Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47.813
Filtrar
1.
Sci Rep ; 14(1): 10561, 2024 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719884

RESUMO

This study focuses on understanding the structural and molecular changes in lipid membranes under the influence of six halogenated flavonoid derivatives differing in the number and position of substitution of chlorine and bromine atoms (D1-D6). Utilizing various analytical techniques, including fluorometric methods, dynamic light scattering (DLS), attenuated Fourier transform infrared spectroscopy (ATR- FTIR), and FT-Raman spectroscopy, the research aims to elucidate the mechanisms underlying the interaction of flavonoids with cell membranes. Additionally, the study includes in silico analyses to explore the physicochemical properties of these compounds and their potential pharmaceutical applications, along with toxicity studies to assess their effects on cancer, normal, and red blood cells. Our study showed the ability of halogenated derivatives to interact mostly with the outer part of the membrane, especially in the lipid heads region however, some of them were able to penetrate deeper into the membrane and affect the fluidity of hydrocarbon chains. The potential to reduce cancer cell viability, the lack of toxicity towards erythrocytes, and the favourable physicochemical and pharmacokinetic properties suggest these halogenated flavonoids potential candidates for exploring their potential for medical use.


Assuntos
Flavonoides , Lipídeos de Membrana , Flavonoides/química , Flavonoides/farmacologia , Flavonoides/metabolismo , Humanos , Lipídeos de Membrana/metabolismo , Lipídeos de Membrana/química , Membrana Celular/metabolismo , Halogenação , Citotoxinas/química , Citotoxinas/farmacologia , Citotoxinas/metabolismo , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Análise Espectral Raman , Espectroscopia de Infravermelho com Transformada de Fourier , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/metabolismo , Linhagem Celular Tumoral
2.
Protein Sci ; 33(6): e5004, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38723164

RESUMO

Dysregulation of RNA splicing processes is intricately linked to tumorigenesis in various cancers, especially breast cancer. Cdc2-like kinase 2 (CLK2), an oncogenic RNA-splicing kinase pivotal in breast cancer, plays a significant role, particularly in the context of triple-negative breast cancer (TNBC), a subtype marked by substantial medical challenges due to its low survival rates. In this study, we employed a structure-based virtual screening (SBVS) method to identify potential CLK2 inhibitors with novel chemical structures for treating TNBC. Compound 670551 emerged as a novel CLK2 inhibitor with a 50% inhibitory concentration (IC50) value of 619.7 nM. Importantly, Compound 670551 exhibited high selectivity for CLK2 over other protein kinases. Functionally, this compound significantly reduced the survival and proliferation of TNBC cells. Results from a cell-based assay demonstrated that this inhibitor led to a decrease in RNA splicing proteins, such as SRSF4 and SRSF6, resulting in cell apoptosis. In summary, we identified a novel CLK2 inhibitor as a promising potential treatment for TNBC therapy.


Assuntos
Inibidores de Proteínas Quinases , Proteínas Serina-Treonina Quinases , Proteínas Tirosina Quinases , Neoplasias de Mama Triplo Negativas , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Humanos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/química , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/metabolismo , Proteínas Tirosina Quinases/química , Proteínas Tirosina Quinases/genética , Feminino , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Simulação de Acoplamento Molecular , Proliferação de Células/efeitos dos fármacos
3.
BMC Biotechnol ; 24(1): 27, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38725019

RESUMO

Cyanobacteria represent a rich resource of a wide array of unique bioactive compounds that are proving to be potent sources of anticancer drugs. Selenium nanoparticles (SeNPs) have shown an increasing potential as major therapeutic platforms and led to the production of higher levels of ROS that can present desirable anticancer properties. Chitosan-SeNPs have also presented antitumor properties against hepatic cancer cell lines, especially the Cht-NP (Chitosan-NPs), promoting ROS generation and mitochondria dysfunction. It is proposed that magnetic fields can add new dimensions to nanoparticle applications. Hence, in this study, the biosynthesis of SeNPs using Alborzia kermanshahica and chitosan (CS) as stabilizers has been developed. The SeNPs synthesis was performed at different cyanobacterial cultivation conditions, including control (without magnetic field) and magnetic fields of 30 mT and 60 mT. The SeNPs were characterized by uv-visible spectroscopy, Fourier-transform infrared spectroscopy (FT-IR), Dynamic light scattering (DLS), zeta potential, and TEM. In addition, the antibacterial activity, inhibition of bacterial growth, minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC), as well as the antifungal activity and cytotoxicity of SeNPs, were performed. The results of uv-visible spectrometry, DLS, and zeta potential showed that 60 mT had the highest value regarding the adsorption, size, and stabilization in compared to the control. FTIR spectroscopy results showed consistent spectra, but the increased intensity of peaks indicates an increase in bond number after exposure to 30 mT and 60 mT. The results of the antibacterial activity and the inhibition zone diameter of synthesized nanoparticles showed that Staphylococcus aureus was more sensitive to nanoparticles produced under 60 mT. Se-NPs produced by Alborzia kermanshahica cultured under a 60 mT magnetic field exhibit potent antimicrobial and anticancer properties, making them a promising natural agent for use in the pharmaceutical and biomedical industries.


Assuntos
Quitosana , Campos Magnéticos , Selênio , Selênio/química , Selênio/farmacologia , Quitosana/química , Quitosana/farmacologia , Humanos , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/biossíntese , Testes de Sensibilidade Microbiana , Nanopartículas/química , Antineoplásicos/farmacologia , Antineoplásicos/metabolismo , Antineoplásicos/química , Nanopartículas Metálicas/química
4.
Brief Bioinform ; 25(3)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38725157

RESUMO

Cancer, recognized as a primary cause of death worldwide, has profound health implications and incurs a substantial social burden. Numerous efforts have been made to develop cancer treatments, among which anticancer peptides (ACPs) are garnering recognition for their potential applications. While ACP screening is time-consuming and costly, in silico prediction tools provide a way to overcome these challenges. Herein, we present a deep learning model designed to screen ACPs using peptide sequences only. A contrastive learning technique was applied to enhance model performance, yielding better results than a model trained solely on binary classification loss. Furthermore, two independent encoders were employed as a replacement for data augmentation, a technique commonly used in contrastive learning. Our model achieved superior performance on five of six benchmark datasets against previous state-of-the-art models. As prediction tools advance, the potential in peptide-based cancer therapeutics increases, promising a brighter future for oncology research and patient care.


Assuntos
Antineoplásicos , Aprendizado Profundo , Peptídeos , Peptídeos/química , Peptídeos/uso terapêutico , Humanos , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Neoplasias/tratamento farmacológico , Biologia Computacional/métodos , Aprendizado de Máquina , Algoritmos
5.
Curr Pharm Des ; 30(4): 255-277, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38711394

RESUMO

BACKGROUND: The escalation of cancer worldwide is one of the major causes of economy burden and loss of human resources. According to the American Cancer Society, there will be 1,958,310 new cancer cases and 609,820 projected cancer deaths in 2023 in the United States. It is projected that by 2040, the burden of global cancer is expected to rise to 29.5 million per year, causing a death toll of 16.4 million. The hemostasis regulation by cellular protein synthesis and their targeted degradation is required for normal cell growth. The imbalance in hemostasis causes unbridled growth in cells and results in cancer. The DNA of cells needs to be targeted by chemotherapeutic agents for cancer treatment, but at the same time, their efficacy and toxicity also need to be considered for successful treatment. OBJECTIVE: The objective of this study is to review the published work on pyrrole and pyridine, which have been prominent in the diagnosis and possess anticancer activity, to obtain some novel lead molecules of improved cancer therapeutic. METHODS: A literature search was carried out using different search engines, like Sci-finder, Elsevier, ScienceDirect, RSC etc., for small molecules based on pyrrole and pyridine helpful in diagnosis and inducing apoptosis in cancer cells. The research findings on the application of these compounds from 2018-2023 were reviewed on a variety of cell lines, such as breast cancer, liver cancer, epithelial cancer, etc. Results: In this review, the published small molecules, pyrrole and pyridine and their derivatives, which have roles in the diagnosis and treatment of cancers, were discussed to provide some insight into the structural features responsible for diagnosis and treatment. The analogues with the chromeno-furo-pyridine skeleton showed the highest anticancer activity against breast cancer. The compound 5-amino-N-(1-(pyridin-4- yl)ethylidene)-1H-pyrazole-4-carbohydrazides was highly potent against HEPG2 cancer cell. Redaporfin is used for the treatment of cholangiocarcinoma, biliary tract cancer, cisplatin-resistant head and neck squamous cell carcinoma, and pigmentation melanoma, and it is in clinical trials for phase II. These structural features present a high potential for designing novel anticancer agents for diagnosis and drug development. CONCLUSION: Therefore, the N- and C-substituted pyrrole and pyridine-based novel privileged small Nheterocyclic scaffolds are potential molecules used in the diagnosis and treatment of cancer. This review discusses the reports on the synthesis of such molecules during 2018-2023. The review mainly discusses various diagnostic techniques for cancer, which employ pyrrole and pyridine heterocyclic scaffolds. Furthermore, the anticancer activity of N- and C-substituted pyrrole and pyridine-based scaffolds has been described, which works against different cancer cell lines, such as MCF-7, A549, A2780, HepG2, MDA-MB-231, K562, HT- 29, Caco-2 cells, Hela, Huh-7, WSU-DLCL2, HCT-116, HBL-100, H23, HCC827, SKOV3, etc. This review will help the researchers to obtain a critical insight into the structural aspects of pyrrole and pyridine-based scaffolds useful in cancer diagnosis as well as treatment and design pathways to develop novel drugs in the future.


Assuntos
Antineoplásicos , Neoplasias , Piridinas , Pirróis , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/diagnóstico , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Piridinas/farmacologia , Piridinas/química , Piridinas/síntese química , Pirróis/química , Pirróis/farmacologia , Pirróis/síntese química , Compostos Heterocíclicos/química , Compostos Heterocíclicos/farmacologia , Compostos Heterocíclicos/síntese química , Animais
6.
Int J Nanomedicine ; 19: 3973-3989, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38711615

RESUMO

Graphene and graphene-based materials have attracted growing interest for potential applications in medicine because of their good biocompatibility, cargo capability and possible surface functionalizations. In parallel, prototypic graphene-based devices have been developed to diagnose, imaging and track tumor growth in cancer patients. There is a growing number of reports on the use of graphene and its functionalized derivatives in the design of innovative drugs delivery systems, photothermal and photodynamic cancer therapy, and as a platform to combine multiple therapies. The aim of this review is to introduce the latest scientific achievements in the field of innovative composite graphene materials as potentially applied in cancer therapy. The "Technology and Innovation Roadmap" published in the Graphene Flagship indicates, that the first anti-cancer drugs using graphene and graphene-derived materials will have appeared on the market by 2030. However, it is necessary to broaden understanding of graphene-based material interactions with cellular metabolism and signaling at the functional level, as well as toxicity. The main aspects of further research should elucidate how treatment methods (e.g., photothermal therapy, photodynamic therapy, combination therapy) and the physicochemical properties of graphene materials influence their ability to modulate autophagy and kill cancer cells. Interestingly, recent scientific reports also prove that graphene nanocomposites modulate cancer cell death by inducing precise autophagy dysfunctions caused by lysosome damage. It turns out as well that developing photothermal oncological treatments, it should be taken into account that near-infrared-II radiation (1000-1500 nm) is a better option than NIR-I (750-1000 nm) because it can penetrate deeper into tissues due to less scattering at longer wavelengths radiation.


Assuntos
Antineoplásicos , Grafite , Neoplasias , Grafite/química , Humanos , Antineoplásicos/química , Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico , Sistemas de Liberação de Medicamentos/métodos , Fotoquimioterapia/métodos , Autofagia/efeitos dos fármacos , Animais , Nanocompostos/química , Nanocompostos/uso terapêutico , Nanomedicina
7.
Microb Cell Fact ; 23(1): 133, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720294

RESUMO

BACKGROUND: Low targeting efficacy and high toxicity continue to be challenges in Oncology. A promising strategy is the glycosylation of chemotherapeutic agents to improve their pharmacodynamics and anti-tumoral activity. Herein, we provide evidence of a novel approach using diglycosidases from fungi of the Hypocreales order to obtain novel rutinose-conjugates therapeutic agents with enhanced anti-tumoral capacity. RESULTS: Screening for diglycosidase activity in twenty-eight strains of the genetically related genera Acremonium and Sarocladium identified 6-O-α-rhamnosyl-ß-glucosidase (αRßG) of Sarocladium strictum DMic 093557 as candidate enzyme for our studies. Biochemically characterization shows that αRßG has the ability to transglycosylate bulky OH-acceptors, including bioactive compounds. Interestingly, rutinoside-derivatives of phloroglucinol (PR) resorcinol (RR) and 4-methylumbelliferone (4MUR) displayed higher growth inhibitory activity on pancreatic cancer cells than the respective aglycones without significant affecting normal pancreatic epithelial cells. PR exhibited the highest efficacy with an IC50 of 0.89 mM, followed by RR with an IC50 of 1.67 mM, and 4MUR with an IC50 of 2.4 mM, whereas the respective aglycones displayed higher IC50 values: 4.69 mM for phloroglucinol, 5.90 mM for resorcinol, and 4.8 mM for 4-methylumbelliferone. Further, glycoconjugates significantly sensitized pancreatic cancer cells to the standard of care chemotherapy agent gemcitabine. CONCLUSIONS: αRßG from S. strictum transglycosylate-based approach to synthesize rutinosides represents a suitable option to enhance the anti-proliferative effect of bioactive compounds. This finding opens up new possibilities for developing more effective therapies for pancreatic cancer and other solid malignancies.


Assuntos
Antineoplásicos , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Linhagem Celular Tumoral , Hypocreales/metabolismo , Rutina/farmacologia , Rutina/química , Acremonium , Gencitabina , Dissacarídeos/farmacologia , Dissacarídeos/química
8.
Sci Rep ; 14(1): 10646, 2024 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724530

RESUMO

Individual theranostic agents with dual-mode MRI responses and therapeutic efficacy have attracted extensive interest due to the real-time monitor and high effective treatment, which endow the providential treatment and avoid the repeated medication with side effects. However, it is difficult to achieve the integrated strategy of MRI and therapeutic drug due to complicated synthesis route, low efficiency and potential biosafety issues. In this study, novel self-assembled ultrasmall Fe3O4 nanoclusters were developed for tumor-targeted dual-mode T1/T2-weighted magnetic resonance imaging (MRI) guided synergetic chemodynamic therapy (CDT) and chemotherapy. The self-assembled ultrasmall Fe3O4 nanoclusters synthesized by facilely modifying ultrasmall Fe3O4 nanoparticles with 2,3-dimercaptosuccinic acid (DMSA) molecule possess long-term stability and mass production ability. The proposed ultrasmall Fe3O4 nanoclusters shows excellent dual-mode T1 and T2 MRI capacities as well as favorable CDT ability due to the appropriate size effect and the abundant Fe ion on the surface of ultrasmall Fe3O4 nanoclusters. After conjugation with the tumor targeting ligand Arg-Gly-Asp (RGD) and chemotherapy drug doxorubicin (Dox), the functionalized Fe3O4 nanoclusters achieve enhanced tumor accumulation and retention effects and synergetic CDT and chemotherapy function, which serve as a powerful integrated theranostic platform for cancer treatment.


Assuntos
Imageamento por Ressonância Magnética , Nanomedicina Teranóstica , Imageamento por Ressonância Magnética/métodos , Nanomedicina Teranóstica/métodos , Animais , Camundongos , Humanos , Doxorrubicina/química , Doxorrubicina/administração & dosagem , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Linhagem Celular Tumoral , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Neoplasias/terapia , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/uso terapêutico , Succímero/química , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia
9.
Int J Mol Sci ; 25(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38731825

RESUMO

Aminopyrazoles represent interesting structures in medicinal chemistry, and several derivatives showed biological activity in different therapeutic areas. Previously reported 5-aminopyrazolyl acylhydrazones and amides showed relevant antioxidant and anti-inflammatory activities. To further extend the structure-activity relationships in this class of derivatives, a novel series of pyrazolyl acylhydrazones and amides was designed and prepared through a divergent approach. The novel compounds shared the phenylamino pyrazole nucleus that was differently decorated at positions 1, 3, and 4. The antiproliferative, antiaggregating, and antioxidant properties of the obtained derivatives 10-22 were evaluated in in vitro assays. Derivative 11a showed relevant antitumor properties against selected tumor cell lines (namely, HeLa, MCF7, SKOV3, and SKMEL28) with micromolar IC50 values. In the platelet assay, selected pyrazoles showed higher antioxidant and ROS formation inhibition activity than the reference drugs acetylsalicylic acid and N-acetylcysteine. Furthermore, in vitro radical scavenging screening confirmed the good antioxidant properties of acylhydrazone molecules. Overall, the collected data allowed us to extend the structure-activity relationships of the previously reported compounds and confirmed the pharmaceutical attractiveness of this class of aminopyrazole derivatives.


Assuntos
Amidas , Antineoplásicos , Antioxidantes , Proliferação de Células , Hidrazonas , Pirazóis , Humanos , Pirazóis/química , Pirazóis/farmacologia , Hidrazonas/química , Hidrazonas/farmacologia , Hidrazonas/síntese química , Antioxidantes/farmacologia , Antioxidantes/química , Relação Estrutura-Atividade , Antineoplásicos/farmacologia , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Amidas/química , Amidas/farmacologia , Linhagem Celular Tumoral , Espécies Reativas de Oxigênio/metabolismo , Células MCF-7 , Células HeLa
10.
Int J Mol Sci ; 25(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38731842

RESUMO

(1) Autophagy plays a significant role in development and cell proliferation. This process is mainly accomplished by the LC3 protein, which, after maturation, builds the nascent autophagosomes. The inhibition of LC3 maturation results in the interference of autophagy activation. (2) In this study, starting from the structure of a known LC3B binder (LIR2-RavZ peptide), we identified new LC3B ligands by applying an in silico drug design strategy. The most promising peptides were synthesized, biophysically assayed, and biologically evaluated to ascertain their potential antiproliferative activity on five humans cell lines. (3) A cyclic peptide (named Pep6), endowed with high conformational stability (due to the presence of a disulfide bridge), displayed a Kd value on LC3B in the nanomolar range. Assays accomplished on PC3, MCF-7, and A549 cancer cell lines proved that Pep6 exhibited cytotoxic effects comparable to those of the peptide LIR2-RavZ, a reference LC3B ligand. Furthermore, it was ineffective on both normal prostatic epithelium PNT2 and autophagy-defective prostate cancer DU145 cells. (4) Pep6 can be considered a new autophagy inhibitor that can be employed as a pharmacological tool or even as a template for the rational design of new small molecules endowed with autophagy inhibitory activity.


Assuntos
Autofagia , Desenho de Fármacos , Peptídeos Cíclicos , Humanos , Autofagia/efeitos dos fármacos , Peptídeos Cíclicos/farmacologia , Peptídeos Cíclicos/química , Peptídeos Cíclicos/síntese química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Proteínas Associadas aos Microtúbulos/metabolismo , Simulação de Acoplamento Molecular , Células A549 , Células MCF-7
11.
Int J Mol Sci ; 25(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38731850

RESUMO

When new antitumor therapy drugs are discovered, it is essential to address new target molecules from the point of view of chemical structure and to carry out efficient and systematic evaluation. In the case of natural products and derived compounds, it is of special importance to investigate chemomodulation to further explore antitumoral pharmacological activities. In this work, the compound podophyllic aldehyde, a cyclolignan derived from the chemomodulation of the natural product podophyllotoxin, has been evaluated for its viability, influence on the cell cycle, and effects on intracellular signaling. We used functional proteomics characterization for the evaluation. Compared with the FDA-approved drug etoposide (another podophyllotoxin derivative), we found interesting results regarding the cytotoxicity of podophyllic aldehyde. In addition, we were able to observe the effect of mitotic arrest in the treated cells. The use of podophyllic aldehyde resulted in increased cytotoxicity in solid tumor cell lines, compared to etoposide, and blocked the cycle more successfully than etoposide. High-throughput analysis of the deregulated proteins revealed a selective antimitotic mechanism of action of podophyllic aldehyde in the HT-29 cell line, in contrast with other solid and hematological tumor lines. Also, the apoptotic profile of podophyllic aldehyde was deciphered. The cell death mechanism is activated independently of the cell cycle profile. The results of these targeted analyses have also shown a significant response to the signaling of kinases, key proteins involved in signaling cascades for cell proliferation or metastasis. Thanks to this comprehensive analysis of podophyllic aldehyde, remarkable cytotoxic, antimitotic, and other antitumoral features have been discovered that will repurpose this compound for further chemical transformations and antitumoral analysis.


Assuntos
Ciclo Celular , Podofilotoxina , Proteômica , Humanos , Podofilotoxina/farmacologia , Podofilotoxina/análogos & derivados , Podofilotoxina/química , Proteômica/métodos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Apoptose/efeitos dos fármacos , Etoposídeo/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Células HT29 , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos
12.
Eur Phys J E Soft Matter ; 47(5): 31, 2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38735010

RESUMO

Coumarins, a subgroup of colorless and crystalline oxygenated heterocyclic compounds originally discovered in the plant Dipteryx odorata, were the subject of a recent study investigating their quantitative structure-activity relationship (QSAR) in cancer pharmacotherapy. This study utilized graph theoretical molecular descriptors, also known as topological indices, as a numerical representation method for the chemical structures embedded in molecular graphs. These descriptors, derived from molecular graphs, play a pivotal role in quantitative structure-property relationship (QSPR) analysis. In this paper, intercorrelation between the Balban index, connective eccentric index, eccentricity connectivity index, harmonic index, hyper Zagreb index, first path Zagreb index, second path Zagreb index, Randic index, sum connectivity index, graph energy and Laplacian energy is studied on the set of molecular graphs of coumarins. It is found that the pairs of degree-based indices are highly intercorrelated. The use of these molecular descriptors in structure-boiling point modeling was analyzed. Finally, the curve-linear regression between considered molecular descriptors with physicochemical properties of coumarins and coumarin-related compounds is obtained.


Assuntos
Cumarínicos , Relação Quantitativa Estrutura-Atividade , Cumarínicos/química , Neoplasias/tratamento farmacológico , Antineoplásicos/química , Modelos Moleculares , Humanos
13.
Eur J Med Chem ; 271: 116444, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38691889

RESUMO

The NAPRT-induced increase in NAD+ levels was proposed as a mechanism contributing to hepatocellular carcinoma (HCC) resistance to NAMPT inhibitors. Thus, concurrently targeting NAMPT and NAPRT could be considered to overcome drug resistance. A BRD4 inhibitor downregulates the expression of NAPRT in HCC, and the combination of NAMPT inhibitors with BRD4 inhibitors simultaneously blocks NAD+ generation via salvage and the PH synthesis pathway. Moreover, the combination of the two agents significantly downregulated the expression of tumor-promoting genes and strongly promoted apoptosis. The present work identified various NAMPT/BRD4 dual inhibitors based on the multitargeted drug rationale. Among them, compound A2, which demonstrated the strongest effect, exhibited potent inhibition of NAMPT and BRD4 (IC50 = 35 and 58 nM, respectively). It significantly suppressed the growth and migration of HCC cells and facilitated their apoptosis. Furthermore, compound A2 also manifested a robust anticancer effect in HCCLM3 xenograft mouse models, with no apparent toxic effects. Our findings in this study provide an effective approach to target NAD+ metabolism for HCC treatment.


Assuntos
Antineoplásicos , Apoptose , Carcinoma Hepatocelular , Proteínas de Ciclo Celular , Proliferação de Células , Citocinas , Neoplasias Hepáticas , Nicotinamida Fosforribosiltransferase , Fatores de Transcrição , Nicotinamida Fosforribosiltransferase/antagonistas & inibidores , Nicotinamida Fosforribosiltransferase/metabolismo , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Animais , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Proliferação de Células/efeitos dos fármacos , Camundongos , Apoptose/efeitos dos fármacos , Relação Estrutura-Atividade , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/metabolismo , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/metabolismo , Citocinas/metabolismo , Citocinas/antagonistas & inibidores , Descoberta de Drogas , Ensaios de Seleção de Medicamentos Antitumorais , Estrutura Molecular , Relação Dose-Resposta a Droga , Camundongos Nus , Linhagem Celular Tumoral , Camundongos Endogâmicos BALB C , Proteínas que Contêm Bromodomínio
14.
J Photochem Photobiol B ; 255: 112923, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38692166

RESUMO

Accurately visualizing the intracellular trafficking of upconversion nanoparticles (UCNPs) loaded with phthalocyanines and achieving precise photodynamic therapy (PDT) using near-infrared (NIR) laser irradiation still present challenges. In this study, a novel NIR laser-triggered upconversion luminescence (UCL) imaging-guided nanoparticle called FA@TPA-NH-ZnPc@UCNPs (FTU) was developed for PDT. FTU consisted of UCNPs, folic acid (FA), and triphenylamino-phenylaniline zinc phthalocyanine (TPA-NH-ZnPc). Notably, TPA-NH-ZnPc showcases aggregation-induced emission (AIE) characteristic and NIR absorption properties at 741 nm, synthesized initially via molybdenum-catalyzed condensation reaction. The UCL emitted by FTU enable real-time visualization of their subcellular localization and intracellular trafficking within ovarian cancer HO-8910 cells. Fluorescence images revealed that FTU managed to escape from lysosomes due to the "proton sponge" effect of TPA-NH-ZnPc. The FA ligands on the surface of FTU further directed their transport and accumulation within mitochondria. When excited by a 980 nm laser, FTU exhibited UCL and activated TPA-NH-ZnPc, consequently generating cytotoxic singlet oxygen (1O2), disrupted mitochondrial function and induced apoptosis in cancer cells, which demonstrated great potential for tumor ablation.


Assuntos
Indóis , Raios Infravermelhos , Isoindóis , Lisossomos , Mitocôndrias , Nanopartículas , Compostos Organometálicos , Fotoquimioterapia , Compostos de Zinco , Compostos de Zinco/química , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Indóis/química , Indóis/farmacologia , Lisossomos/metabolismo , Humanos , Compostos Organometálicos/química , Compostos Organometálicos/farmacologia , Nanopartículas/química , Linhagem Celular Tumoral , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Oxigênio Singlete/metabolismo , Feminino , Ácido Fólico/química
15.
J Nanobiotechnology ; 22(1): 249, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745193

RESUMO

BACKGROUND: Chemotherapy, the mainstay treatment for metastatic cancer, presents serious side effects due to off-target exposure. In addition to the negative impact on patients' quality of life, side effects limit the dose that can be administered and thus the efficacy of the drug. Encapsulation of chemotherapeutic drugs in nanocarriers is a promising strategy to mitigate these issues. However, avoiding premature drug release from the nanocarriers and selectively targeting the tumour remains a challenge. RESULTS: In this study, we present a pioneering method for drug integration into nanoparticles known as mesoporous organosilica drugs (MODs), a distinctive variant of periodic mesoporous organosilica nanoparticles (PMOs) in which the drug is an inherent component of the silica nanoparticle structure. This groundbreaking approach involves the chemical modification of drugs to produce bis-organosilane prodrugs, which act as silica precursors for MOD synthesis. Mitoxantrone (MTO), a drug used to treat metastatic breast cancer, was selected for the development of MTO@MOD nanomedicines, which demonstrated a significant reduction in breast cancer cell viability. Several MODs with different amounts of MTO were synthesised and found to be efficient nanoplatforms for the sustained delivery of MTO after biodegradation. In addition, Fe3O4 NPs were incorporated into the MODs to generate magnetic MODs to actively target the tumour and further enhance drug efficacy. Importantly, magnetic MTO@MODs underwent a Fenton reaction, which increased cancer cell death twofold compared to non-magnetic MODs. CONCLUSIONS: A new PMO-based material, MOD nanomedicines, was synthesised using the chemotherapeutic drug MTO as a silica precursor. MTO@MOD nanomedicines demonstrated their efficacy in significantly reducing the viability of breast cancer cells. In addition, we incorporated Fe3O4 into MODs to generate magnetic MODs for active tumour targeting and enhanced drug efficacy by ROS generation. These findings pave the way for the designing of silica-based multitherapeutic nanomedicines for cancer treatment with improved drug delivery, reduced side effects and enhanced efficacy.


Assuntos
Antineoplásicos , Neoplasias da Mama , Sobrevivência Celular , Mitoxantrona , Compostos de Organossilício , Humanos , Neoplasias da Mama/tratamento farmacológico , Feminino , Sobrevivência Celular/efeitos dos fármacos , Compostos de Organossilício/química , Compostos de Organossilício/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Mitoxantrona/farmacologia , Mitoxantrona/química , Mitoxantrona/uso terapêutico , Linhagem Celular Tumoral , Portadores de Fármacos/química , Dióxido de Silício/química , Porosidade , Liberação Controlada de Fármacos , Nanopartículas/química , Células MCF-7 , Nanomedicina/métodos , Espécies Reativas de Oxigênio/metabolismo
16.
Chem Biol Drug Des ; 103(5): e14536, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38725079

RESUMO

This research was designed to prospect the mechanism and impact of glycyrrhizic acid (GA) on DNA damage repair and cisplatin (CP)-induced apoptosis of melanoma cells. First, human melanoma cell SK-MEL-28 was stimulated using GA for 24, 48, and 72 h. Then, the optimal treatment time and dosage were selected. After that, cell counting kit-8 (CCK-8) was employed for testing the cell viability, flow cytometry for the apoptosis, comet assay for the DNA damage of cells, and western blot for the cleaved-Caspase3, Caspase3, Bcl-2, and γH2AX protein expression levels. The experimental outcomes exhibited that as the GA concentration climbed up, the SK-MEL-28 cell viability dropped largely, while the apoptosis level raised significantly, especially at the concentration of 100 µm. In addition, compared with GA or CPtreatment only, CP combined with GA notably suppressed the viability of melanoma cells and promoted cell apoptosis at the cytological level. At the protein level, the combined treatment notably downregulated the Bcl-2 and Caspase3 expression levels, while significantly upregulated the cleaved-Caspase3 and γH2AX expression levels. Besides, CP + GA treatment promoted DNA damage at the DNA molecular level. Collectively, both GA and CP can inhibit DNA damage repair and enhance the apoptosis of SK-MEL-28 cells, and the synergistic treatment of both exhibits better efficacy.


Assuntos
Apoptose , Cisplatino , Dano ao DNA , Reparo do DNA , Ácido Glicirrízico , Melanoma , Cisplatino/farmacologia , Humanos , Ácido Glicirrízico/farmacologia , Ácido Glicirrízico/química , Apoptose/efeitos dos fármacos , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Melanoma/patologia , Linhagem Celular Tumoral , Dano ao DNA/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Caspase 3/metabolismo , Sinergismo Farmacológico , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
17.
Sci Rep ; 14(1): 10499, 2024 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714740

RESUMO

Improving the efficacy of chemotherapy remains a key challenge in cancer treatment, considering the low bioavailability, high cytotoxicity, and undesirable side effects of some clinical drugs. Targeted delivery and sustained release of therapeutic drugs to cancer cells can reduce the whole-body cytotoxicity of the agent and deliver a safe localized treatment to the patient. There is growing interest in herbal drugs, such as curcumin, which is highly noted as a promising anti-tumor drug, considering its wide range of bioactivities and therapeutic properties against various tumors. Conversely, the clinical efficacy of curcumin is limited because of poor oral bioavailability, low water solubility, instability in gastrointestinal fluids, and unsuitable pH stability. Drug-delivery colloid vehicles like liposomes and nanoparticles combined with microbubbles and ultrasound-mediated sustained release are currently being explored as effective delivery modes in such cases. This study aimed to synthesize and study the properties of curcumin liposomes (CLs) and optimize the high-frequency ultrasound release and uptake by a human breast cancer cell line (HCC 1954) through in vitro studies of culture viability and cytotoxicity. CLs were effectively prepared with particles sized at 81 ± 2 nm, demonstrating stability and controlled release of curcumin under ultrasound exposure. In vitro studies using HCC1954 cells, the combination of CLs, ultrasound, and Definity microbubbles significantly improved curcumin's anti-tumor effects, particularly under specific conditions: 15 s of continuous ultrasound at 0.12 W/cm2 power density with 0.6 × 107 microbubbles/mL. Furthermore, the study delved into curcumin liposomes' cytotoxic effects using an Annexin V/PI-based apoptosis assay. The treatment with CLs, particularly in conjunction with ultrasound and microbubbles, amplified cell apoptosis, mainly in the late apoptosis stage, which was attributed to heightened cellular uptake within cancer cells.


Assuntos
Curcumina , Sistemas de Liberação de Medicamentos , Lipossomos , Curcumina/farmacologia , Curcumina/química , Curcumina/administração & dosagem , Humanos , Lipossomos/química , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos/métodos , Sobrevivência Celular/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/administração & dosagem , Microbolhas , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Feminino , Ondas Ultrassônicas , Liberação Controlada de Fármacos , Apoptose/efeitos dos fármacos
19.
Luminescence ; 39(5): e4771, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38747206

RESUMO

The second-most common cause of death resulting from genetic mutations in DNA sequences is cancer. The difficulty in the field of anticancer research is the application of the traditional methods, which also affects normal cells. Mutations, genetic replication alterations, and chromosomal abnormalities have a direct impact on the effectiveness of anticancer drugs at different stages. Presently, therapeutic techniques utilize nanotechnology, transition metal dichalcogenides (TMDCs), and robotics. TMDCs are being increasingly employed in tumor therapy and biosensing applications due to their biocompatibility, adjustable bandgap, versatile functionality, exceptional photoelectric properties, and wide range of applications. This study reports the advancement of nanoplatforms based on TMDCs that are specifically engineered for responsive and intelligent cancer therapy. This article offers a thorough examination of the current challenges, future possibilities for theranostic applications using TMDCs, and recent progress in employing TMDCs for cancer therapy. Currently, there is significant interest in two-dimensional (2D) TMDCs nanomaterials as ultrathin unique physicochemical properties. These materials have attracted attention in various fields, including biomedicine. Due to their inherent ability to absorb near-infrared light and their exceptionally large surface area, significant efforts are being made to prepare multifunctional nanoplatforms based on 2D TMDCs.


Assuntos
Calcogênios , Neoplasias , Elementos de Transição , Humanos , Neoplasias/tratamento farmacológico , Elementos de Transição/química , Calcogênios/química , Antineoplásicos/química , Antineoplásicos/farmacologia , Animais
20.
Pak J Pharm Sci ; 37(1(Special)): 191-197, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38747269

RESUMO

synthesis of a pyrazole containing compound was achieved by reacting phenyl hydrazine with (E)-2-((4-bromophenyl) diazinyl)-1-phenylbutane-1,3-dione to produce 4-((4-bromophenyl) diazinyl)-5-methyl-1,3-diphenyl-pyrazole and characterization using mass spectrometer, 1H NMR and 13C NMR. The pharmacological evaluation of the synthesized compound, denoted as (KA5), against Escherichia coli ATCC 8739, Pseudomonas aeruginosa ATCC 9027, Staphylococcus aureus ATCC 29213 and Clostridiums sporogeneses ATCC 19404, indicate that there is no promising antibacterial activity. However, KA5 shows a competitive anticancer activity (IC50: 8.5µM) upon its evaluation against hepatocellular carcinoma cell line (HepG 2) compared to sorafenib (IC50: 4.51µM). Moreover, human skin fibroblast (HSF) was used to investigate the effect of KA5 on normal cell lines, (IC50: 5.53µM). The presented biological evaluations resulted in better understanding of structure-activity relationship for 1, 3, 4-trisubstituted pyrazoles and revealed a great opportunity for more investigations for novel pyrazole-containing anticancer agents.


Assuntos
Antibacterianos , Antineoplásicos , Pirazóis , Pirazóis/farmacologia , Pirazóis/síntese química , Pirazóis/química , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Relação Estrutura-Atividade , Antibacterianos/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Células Hep G2 , Testes de Sensibilidade Microbiana , Staphylococcus aureus/efeitos dos fármacos , Sorafenibe/farmacologia , Fibroblastos/efeitos dos fármacos , Niacinamida/farmacologia , Niacinamida/análogos & derivados , Niacinamida/síntese química , Niacinamida/química , Pseudomonas aeruginosa/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA