viz. 2-O-cinnamoyl hetisine (1), atisinium (2), 4-oxabicyclo [3.2.2] nona-1(7),5,8-triene (3), atisinium cinnamate (4), aconitic acid (5), and atisinium formate (6). Compound 1 is a new hetisine type diterpenoid alkaloid, compounds 4 and 6 are new counter ionic forms observed with atisinium ion, and compound 3 is being reported for the first time from this genus. Chloroform fraction was found to be the most active with IC50 (µg/mL) 1.01 (Pf INDO) and 1.32 (Pf3D7). The molecule 2-O-cinnamoyl hetisine (1), a new diterpenoid alkaloid isolated from chloroform fraction, showed promising antiplasmodial activities with IC50 (µM) 1.92 (Pf INDO) and 10.8 (Pf 3D7). The activity of chloroform fraction was further validated by the developed UHPLC-DAD based method as the quantity of 2-O-cinnamoyl hetisine (1) was higher in the chloroform fraction (≅200 mg/g) than in all other fractions (<7 mg/g). Atisinium (2) and 2-O-cinnamoyl hetisine (1) were found to be the main marker compounds of this plant based on quantity and antiplasmodial activity, respectively. CONCLUSION: This study provides the scientific rationale for the traditional use of this plant in treating malaria. Further, this study revealed that the anti-malarial potential of this plant might be due to the presence of diterpenoid alkaloids.


Assuntos
Aconitum/química , Alcaloides/farmacologia , Diterpenos/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Alcaloides/administração & dosagem , Alcaloides/isolamento & purificação , Antimaláricos/administração & dosagem , Antimaláricos/isolamento & purificação , Antimaláricos/farmacologia , Cloroquina/farmacologia , Cromatografia Líquida de Alta Pressão , Diterpenos/administração & dosagem , Diterpenos/isolamento & purificação , Concentração Inibidora 50 , Extratos Vegetais/administração & dosagem , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Raízes de Plantas
19.
Lancet Infect Dis ; 22(4): 519-528, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34919831

RESUMO

BACKGROUND: Although the malaria burden has substantially decreased in sub-Saharan Africa, progress has stalled. We assessed whether mass administration of ivermectin (a mosquitocidal drug) and dihydroartemisinin-piperaquine (an antimalarial treatment) reduces malaria in The Gambia, an area with high coverage of standard control interventions. METHODS: This open-label, cluster-randomised controlled trial was done in the Upper River region of eastern Gambia. Villages with a baseline Plasmodium falciparum prevalence of 7-46% (all ages) and separated from each other by at least 3 km to reduce vector spillover were selected. Inclusion criteria were age and anthropometry (for ivermectin, weight of ≥15 kg; for dihydroartemisinin-piperaquine, participants older than 6 months); willingness to comply with trial procedures; and written informed consent. Villages were randomised (1:1) to either the intervention (ivermectin [orally at 300-400 µg/kg per day for 3 consecutive days] and dihydroartemisinin-piperaquine [orally depending on bodyweight] plus standard control interventions) or the control group (standard control interventions) using computer-based randomisation. Laboratory staff were masked to the origin of samples. In the intervention group, three rounds of mass drug administration once per month with ivermectin and dihydroartemisinin-piperaquine were given during two malaria transmission seasons from Aug 27 to Oct 31, 2018, and from July 15 to Sept 30, 2019. Primary outcomes were malaria prevalence by qPCR at the end of the second intervention year in November 2019, and Anopheles gambiae (s l) parous rate, analysed in the intention-to-treat population. This trial is registered with ClinicalTrials.gov, NCT03576313. FINDINGS: Between Nov 20 and Dec 7, 2017, 47 villages were screened for eligibility in the study. 15 were excluded because the baseline malaria prevalence was less than 7% (figure 1). 32 villages were enrolled and randomised to either the intervention or control group (n=16 in each group). The study population was 10 638, of which 4939 (46%) participants were in intervention villages. Coverage for dihydroartemisinin-piperaquine was between 49·0% and 58·4% in 2018, and between 76·1% and 86·0% in 2019; for ivermectin, coverage was between 46·9% and 52·2% in 2018, and between 71·7% and 82·9% in 2019. In November 2019, malaria prevalence was 12·8% (324 of 2529) in the control group and 5·1% (140 of 2722) in the intervention group (odds ratio [OR] 0·30, 95% CI 0·16-0·59; p<0·001). A gambiae (s l) parous rate was 83·1% (552 of 664) in the control group and 81·7% (441 of 540) in the intervention group (0·90, 0·66-1·25; p=0·537). In 2019, adverse events were recorded in 386 (9·7%) of 3991 participants in round one, 201 (5·4%) of 3750 in round two, and 168 (4·5%) of 3752 in round three. None of the 11 serious adverse events were related to the intervention. INTERPRETATION: The intervention was safe and well tolerated. In an area with high coverage of standard control interventions, mass drug administration of ivermectin and dihydroartemisinin-piperaquine significantly reduced malaria prevalence; however, no effect of ivermectin on vector parous rate was observed. FUNDING: Joint Global Health Trials Scheme. TRANSLATION: For the French translation of the abstract see Supplementary Materials section.


Assuntos
Antimaláricos , Artemisininas , Malária , Quinolinas , Animais , Antimaláricos/administração & dosagem , Artemisininas/administração & dosagem , Gâmbia/epidemiologia , Humanos , Ivermectina/administração & dosagem , Malária/prevenção & controle , Administração Massiva de Medicamentos , Mosquitos Vetores , Piperazinas , Quinolinas/administração & dosagem
20.
Nat Commun ; 12(1): 6714, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34795281

RESUMO

Intermittent preventive treatment (IPT) with dihydroartemisinin-piperaquine (DP) is highly protective against malaria in children, but is not standard in malaria-endemic countries. Optimal DP dosing regimens will maximize efficacy and reduce toxicity and resistance selection. We analyze piperaquine (PPQ) concentrations (n = 4573), malaria incidence data (n = 326), and P. falciparum drug resistance markers from a trial of children randomized to IPT with DP every 12 weeks (n = 184) or every 4 weeks (n = 96) from 2 to 24 months of age (NCT02163447). We use nonlinear mixed effects modeling to establish malaria protective PPQ levels and risk factors for suboptimal protection. Compared to DP every 12 weeks, DP every 4 weeks is associated with 95% protective efficacy (95% CI: 84-99%). A PPQ level of 15.4 ng/mL reduces the malaria hazard by 95%. Malnutrition reduces PPQ exposure. In simulations, we show that DP every 4 weeks is optimal across a range of transmission intensities, and age-based dosing improves malaria protection in young or malnourished children.


Assuntos
Artemisininas/uso terapêutico , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum/efeitos dos fármacos , Complicações Parasitárias na Gravidez/tratamento farmacológico , Quinolinas/uso terapêutico , Algoritmos , Antimaláricos/administração & dosagem , Antimaláricos/farmacocinética , Antimaláricos/uso terapêutico , Artemisininas/administração & dosagem , Artemisininas/farmacocinética , Criança , Pré-Escolar , Relação Dose-Resposta a Droga , Feminino , Humanos , Incidência , Lactente , Malária Falciparum/epidemiologia , Malária Falciparum/parasitologia , Masculino , Modelos Biológicos , Avaliação de Resultados em Cuidados de Saúde/métodos , Avaliação de Resultados em Cuidados de Saúde/estatística & dados numéricos , Plasmodium falciparum/fisiologia , Gravidez , Complicações Parasitárias na Gravidez/metabolismo , Quinolinas/administração & dosagem , Quinolinas/farmacocinética , Uganda/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA