Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.435
Filtrar
1.
Nat Commun ; 15(1): 5612, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987280

RESUMO

Natural selection can drive organisms to strikingly similar adaptive solutions, but the underlying molecular mechanisms often remain unknown. Several amphibians have independently evolved highly adhesive skin secretions (glues) that support a highly effective antipredator defence mechanism. Here we demonstrate that the glue of the Madagascan tomato frog, Dyscophus guineti, relies on two interacting proteins: a highly derived member of a widespread glycoprotein family and a galectin. Identification of homologous proteins in other amphibians reveals that these proteins attained a function in skin long before glues evolved. Yet, major elevations in their expression, besides structural changes in the glycoprotein (increasing its structural disorder and glycosylation), caused the independent rise of glues in at least two frog lineages. Besides providing a model for the chemical functioning of animal adhesive secretions, our findings highlight how recruiting ancient molecular templates may facilitate the recurrent evolution of functional innovations.


Assuntos
Anuros , Pele , Animais , Pele/metabolismo , Anuros/genética , Anuros/metabolismo , Filogenia , Anfíbios/metabolismo , Anfíbios/genética , Evolução Molecular , Glicoproteínas/metabolismo , Glicoproteínas/genética , Galectinas/metabolismo , Galectinas/genética , Evolução Biológica , Proteínas de Anfíbios/metabolismo , Proteínas de Anfíbios/genética
2.
Mol Ecol ; 33(15): e17446, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38946613

RESUMO

The Cenozoic topographic development of the Himalaya-Tibet orogen (HTO) substantially affected the paleoenvironment and biodiversity patterns of High Asia. However, concepts on the evolution and paleoenvironmental history of the HTO differ massively in timing, elevational increase and sequence of surface uplift of the different elements of the orogen. Using target enrichment of a large set of transcriptome-derived markers, ancestral range estimation and paleoclimatic niche modelling, we assess a recently proposed concept of a warm temperate paleo-Tibet in Asian spiny frogs of the tribe Paini and reconstruct their historical biogeography. That concept was previously developed in invertebrates. Because of their early evolutionary origin, low dispersal capacity, high degree of local endemism, and strict dependence on temperature and humidity, the cladogenesis of spiny frogs may echo the evolution of the HTO paleoenvironment. We show that diversification of main lineages occurred during the early to Mid-Miocene, while the evolution of alpine taxa started during the late Miocene/early Pliocene. Our distribution and niche modelling results indicate range shifts and niche stability that may explain the modern disjunct distributions of spiny frogs. They probably maintained their (sub)tropical or (warm)temperate preferences and moved out of the ancestral paleo-Tibetan area into the Himalaya as the climate shifted, as opposed to adapting in situ. Based on ancestral range estimation, we assume the existence of low-elevation, climatically suitable corridors across paleo-Tibet during the Miocene along the Kunlun, Qiangtang and/or Gangdese Shan. Our results contribute to a deeper understanding of the mechanisms and processes of faunal evolution in the HTO.


Assuntos
Anuros , Filogenia , Animais , Tibet , Anuros/genética , Anuros/classificação , Biodiversidade , Filogeografia , Evolução Biológica , Transcriptoma , Ecossistema , Clima , Temperatura
3.
Mol Ecol ; 33(16): e17476, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39034599

RESUMO

Many animals exchange chemicals during courtship and mating. In some amphibians, sexual chemical communication is mediated by pheromones produced in male breeding glands that are transferred to the female's nostrils during mating. This has been mostly studied in salamanders, despite frogs having similar glands and courtship behaviours suggestive of chemical communication. In Neotropical poison frogs (Dendrobatidae and Aromobatidae), males of many species develop breeding glands in their fingers, causing certain fingers to visibly swell. Many also engage in cephalic amplexus, whereby the male's swollen fingers are placed in close contact with the female's nares during courtship. Here, we investigate the possible roles of swollen fingers in pheromone production using whole-transcriptome sequencing (RNAseq). We examined differential gene expression in the swollen versus non-swollen fingers and toes of two dendrobatid species, Leucostethus brachistriatus and Epipedobates anthonyi, both of which have specialised mucous glands in finger IV, the latter of which has cephalic amplexus. The overwhelming pattern of gene expression in both species was strong upregulation of sodefrin precursor-like factors (SPFs) in swollen fingers, a well-known pheromone system in salamanders. The differentially expressed SPF transcripts in each species were very high (>40), suggesting a high abundance of putative protein pheromones in both species. Overall, the high expression of SPFs in the swollen fingers in both species, combined with cephalic amplexus, supports the hypothesis that these traits, widespread across members of the subfamilies Colostethinae and Hyloxalinae (ca. 141 species), are involved in chemical signalling during courtship.


Muchos animales intercambian sustancias químicas durante el cortejo y el apareamiento. En algunos anfibios, la comunicación química sexual está mediada por feromonas producidas en las glándulas reproductoras de los machos que se transfieren a las hembras durante el apareamiento. Esto se ha estudiado sobre todo en salamandras, a pesar de que las ranas tienen glándulas similares y comportamientos de cortejo que sugieren una comunicación química. En las ranas venenosas neotropicales (Dendrobatidae y Aromobatidae), los machos de muchas especies desarrollan glándulas en los dedos, lo que hace que algunos dedos se vean hinchados. Asimismo, varias especies presentan amplexo cefálico, comportamiento de cortejo en el cual los dedos hinchados entran en estrecho contacto con las narinas y boca de la hembra. En este estudio investigamos las posibles funciones de los dedos hinchados en la producción de feromonas mediante la secuenciación del transcriptoma completo (RNAseq). Examinamos la expresión génica diferencial en los dedos hinchados y no hinchados de dos especies de dendrobátidos, Leucostethus brachistriatus y Epipedobates anthonyi, ambos con glándulas mucosas especializadas en el dedo IV, y esta última especie, con amplexo cefálico. El patrón abrumador de expresión génica en ambas especies fue la alta expression de Sodefrin Precursor­Like Factor (SPF) en los dedos hinchados, un sistema de feromonas ampliamente conocido en las salamandras. El número de transcritos SPF expresados diferencialmente en cada especie fue muy elevado (>40), lo que sugiere una gran abundancia de feromonas proteicas putativas en ambas especies. En general, la elevada expresión de SPF en los dedos hinchados en ambas especies, combinada con el amplexo cefálico, apoya la hipótesis de que estos rasgos, muy extendidos entre los miembros de las subfamilias Colostethinae e Hyloxalinae (aprox 141 especies), están implicados en la señalización química durante el cortejo.


Assuntos
Anuros , Transcriptoma , Animais , Masculino , Anuros/genética , Feminino , Comportamento Sexual Animal/fisiologia , Feromônios/genética , Atrativos Sexuais/genética
4.
Int J Mol Sci ; 25(11)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38892163

RESUMO

Extreme weather poses huge challenges for animals that must adapt to wide variations in environmental temperature and, in many cases, it can lead to the local extirpation of populations or even the extinction of an entire species. Previous studies have found that one element of amphibian adaptation to environmental stress involves changes in mitochondrial gene expression at low temperatures. However, to date, comparative studies of gene expression in organisms living at extreme temperatures have focused mainly on nuclear genes. This study sequenced the complete mitochondrial genomes of five Asian hylid frog species: Dryophytes japonicus, D. immaculata, Hyla annectans, H. chinensis and H. zhaopingensis. It compared the phylogenetic relationships within the Hylidae family and explored the association between mitochondrial gene expression and evolutionary adaptations to cold stress. The present results showed that in D. immaculata, transcript levels of 12 out of 13 mitochondria genes were significantly reduced under cold exposure (p < 0.05); hence, we put forward the conjecture that D. immaculata adapts by entering a hibernation state at low temperature. In H. annectans, the transcripts of 10 genes (ND1, ND2, ND3, ND4, ND4L, ND5, ND6, COX1, COX2 and ATP8) were significantly reduced in response to cold exposure, and five mitochondrial genes in H. chinensis (ND1, ND2, ND3, ND4L and ATP6) also showed significantly reduced expression and transcript levels under cold conditions. By contrast, transcript levels of ND2 and ATP6 in H. zhaopingensis were significantly increased at low temperatures, possibly related to the narrow distribution of this species primarily at low latitudes. Indeed, H. zhaopingensis has little ability to adapt to low temperature (4 °C), or maybe to enter into hibernation, and it shows metabolic disorder in the cold. The present study demonstrates that the regulatory trend of mitochondrial gene expression in amphibians is correlated with their ability to adapt to variable climates in extreme environments. These results can predict which species are more likely to undergo extirpation or extinction with climate change and, thereby, provide new ideas for the study of species extinction in highly variable winter climates.


Assuntos
Anuros , Genoma Mitocondrial , Filogenia , Animais , Anuros/genética , Anuros/fisiologia , Resposta ao Choque Frio/genética , Temperatura Baixa , Adaptação Fisiológica/genética , Regulação da Expressão Gênica
5.
Mol Ecol ; 33(14): e17438, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38923007

RESUMO

A common goal in evolutionary biology is to discern the mechanisms that produce the astounding diversity of morphologies seen across the tree of life. Aposematic species, those with a conspicuous phenotype coupled with some form of defence, are excellent models to understand the link between vivid colour pattern variations, the natural selection shaping it, and the underlying genetic mechanisms underpinning this variation. Mimicry systems in which species share a conspicuous phenotype can provide an even better model for understanding the mechanisms of colour production in aposematic species, especially if comimics have divergent evolutionary histories. Here we investigate the genetic mechanisms by which mimicry is produced in poison frogs. We assembled a 6.02-Gbp genome with a contig N50 of 310 Kbp, a scaffold N50 of 390 Kbp and 85% of expected tetrapod genes. We leveraged this genome to conduct gene expression analyses throughout development of four colour morphs of Ranitomeya imitator and two colour morphs from both R. fantastica and R. variabilis which R. imitator mimics. We identified a large number of pigmentation and patterning genes differentially expressed throughout development, many of them related to melanophores/melanin, iridophore development and guanine synthesis. We also identify the pteridine synthesis pathway (including genes such as qdpr and xdh) as a key driver of the variation in colour between morphs of these species, and identify several plausible candidates for colouration in vertebrates (e.g. cd36, ep-cadherin and perlwapin). Finally, we hypothesise that keratin genes (e.g. krt8) are important for producing different structural colours within these frogs.


Assuntos
Mimetismo Biológico , Fenótipo , Pigmentação , Animais , Mimetismo Biológico/genética , Pigmentação/genética , Genômica , Ranidae/genética , Ranidae/crescimento & desenvolvimento , Genoma/genética , Evolução Biológica , Seleção Genética , Anuros/genética , Anuros/crescimento & desenvolvimento
6.
Mol Phylogenet Evol ; 198: 108116, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38871263

RESUMO

While genetic variation in any species is potentially shaped by a range of processes, phylogeography and landscape genetics are largely concerned with inferring how environmental conditions and landscape features impact neutral intraspecific diversity. However, even as both disciplines have come to utilize SNP data over the last decades, analytical approaches have remained for the most part focused on either broad-scale inferences of historical processes (phylogeography) or on more localized inferences about environmental and/or landscape features (landscape genetics). Here we demonstrate that an artificial intelligence model-based analytical framework can consider both deeper historical factors and landscape-level processes in an integrated analysis. We implement this framework using data collected from two Brazilian anurans, the Brazilian sibilator frog (Leptodactylus troglodytes) and granular toad (Rhinella granulosa). Our results indicate that historical demographic processes shape most the genetic variation in the sibulator frog, while landscape processes primarily influence variation in the granular toad. The machine learning framework used here allows both historical and landscape processes to be considered equally, rather than requiring researchers to make an a priori decision about which factors are important.


Assuntos
Anuros , Inteligência Artificial , Variação Genética , Filogeografia , Animais , Anuros/genética , Anuros/classificação , Brasil , Genética Populacional , Modelos Genéticos , Polimorfismo de Nucleotídeo Único
7.
Genome Biol Evol ; 16(6)2024 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-38753031

RESUMO

Genome size varies greatly across the tree of life and transposable elements are an important contributor to this variation. Among vertebrates, amphibians display the greatest variation in genome size, making them ideal models to explore the causes and consequences of genome size variation. However, high-quality genome assemblies for amphibians have, until recently, been rare. Here, we generate a high-quality genome assembly for the dyeing poison frog, Dendrobates tinctorius. We compare this assembly to publicly available frog genomes and find evidence for both large-scale conserved synteny and widespread rearrangements between frog lineages. Comparing conserved orthologs annotated in these genomes revealed a strong correlation between genome size and gene size. To explore the cause of gene-size variation, we quantified the location of transposable elements relative to gene features and find that the accumulation of transposable elements in introns has played an important role in the evolution of gene size in D. tinctorius, while estimates of insertion times suggest that many insertion events are recent and species-specific. Finally, we carry out population-scale mobile-element sequencing and show that the diversity and abundance of transposable elements in poison frog genomes can complicate genotyping from repetitive element sequence anchors. Our results show that transposable elements have clearly played an important role in the evolution of large genome size in D. tinctorius. Future studies are needed to fully understand the dynamics of transposable element evolution and to optimize primer or bait design for cost-effective population-level genotyping in species with large, repetitive genomes.


Assuntos
Anuros , Elementos de DNA Transponíveis , Evolução Molecular , Tamanho do Genoma , Genoma , Animais , Anuros/genética , Rãs Venenosas
8.
Commun Biol ; 7(1): 638, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38796601

RESUMO

In order to cope with the complexity and variability of the terrestrial environment, amphibians have developed a wide range of reproductive and parental behaviors. Nest building occurs in some anuran species as parental care. Species of the Music frog genus Nidirana are known for their unique courtship behavior and mud nesting in several congeners. However, the evolution of these frogs and their nidification behavior has yet to be studied. With phylogenomic and phylogeographic analyses based on a wide sampling of the genus, we find that Nidirana originated from central-southwestern China and the nidification behavior initially evolved at ca 19.3 Ma but subsequently lost in several descendants. Further population genomic analyses suggest that the nidification species have an older diversification and colonization history, while N. adenopleura complex congeners that do not exhibit nidification behavior have experienced a recent rapid radiation. The presence and loss of the nidification behavior in the Music frogs may be associated with paleoclimatic factors such as temperature and precipitation. This study highlights the nidification behavior as a key evolutionary innovation that has contributed to the diversification of an amphibian group under past climate changes.


Assuntos
Anuros , Filogenia , Animais , Anuros/fisiologia , Anuros/genética , China , Filogeografia , Mudança Climática , Evolução Biológica , Comportamento de Nidação
9.
Genes (Basel) ; 15(5)2024 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-38790242

RESUMO

Many organisms facultatively produce different phenotypes depending on their environment, yet relatively little is known about the genetic bases of such plasticity in natural populations. In this study, we describe the genetic variation underlying an extreme form of plasticity--resource polyphenism--in Mexican spadefoot toad tadpoles, Spea multiplicata. Depending on their environment, these tadpoles develop into one of two drastically different forms: a carnivore morph or an omnivore morph. We collected both morphs from two ponds that differed in which morph had an adaptive advantage and performed genome-wide association studies of phenotype (carnivore vs. omnivore) and adaptive plasticity (adaptive vs. maladaptive environmental assessment). We identified four quantitative trait loci associated with phenotype and nine with adaptive plasticity, two of which exhibited signatures of minor allele dominance and two of which (one phenotype locus and one adaptive plasticity locus) did not occur as minor allele homozygotes. Investigations into the genetics of plastic traits in natural populations promise to provide novel insights into how such complex, adaptive traits arise and evolve.


Assuntos
Adaptação Fisiológica , Anuros , Estudo de Associação Genômica Ampla , Fenótipo , Locos de Características Quantitativas , Animais , Anuros/genética , Estudo de Associação Genômica Ampla/métodos , Adaptação Fisiológica/genética , Larva/genética , Larva/crescimento & desenvolvimento , Variação Genética
10.
BMC Genomics ; 25(1): 454, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720264

RESUMO

BACKGROUND: In response to seasonal cold and food shortage, the Xizang plateau frogs, Nanorana parkeri (Anura: Dicroglossidae), enter a reversible hypometabolic state where heart rate and oxygen consumption in skeletal muscle are strongly suppressed. However, the effect of winter hibernation on gene expression and metabolic profiling in these two tissues remains unknown. In the present study, we conducted transcriptomic and metabolomic analyses of heart and skeletal muscle from summer- and winter-collected N. parkeri to explore mechanisms involved in seasonal hibernation. RESULTS: We identified 2407 differentially expressed genes (DEGs) in heart and 2938 DEGs in skeletal muscle. Enrichment analysis showed that shared DEGs in both tissues were enriched mainly in translation and metabolic processes. Of these, the expression of genes functionally categorized as "response to stress", "defense mechanisms", or "muscle contraction" were particularly associated with hibernation. Metabolomic analysis identified 24 and 22 differentially expressed metabolites (DEMs) in myocardium and skeletal muscle, respectively. In particular, pathway analysis showed that DEMs in myocardium were involved in the pentose phosphate pathway, glycerolipid metabolism, pyruvate metabolism, citrate cycle (TCA cycle), and glycolysis/gluconeogenesis. By contrast, DEMs in skeletal muscle were mainly involved in amino acid metabolism. CONCLUSIONS: In summary, natural adaptations of myocardium and skeletal muscle in hibernating N. parkeri involved transcriptional alterations in translation, stress response, protective mechanisms, and muscle contraction processes as well as metabolic remodeling. This study provides new insights into the transcriptional and metabolic adjustments that aid winter survival of high-altitude frogs N. parkeri.


Assuntos
Anuros , Hibernação , Metabolômica , Músculo Esquelético , Animais , Hibernação/genética , Hibernação/fisiologia , Músculo Esquelético/metabolismo , Anuros/genética , Anuros/metabolismo , Anuros/fisiologia , Miocárdio/metabolismo , Transcriptoma , Perfilação da Expressão Gênica , Estações do Ano , Metaboloma , Tibet
11.
PLoS One ; 19(5): e0304554, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38820287

RESUMO

Genetic sex-determining mechanisms have been extensively elucidated in mammals; however, the sex chromosomes, sex-determining genes, and gene regulatory networks involved in sex differentiation remain poorly understood in amphibians. In this study, we investigated the sex-determining mechanism in the Hyla eximia treefrog based on karyotypic analysis and identification of H-Y antigen, a sex-linked peptide that is present in the gonads of the heterogametic sex (XY or ZW) in all vertebrates. Results show a diploid chromosome number 2n = 24 with homomorphic sex chromosomes. The heterogametic sex, ZW-female, were hypothesized based on H-Y antigen mRNA expression in female gonads (24,ZZ/24,ZW). The treefrog H-Y peptide exhibited a high percentage of identity with other vertebrate sequences uploaded to GenBank database. To obtain gene expression profiles, we also obtained the coding sequence of the housekeeping Actb gene. High H-Y antigen expression levels were further confirmed in ovaries using real-time polymerase chain reaction (RT-PCR) during non-breeding season, we noted a decrease in the expression of the H-Y antigen during breeding season. This study provides evidence that sex hormones might suppress H-Y antigen expression in the gonads of heterogametic females 24,ZW during the breeding season. These findings suggest that H-Y gene expression is a well-suited model for studying heterogametic sex by comparing the male and female gonads.


Assuntos
Anuros , Processos de Determinação Sexual , Animais , Feminino , Masculino , Processos de Determinação Sexual/genética , Anuros/genética , Ovário/metabolismo , Cromossomos Sexuais/genética , Gônadas/metabolismo , Sequência de Aminoácidos
12.
Mol Biol Evol ; 41(6)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38736374

RESUMO

Nonvisual opsins are transmembrane proteins expressed in the eyes and other tissues of many animals. When paired with a light-sensitive chromophore, nonvisual opsins form photopigments involved in various nonvisual, light-detection functions including circadian rhythm regulation, light-seeking behaviors, and seasonal responses. Here, we investigate the molecular evolution of nonvisual opsin genes in anuran amphibians (frogs and toads). We test several evolutionary hypotheses including the predicted loss of nonvisual opsins due to nocturnal ancestry and potential functional differences in nonvisual opsins resulting from environmental light variation across diverse anuran ecologies. Using whole-eye transcriptomes of 81 species, combined with genomes, multitissue transcriptomes, and independently annotated genes from an additional 21 species, we identify which nonvisual opsins are present in anuran genomes and those that are also expressed in the eyes, compare selective constraint among genes, and test for potential adaptive evolution by comparing selection between discrete ecological classes. At the genomic level, we recovered all 18 ancestral vertebrate nonvisual opsins, indicating that anurans demonstrate the lowest documented amount of opsin gene loss among ancestrally nocturnal tetrapods. We consistently found expression of 14 nonvisual opsins in anuran eyes and detected positive selection in a subset of these genes. We also found shifts in selective constraint acting on nonvisual opsins in frogs with differing activity periods, habitats, distributions, life histories, and pupil shapes, which may reflect functional adaptation. Although many nonvisual opsins remain poorly understood, these findings provide insight into the diversity and evolution of these genes across anurans, filling an important gap in our understanding of vertebrate opsins and setting the stage for future research on their functional evolution across taxa.


Assuntos
Anuros , Evolução Molecular , Opsinas , Animais , Opsinas/genética , Opsinas/metabolismo , Anuros/genética , Filogenia , Olho/metabolismo , Transcriptoma , Adaptação Fisiológica/genética
13.
An Acad Bras Cienc ; 96(1): e20230659, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38655924

RESUMO

Adelphobates contains three species, and the inaccurate identification of A. quinquevittatus and the scarcity of records of A. castaneoticus complicate inference of their distributions; the latter species occurs in sympatry with A. galactonotus. Our objective was to revise the distributions of Adelphobates by compiling data and modeling habitat suitability, as range limits may be shaped by landscape features and biotic interactions. We initially analyzed the existence of operational taxonomic units within the nominal species and subsequently inferred the observed and potential distributions, taking into account the possible independent lineages for the three species, and we also generated a molecular timetree to understand the chronology of interspecific diversification events. Adelphobates quinquevittatus was found to have a more easterly distribution than previously described, and specimens with phenotypic variation were found to occur in areas inconsistent with the modeling, and A. castaneoticus was concentrated in the Tapajós-Xingu interfluve, surrounded by A. galactonotus. Models indicated that the right bank of the Xingu River is suitable for both species, indeed, both were found there. Despite Adelphobates species having their distributions delimited by major Amazonian rivers, estimated divergence times predate the formation of the modern river network, suggesting that other mechanisms were involved in their diversification.


Assuntos
Anuros , Animais , Brasil , Anuros/classificação , Anuros/genética , Distribuição Animal , Ecossistema , Filogenia , Biodiversidade , Rãs Venenosas
14.
PeerJ ; 12: e17232, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38646479

RESUMO

The species richness in the Neotropics has been linked to environmental heterogeneity and a complex geological history. We evaluated which biogeographic processes were associated with the diversification of Monkey tree frogs, an endemic clade from the Neotropics. We tested two competing hypotheses: the diversification of Phyllomedusinae occurred either in a "south-north" or a "north-south" direction in the Neotropics. We also hypothesized that marine introgressions and Andean uplift had a crucial role in promoting their diversification. We used 13 molecular markers in a Bayesian analysis to infer phylogenetic relationships among 57 species of Phyllomedusinae and to estimate their divergence times. We estimated ancestral ranges based on 12 biogeographic units considering the landscape modifications of the Neotropical region. We found that the Phyllomedusinae hypothetical ancestor range was probably widespread throughout South America, from Western Amazon to Southern Atlantic Forest, at 29.5 Mya. The Phyllomedusines' ancestor must have initially diverged through vicariance, generally followed by jump-dispersals and sympatric speciation. Dispersal among areas occurred mostly from Western Amazonia towards Northern Andes and the South American diagonal of dry landscapes, a divergent pattern from both "south-north" and "north-south" diversification hypotheses. Our results revealed a complex diversification process of Monkey tree frogs, occurring simultaneously with the orogeny of Northern Andes and the South American marine introgressions in the last 30 million years.


Assuntos
Anuros , Teorema de Bayes , Filogenia , Animais , Anuros/genética , Anuros/classificação , América do Sul , Filogeografia , Especiação Genética
15.
Mol Ecol ; 33(9): e17358, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38625740

RESUMO

How do chemically defended animals resist their own toxins? This intriguing question on the concept of autotoxicity is at the heart of how species interactions evolve. In this issue of Molecular Ecology (Molecular Ecology, 2024, 33), Bodawatta and colleagues report on how Papua New Guinean birds coopted deadly neurotoxins to create lethal mantles that protect against predators and parasites. Combining chemical screening of the plumage of a diverse collection of passerine birds with genome sequencing, the researchers unlocked a deeper understanding of how some birds sequester deadly batrachotoxin (BTX) from their food without poisoning themselves. They identified that birds impervious to BTX bear amino acid substitutions in the toxin-binding site of the voltage-gated sodium channel Nav1.4, whose function is essential for proper contraction and relaxation of vertebrate muscles. Comparative genetic and molecular docking analyses show that several of the substitutions associated with insensitivity to BTX may have become prevalent among toxic birds through positive selection. Intriguingly, poison dart frogs that also co-opted BTX in their lethal mantles were found to harbour similar toxin insensitivity substitutions in their Nav1.4 channels. Taken together, this sets up a powerful model system for studying the mechanisms behind convergent molecular evolution and how it may drive biological diversity.


Assuntos
Animais Peçonhentos , Batraquiotoxinas , Aves Canoras , Animais , Batraquiotoxinas/genética , Neurotoxinas/toxicidade , Neurotoxinas/genética , Passeriformes/genética , Anuros/genética , Canal de Sódio Disparado por Voltagem NAV1.4/genética , Substituição de Aminoácidos , Rãs Venenosas
16.
Mol Biol Evol ; 41(4)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38573520

RESUMO

Visual systems adapt to different light environments through several avenues including optical changes to the eye and neurological changes in how light signals are processed and interpreted. Spectral sensitivity can evolve via changes to visual pigments housed in the retinal photoreceptors through gene duplication and loss, differential and coexpression, and sequence evolution. Frogs provide an excellent, yet understudied, system for visual evolution research due to their diversity of ecologies (including biphasic aquatic-terrestrial life cycles) that we hypothesize imposed different selective pressures leading to adaptive evolution of the visual system, notably the opsins that encode the protein component of the visual pigments responsible for the first step in visual perception. Here, we analyze the diversity and evolution of visual opsin genes from 93 new eye transcriptomes plus published data for a combined dataset spanning 122 frog species and 34 families. We find that most species express the four visual opsins previously identified in frogs but show evidence for gene loss in two lineages. Further, we present evidence of positive selection in three opsins and shifts in selective pressures associated with differences in habitat and life history, but not activity pattern. We identify substantial novel variation in the visual opsins and, using microspectrophotometry, find highly variable spectral sensitivities, expanding known ranges for all frog visual pigments. Mutations at spectral-tuning sites only partially account for this variation, suggesting that frogs have used tuning pathways that are unique among vertebrates. These results support the hypothesis of adaptive evolution in photoreceptor physiology across the frog tree of life in response to varying environmental and ecological factors and further our growing understanding of vertebrate visual evolution.


Assuntos
Opsinas , Pigmentos da Retina , Humanos , Animais , Opsinas/genética , Anuros/genética , Duplicação Gênica , Microespectrofotometria
17.
Chromosoma ; 133(3): 195-202, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38546866

RESUMO

Among the repetitive elements, satellite DNA (SatDNA) emerges as extensive arrays of highly similar tandemly repeated units, spanning megabases in length. Given that the satDNA PboSat01-176, previously characterized in P. boiei, prompted our interest for having a high abundance in P. boiei and potential for centromeric satellite, here, we employed various approaches, including low coverage genome sequencing, followed by computational analysis and chromosomal localization techniques in four Proceratophrys species and, investigating the genomic presence and sharing, as well as its potential for chromosomal centromere marker in Proceratophrys frog species. Our findings demonstrate that PboSat01-176 exhibits high abundance across all four Proceratophrys species, displaying distinct characteristics that establish it as the predominant repetitive DNA element in these species. The satellite DNA is prominently clustered in the peri/centromeric region of the chromosomes, particularly in the heterochromatic regions. The widespread presence of PboSat01-176 in closely related Proceratophrys species reinforces the validity of the library hypothesis for repetitive sequences. Thus, this study highlighted the utility of the satDNA family PboSat01-176 as a reliable centromeric marker in Proceratophrys species, with potential to be applied in other species of anuran amphibians. The observed sharing and maintenance of this sequence within the genus suggest possibilities for future research, particularly through expanded sampling to elucidate parameters that underlie the library hypothesis and the evolutionary dynamics of satDNA sequences.


Assuntos
Anuros , Centrômero , DNA Satélite , Animais , Centrômero/genética , DNA Satélite/genética , Anuros/genética , Marcadores Genéticos , Hibridização in Situ Fluorescente , Sequências Repetitivas de Ácido Nucleico , Especificidade da Espécie
18.
Genes (Basel) ; 15(3)2024 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-38540359

RESUMO

Sex chromosome turnover is the transition between sex chromosomes and autosomes. Although many cases have been reported in poikilothermic vertebrates, their evolutionary causes and genetic mechanisms remain unclear. In this study, we report multiple transitions between the Y chromosome and autosome in the Japanese Tago's brown frog complex. Using chromosome banding and molecular analyses (sex-linked and autosomal single nucleotide polymorphisms, SNPs, from the nuclear genome), we investigated the frogs of geographic populations ranging from northern to southern Japan of two species, Rana tagoi and Rana sakuraii (2n = 26). Particularly, the Chiba populations of East Japan and Akita populations of North Japan in R. tagoi have been, for the first time, investigated here. As a result, we identified three different sex chromosomes, namely chromosomes 3, 7, and 13, in the populations of the two species. Furthermore, we found that the transition between the Y chromosome (chromosome 7) and autosome was repeated through hybridization between two or three different populations belonging to the two species, followed by restricted chromosome introgression. These dynamic sex chromosome turnovers represent the first such findings in vertebrates and imply that speciation associated with inter- or intraspecific hybridization plays an important role in sex chromosome turnover in frogs.


Assuntos
Anuros , Cromossomos Sexuais , Animais , Humanos , Anuros/genética , Cromossomos Sexuais/genética , Ranidae/genética , Evolução Biológica , Cromossomos Humanos Y
19.
Glob Chang Biol ; 30(3): e17180, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38465701

RESUMO

Palearctic water frogs (genus Pelophylax) are an outstanding model in ecology and evolution, being widespread, speciose, either threatened or threatening to other species through biological invasions, and capable of siring hybrid offspring that escape the rules of sexual reproduction. Despite half a century of genetic research and hundreds of publications, the diversity, systematics and biogeography of Pelophylax still remain highly confusing, in no small part due to a lack of correspondence between studies. To provide a comprehensive overview, we gathered >13,000 sequences of barcoding genes from >1700 native and introduced localities and built multigene mitochondrial (~17 kb) and nuclear (~10 kb) phylogenies. We mapped all currently recognized taxa and their phylogeographic lineages (>40) to get a grasp on taxonomic issues, cyto-nuclear discordances, the genetic makeup of hybridogenetic hybrids, and the origins of introduced populations. Competing hypotheses for the molecular calibration were evaluated through plausibility tests, implementing a new approach relying on predictions from the anuran speciation continuum. Based on our timetree, we propose a new biogeographic paradigm for the Palearctic since the Paleogene, notably by attributing a prominent role to the dynamics of the Paratethys, a vast paleo-sea that extended over most of Europe. Furthermore, our results show that distinct marsh frog lineages from Eastern Europe, the Balkans, the Near East, and Central Asia (P. ridibundus ssp.) are naturally capable of inducing hybridogenesis with pool frogs (P. lessonae). We identified 14 alien lineages (mostly of P. ridibundus) over ~20 areas of invasions, especially in Western Europe, with genetic signatures disproportionally pointing to the Balkans and Anatolia as the regions of origins, in line with exporting records of the frog leg industry and the stocks of pet sellers. Pelophylax thus emerges as one of the most invasive amphibians worldwide, and deserves much higher conservation concern than currently given by the authorities fighting biological invasions.


Assuntos
Anuros , Ranidae , Animais , Anuros/genética , Europa (Continente) , Filogenia , Filogeografia
20.
Zootaxa ; 5415(3): 351-391, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38480196

RESUMO

Vitreorana parvula was the first glassfrog described for the Atlantic Forest. The species, however, has become a taxonomic puzzle as the only known individual is the lectotype from the 19th century, which is not particularly well-preserved or accompanied by a detailed original description. To solve this problem, we collected topotypic specimens, as well as advertisement calls, tissue samples, and natural history data, and compared them to other Vitreorana species. Our results show clear morphological, acoustic, and genetic differences between V. parvula and other species of Vitreorana, except for V. uranoscopa. Following our results, we consider V. uranoscopa as a junior synonym of V. parvula and redescribe the species based on topotypic material, while summarizing relevant variation from across its distribution.


Assuntos
Anuros , Florestas , Animais , Anuros/genética , Acústica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA