Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 161
Filtrar
1.
Nat Methods ; 18(10): 1233-1238, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34594032

RESUMO

Peptidergic dense-core vesicles are involved in packaging and releasing neuropeptides and peptide hormones-critical processes underlying brain, endocrine and exocrine function. Yet, the heterogeneity within these organelles, even for morphologically defined vesicle types, is not well characterized because of their small volumes. We present image-guided, high-throughput mass spectrometry-based protocols to chemically profile large populations of both dense-core vesicles and lucent vesicles for their lipid and peptide contents, allowing observation of the chemical heterogeneity within and between these two vesicle populations. The proteolytic processing products of four prohormones are observed within the dense-core vesicles, and the mass spectral features corresponding to the specific peptide products suggest three distinct dense-core vesicle populations. Notable differences in the lipid mass range are observed between the dense-core and lucent vesicles. These single-organelle mass spectrometry approaches are adaptable to characterize a range of subcellular structures.


Assuntos
Aplysia/citologia , Ensaios de Triagem em Larga Escala/métodos , Aprendizado de Máquina , Organelas/fisiologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Animais
2.
Sci Rep ; 11(1): 5478, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33750901

RESUMO

ATP and its ionotropic P2X receptors are components of the most ancient signaling system. However, little is known about the distribution and function of purinergic transmission in invertebrates. Here, we cloned, expressed, and pharmacologically characterized the P2X receptors in the sea slug Aplysia californica-a prominent neuroscience model. AcP2X receptors were successfully expressed in Xenopus oocytes and displayed activation by ATP with two-phased kinetics and Na+-dependence. Pharmacologically, they were different from other P2X receptors. The ATP analog, Bz-ATP, was a less effective agonist than ATP, and PPADS was a more potent inhibitor of the AcP2X receptors than the suramin. AcP2X were uniquely expressed within the cerebral F-cluster, the multifunctional integrative neurosecretory center. AcP2X receptors were also detected in the chemosensory structures and the early cleavage stages. Therefore, in molluscs, rapid ATP-dependent signaling can be implicated both in development and diverse homeostatic functions. Furthermore, this study illuminates novel cellular and systemic features of P2X-type ligand-gated ion channels for deciphering the evolution of neurotransmitters.


Assuntos
Trifosfato de Adenosina/metabolismo , Aplysia/metabolismo , Transdução de Sinais , Animais , Aplysia/citologia , Aplysia/genética , Modelos Moleculares , Neurônios/citologia , Neurônios/metabolismo , Filogenia , Receptores Purinérgicos P2X/análise , Receptores Purinérgicos P2X/genética , Receptores Purinérgicos P2X/metabolismo , Xenopus
3.
Sci Rep ; 10(1): 5222, 2020 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-32251363

RESUMO

The formation of appropriate neural connections during development is critical for the proper wiring and functioning of the brain. Although considerable research suggests that the specificity of synapse formation is supported by complex intercellular signaling between potential presynaptic and postsynaptic partners, the extracellular factors and the intracellular signal transduction pathways engaged in this process remain largely unknown. Using the sensory-motor neural circuit that contributes to learning in defensive withdrawal reflexes in Aplysia californica, we investigated the molecular processes governing the interactions between sensory neurons and both target and non-target motor neurons during synapse formation in culture. We found that evolutionarily-conserved intercellular and intracellular signaling mechanisms critical for learning-related plasticity are also engaged during synaptogenesis in this in vitro model system. Our results reveal a surprising bidirectional regulation of molecular signaling between sensory neurons and non-target motor neurons. This regulation is mediated by signaling via both paracrine and autocrine diffusible factors that induce differential effects on transcription and on protein expression/activation in sensory neurons and in target and non-target motor neurons. Collectively, our data reveal novel molecular mechanisms that could underlie the repression of inappropriate synapse formation, and suggest mechanistic similarities between developmental and learning-related plasticity.


Assuntos
Aplysia/fisiologia , Neurônios Motores/fisiologia , Células Receptoras Sensoriais/fisiologia , Sinapses/fisiologia , Animais , Aplysia/citologia , Aplysia/efeitos dos fármacos , Aplysia/metabolismo , Comunicação Autócrina , Técnicas de Cocultura , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Neurônios Motores/efeitos dos fármacos , Plasticidade Neuronal/fisiologia , Neuropeptídeos/metabolismo , Neuropeptídeos/farmacologia , Comunicação Parácrina , Receptor trkB/metabolismo , Transdução de Sinais , Análise de Célula Única , Sinapses/efeitos dos fármacos
4.
Sci Rep ; 10(1): 549, 2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31953443

RESUMO

Some synapses show two forms of short-term plasticity, homosynaptic facilitation, and a plasticity in which the efficacy of transmission is modified by subthreshold changes in the holding potential of the presynaptic neuron. In a previous study we demonstrated a further interactive effect. We showed that depolarizing changes in the presynaptic holding potential can increase the rate at which facilitation occurs. These experiments studied synaptic transmission between an Aplysia sensory neuron (B21) and its postsynaptic follower, the motor neuron (B8). We have also shown that subthreshold depolarizations of B21 produce widespread increases in its [Ca2+]i via activation of a nifedipine-sensitive current. To determine whether it is this change in 'background' calcium that modifies synaptic transmission we compared the facilitation observed at the B21-B8 synapse under control conditions to the facilitation observed in nifedipine. Nifedipine had a depressing effect. Other investigators studying facilitation have focused on Cares (i.e., the calcium that remains in a neuron after spiking). Our results indicate that facilitation can also be impacted by calcium channels opened before spiking begins.


Assuntos
Aplysia/citologia , Cálcio/metabolismo , Sinapses/metabolismo , Animais , Aplysia/metabolismo , Neurônios Motores/citologia , Células Receptoras Sensoriais/citologia
5.
Sci Rep ; 9(1): 14379, 2019 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-31591438

RESUMO

Insulin-like growth factor II (IGF2) enhances memory in rodents via the mannose-6-phosphate receptor (M6PR), but the underlying mechanisms remain poorly understood. We found that human IGF2 produces an enhancement of both synaptic transmission and neurite outgrowth in the marine mollusk Aplysia californica. These findings were unexpected since Aplysia lack the mammal-specific affinity between insulin-like ligands and M6PR. Surprisingly, this effect was observed in parallel with a suppression of neuronal excitability in a well-understood circuit that supports several temporally and mechanistically distinct forms of memory in the defensive withdrawal reflex, suggesting functional coordination between excitability and memory formation. We hypothesize that these effects represent behavioral adaptations to feeding that are mediated by the endogenous Aplysia insulin-like system. Indeed, the exogenous application of a single recombinant insulin-like peptide cloned from the Aplysia CNS cDNA replicated both the enhancement of synaptic transmission, the reduction of excitability, and promoted clearance of glucose from the hemolymph, a hallmark of bona fide insulin action.


Assuntos
Aplysia/efeitos dos fármacos , Aplysia/crescimento & desenvolvimento , Fator de Crescimento Insulin-Like II/farmacologia , Adaptação Fisiológica/efeitos dos fármacos , Animais , Aplysia/citologia , Aplysia/fisiologia , Homeostase/efeitos dos fármacos , Humanos , Crescimento Neuronal/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Sinapses/metabolismo
6.
Nat Protoc ; 13(10): 2200-2216, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30218102

RESUMO

The goal of mechanobiology is to understand the links between changes in the physical properties of living cells and normal physiology and disease. This requires mechanical measurements that have appropriate spatial and temporal resolution within a single cell. Conventional atomic force microscopy (AFM) methods that acquire force curves pointwise are used to map the heterogeneous mechanical properties of cells. However, the resulting map acquisition time is much longer than that required to study many dynamic cellular processes. Dynamic AFM (dAFM) methods using resonant microcantilevers are compatible with higher-speed, high-resolution scanning; however, they do not directly acquire force curves and they require the conversion of a limited number of instrument observables to local mechanical property maps. We have recently developed a technique that allows commercial AFM systems equipped with direct cantilever excitation to quantitatively map the viscoelastic properties of live cells. The properties can be obtained at several widely spaced frequencies with nanometer-range spatial resolution and with fast image acquisition times (tens of seconds). Here, we describe detailed procedures for quantitative mapping, including sample preparation, AFM calibration, and data analysis. The protocol can be applied to different biological samples, including cells and viruses. The transition from dAFM imaging to quantitative mapping should be easily achievable for experienced AFM users, who will be able to set up the protocol in <30 min.


Assuntos
Biofísica/métodos , Microscopia de Força Atômica/métodos , Animais , Aplysia/citologia , Fenômenos Biomecânicos , Biofísica/instrumentação , Células Cultivadas , Elasticidade , Fibroblastos/citologia , Camundongos , Microscopia de Força Atômica/instrumentação , Células NIH 3T3 , Neurônios/citologia , Imagem Óptica , Viscosidade
7.
ACS Chem Neurosci ; 9(8): 2041-2053, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29543430

RESUMO

When individual neurons in a circuit contain multiple neuropeptides, these peptides can target different sets of follower neurons. This endows the circuit with a certain degree of flexibility. Here we identified a novel family of peptides, the Aplysia SPTR-Gene Family-Derived peptides (apSPTR-GF-DPs). We demonstrated apSPTR-GF-DPs, particularly apSPTR-GF-DP2, are expressed in the Aplysia CNS using immunohistochemistry and MALDI-TOF MS. Furthermore, apSPTR-GF-DP2 is present in single projection neurons, e.g., in the cerebral-buccal interneuron-12 (CBI-12). Previous studies have demonstrated that CBI-12 contains two other peptides, FCAP/CP2. In addition, CBI-12 and CP2 promote shortening of the protraction phase of motor programs. Here, we demonstrate that FCAP shortens protraction. Moreover, we show that apSPTR-GF-DP2 also shortens protraction. Surprisingly, apSPTR-GF-DP2 does not increase the excitability of retraction interneuron B64. B64 terminates protraction and is modulated by FCAP/CP2 and CBI-12. Instead, we show that apSPTR-GF-DP2 and CBI-12 increase B20 excitability and B20 activity can shorten protraction. Taken together, these data indicate that different CBI-12 peptides target different sets of pattern-generating interneurons to exert similar modulatory actions. These findings provide the first definitive evidence for SPTR-GF's role in modulation of feeding, and a form of molecular degeneracy by multiple peptide cotransmitters in single identified neurons.


Assuntos
Aplysia/metabolismo , Atividade Motora/fisiologia , Neuropeptídeos/metabolismo , Sequência de Aminoácidos , Animais , Aplysia/citologia , Biologia Computacional , Ingestão de Alimentos/fisiologia , Gânglios dos Invertebrados/citologia , Gânglios dos Invertebrados/metabolismo , Masculino , Potenciais da Membrana/fisiologia , Neurônios/citologia , Neurônios/metabolismo , Neuropeptídeos/genética , Processamento de Proteína Pós-Traducional , Ratos Sprague-Dawley , Alinhamento de Sequência
8.
J Biol Chem ; 292(46): 18775-18789, 2017 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-28924050

RESUMO

A better understanding of neuromodulation in a behavioral system requires identification of active modulatory transmitters. Here, we used identifiable neurons in a neurobiological model system, the mollusc Aplysia, to study neuropeptides, a diverse class of neuromodulators. We took advantage of two types of feeding neurons, B48 and B1/B2, in the Aplysia buccal ganglion that might contain different neuropeptides. We performed a representational difference analysis (RDA) by subtraction of mRNAs in B48 versus mRNAs in B1/B2. The RDA identified an unusually long (2025 amino acids) peptide precursor encoding Aplysia leucokinin-like peptides (ALKs; e.g. ALK-1 and ALK-2). Northern blot analysis revealed that, compared with other ganglia (e.g. the pedal-pleural ganglion), ALK mRNA is predominantly present in the buccal ganglion, which controls feeding behavior. We then used in situ hybridization and immunohistochemistry to localize ALKs to specific neurons, including B48. MALDI-TOF MS on single buccal neurons revealed expression of 40 ALK precursor-derived peptides. Among these, ALK-1 and ALK-2 are active in the feeding network; they shortened the radula protraction phase of feeding motor programs triggered by a command-like neuron. We also found that this effect may be mediated by the ALK-stimulated enhancement of activity of an interneuron, which has previously been shown to terminate protraction. We conclude that our multipronged approach is effective for determining the structure and defining the diverse functions of leucokinin-like peptides. Notably, the ALK precursor is the first verified nonarthropod precursor for leucokinin-like peptides with a novel, marked modulatory effect on a specific parameter (protraction duration) of feeding motor programs.


Assuntos
Aplysia/fisiologia , Gânglios dos Invertebrados/fisiologia , Neuropeptídeos/metabolismo , Animais , Aplysia/química , Aplysia/citologia , Aplysia/genética , Comportamento Alimentar , Gânglios dos Invertebrados/química , Gânglios dos Invertebrados/metabolismo , Neurônios/química , Neurônios/citologia , Neurônios/metabolismo , Neuropeptídeos/análise , Neuropeptídeos/genética , Processamento de Proteína Pós-Traducional , RNA Mensageiro/análise , RNA Mensageiro/genética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
9.
Elife ; 62017 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-28780929

RESUMO

The joint activity of neural populations is high dimensional and complex. One strategy for reaching a tractable understanding of circuit function is to seek the simplest dynamical system that can account for the population activity. By imaging Aplysia's pedal ganglion during fictive locomotion, here we show that its population-wide activity arises from a low-dimensional spiral attractor. Evoking locomotion moved the population into a low-dimensional, periodic, decaying orbit - a spiral - in which it behaved as a true attractor, converging to the same orbit when evoked, and returning to that orbit after transient perturbation. We found the same attractor in every preparation, and could predict motor output directly from its orbit, yet individual neurons' participation changed across consecutive locomotion bouts. From these results, we propose that only the low-dimensional dynamics for movement control, and not the high-dimensional population activity, are consistent within and between nervous systems.


Assuntos
Aplysia/fisiologia , Modelos Neurológicos , Neurônios Motores/fisiologia , Rede Nervosa/fisiologia , Potenciais de Ação , Animais , Aplysia/citologia , Encéfalo/fisiologia , Locomoção , Periodicidade
10.
J Neurosci ; 37(8): 2258-2265, 2017 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-28119399

RESUMO

Mutations that alter levels of Slack (KCNT1) Na+-activated K+ current produce devastating effects on neuronal development and neuronal function. We now find that Slack currents are rapidly suppressed by oligomers of mutant human Cu/Zn superoxide dismutase 1 (SOD1), which are associated with motor neuron toxicity in an inherited form of amyotrophic lateral sclerosis (ALS). We recorded from bag cell neurons of Aplysia californica, a model system to study neuronal excitability. We found that injection of fluorescent wild-type SOD1 (wt SOD1YFP) or monomeric mutant G85R SOD1YFP had no effect on net ionic currents measured under voltage clamp. In contrast, outward potassium currents were significantly reduced by microinjection of mutant G85R SOD1YFP that had been preincubated at 37°C or of cross-linked dimers of G85R SOD1YFP. Reduction of potassium current was also seen with multimeric G85R SOD1YFP of ∼300 kDa or >300 kDa that had been cross-linked. In current clamp recordings, microinjection of cross-linked 300 kDa increased excitability by depolarizing the resting membrane potential, and decreasing the latency of action potentials triggered by depolarization. The effect of cross-linked 300 kDa on potassium current was reduced by removing Na+ from the bath solution, or by knocking down levels of Slack using siRNA. It was also prevented by pharmacological inhibition of ASK1 (apoptosis signal-regulating kinase 1) or of c-Jun N-terminal kinase, but not by an inhibitor of p38 mitogen-activated protein kinase. These results suggest that soluble mutant SOD1 oligomers rapidly trigger a kinase pathway that regulates the activity of Na+-activated K+ channels in neurons.SIGNIFICANCE STATEMENT Slack Na+-activated K+ channels (KCNT1, KNa1.1) regulate neuronal excitability but are also linked to cytoplasmic signaling pathways that control neuronal protein translation. Mutations that alter the amplitude of these currents have devastating effects on neuronal development and function. We find that injection of oligomers of mutant superoxide dismutase 1 (SOD1) into the cytoplasm of invertebrate neurons rapidly suppresses these Na+-activated K+ currents and that this effect is mediated by a MAP kinase cascade, including ASK1 and c-Jun N-terminal kinase. Because amyotrophic lateral sclerosis is a fatal adult-onset neurodegenerative disease produced by mutations in SOD1 that cause the enzyme to form toxic oligomers, our findings suggest that suppression of Slack channels may be an early step in the progression of the disease.


Assuntos
Potenciais da Membrana/genética , Mutação/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/fisiologia , Canais de Potássio/metabolismo , Superóxido Dismutase-1/genética , Animais , Aplysia/citologia , Biofísica , Células Cultivadas , Estimulação Elétrica , Inibidores Enzimáticos/farmacologia , Gânglios dos Invertebrados/citologia , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Microinjeções , Morfolinos/farmacologia , Neurônios/efeitos dos fármacos , Técnicas de Patch-Clamp , Canais de Potássio Ativados por Sódio , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Sódio/farmacologia , Superóxido Dismutase-1/química
11.
Anal Chem ; 88(23): 11868-11876, 2016 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-27788334

RESUMO

A receptor binding class of d-amino acid-containing peptides (DAACPs) is formed in animals from an enzymatically mediated post-translational modification of ribosomally translated all-l-amino acid peptides. Although this modification can be required for biological actions, detecting it is challenging because DAACPs have the same mass as their all-l-amino acid counterparts. We developed a suite of mass spectrometry (MS) protocols for the nontargeted discovery of DAACPs and validated their effectiveness using neurons from Aplysia californica. The approach involves the following three steps, with each confirming and refining the hits found in the prior step. The first step is screening for peptides resistant to digestion by aminopeptidase M. The second verifies the presence of a chiral amino acid via acid hydrolysis in deuterium chloride, labeling with Marfey's reagent, and liquid chromatography-mass spectrometry to determine the chirality of each amino acid. The third involves synthesizing the putative DAACPs and comparing them to the endogenous standards. Advantages of the method, the d-amino acid-containing neuropeptide discovery funnel, are that it is capable of detecting the d-form of any common chiral amino acid, and the first two steps do not require peptide standards. Using these protocols, we report that two peptides from the Aplysia achatin-like neuropeptide precursor exist as GdYFD and SdYADSKDEESNAALSDFA. Interestingly, GdYFD was bioactive in the Aplysia feeding and locomotor circuits but SdYADSKDEESNAALSDFA was not. The discovery funnel provides an effective means to characterize DAACPs in the nervous systems of animals in a nontargeted manner.


Assuntos
Aminoácidos/análise , Aplysia/química , Neuropeptídeos/análise , Aminoácidos/metabolismo , Animais , Aplysia/citologia , Aplysia/metabolismo , Antígenos CD13/metabolismo , Espectrometria de Massas , Neurônios/química , Neurônios/citologia , Neurônios/metabolismo , Neuropeptídeos/metabolismo
12.
Sci Rep ; 6: 26940, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27245782

RESUMO

The integration of microfluidic devices-which efficiently handle small liquid volumes-with separations/mass spectrometry (MS) is an effective approach for profiling the neurochemistry occurring in selected neurons. Interfacing the microfluidic cell culture to the mass spectrometer is challenging because of geometric and scaling issues. Here we demonstrate the hyphenation of a neuron-in-capillary platform to a solid phase extraction device and off-line MS. A primary neuronal culture of Aplysia californica neurons was established directly inside a cylindrical polyimide capillary. The approach also uses a particle-embedded monolith to condition neuropeptide releasates collected from several Aplysia neurons cultured in the capillary, with the subsequent characterization of released peptides via MS. This system presents a number of advances compared to more traditional microfluidic devices fabricated with polydimethylsiloxane. These include low cost, easy access to cell culture, rigidity, ease of transport, and minimal fluid handling. The cylindrical geometry of the platform allows convenient interface with a wide range of analytical tools that utilize capillary columns.


Assuntos
Técnicas Analíticas Microfluídicas/métodos , Neurônios/metabolismo , Neuropeptídeos/análise , Resinas Sintéticas/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais , Aplysia/citologia , Aplysia/metabolismo , Técnicas de Cultura de Células , Dimetilpolisiloxanos/química , Dispositivos Lab-On-A-Chip , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neuropeptídeos/metabolismo , Cloreto de Potássio/farmacologia , Cultura Primária de Células , Extração em Fase Sólida/métodos
13.
Mol Biol Cell ; 26(18): 3229-44, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26224308

RESUMO

Src tyrosine kinases have been implicated in axonal growth and guidance; however, the underlying cellular mechanisms are not well understood. Specifically, it is unclear which aspects of actin organization and dynamics are regulated by Src in neuronal growth cones. Here, we investigated the function of Src2 and one of its substrates, cortactin, in lamellipodia and filopodia of Aplysia growth cones. We found that up-regulation of Src2 activation state or cortactin increased lamellipodial length, protrusion time, and actin network density, whereas down-regulation had opposite effects. Furthermore, Src2 or cortactin up-regulation increased filopodial density, length, and protrusion time, whereas down-regulation promoted lateral movements of filopodia. Fluorescent speckle microscopy revealed that rates of actin assembly and retrograde flow were not affected in either case. In summary, our results support a model in which Src and cortactin regulate growth cone motility by increasing actin network density and protrusion persistence of lamellipodia by controlling the state of actin-driven protrusion versus retraction. In addition, both proteins promote the formation and stability of actin bundles in filopodia.


Assuntos
Aplysia/citologia , Aplysia/metabolismo , Cortactina/metabolismo , Cones de Crescimento/metabolismo , Pseudópodes/metabolismo , Quinases da Família src/metabolismo , Actinas/metabolismo , Animais , Axônios/metabolismo , Células Cultivadas , Regulação para Baixo , Regulação para Cima
14.
J Neurosci ; 35(12): 5051-66, 2015 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-25810534

RESUMO

Some behaviors occur in obligatory sequence, such as reaching before grasping an object. Can the earlier behavior serve to prepare the musculature for the later behavior? If it does, what is the underlying neural mechanism of the preparation? To address this question, we examined two feeding behaviors in the marine mollusk Aplysia californica, one of which must precede the second: biting and swallowing. Biting is an attempt to grasp food. When that attempt is successful, the animal immediately switches to swallowing to ingest food. The main muscle responsible for pulling food into the buccal cavity during swallowing is the I3 muscle, whose motor neurons B6, B9, and B3 have been previously identified. By performing recordings from these neurons in vivo in intact, behaving animals or in vitro in a suspended buccal mass preparation, we demonstrated that the frequencies and durations of these motor neurons increased from biting to swallowing. Using the physiological patterns of activation to drive these neurons intracellularly, we further demonstrated that activating them using biting-like frequencies and durations, either alone or in combination, generated little or no force in the I3 muscle. When biting-like patterns preceded swallowing-like patterns, however, the forces during the subsequent swallowing-like patterns were significantly enhanced. Sequences of swallowing-like patterns, either with these neurons alone or in combination, further enhanced forces in the I3 muscle. These results suggest a novel mechanism for enhancing force production in a muscle, and may be relevant to understanding motor control in vertebrates.


Assuntos
Aplysia/fisiologia , Deglutição/fisiologia , Mastigação/fisiologia , Neurônios Motores/fisiologia , Músculos/fisiologia , Animais , Aplysia/citologia
15.
Lipids ; 50(4): 427-36, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25688026

RESUMO

Specific protein-phosphoinositide (PI) interactions are known to play a key role in the targeting of proteins to specific cellular membranes. Investigation of these interactions would be greatly facilitated if GFP-fusion proteins expressed in mammalian cells and used for their subcellular localization could also be employed for in vitro lipid binding. In this study, we found that lysates of cells overexpressing GFP-fusion proteins could be used for in vitro protein-PI binding assays. We applied this approach to examine the PI-binding properties of Aplysia Sec7 protein (ApSec7) and its isoform ApSec7(VPKIS), in which a VPKIS sequence is inserted into the PH domain of ApSec7. EGFP-ApSec7 but not EGFP-ApSec7(VPKIS) did specifically bind to PI(3,4,5)P3 in an in vitro lipid-coated bead assay. Overexpression of EGFP-ApSec7 but not EGFP-ApSec7(VPKIS) did induce neurite outgrowth in Aplysia sensory neurons. Structure modeling analysis revealed that the inserted VPKIS caused misfolding around the PI(3,4,5)P3-binding pocket of ApSec7 and disturbed the binding of PI(3,4,5)P3 to the pleckstrin homology (PH) domain. Our data indicate that plasma membrane localization of EGFP-ApSec7 via the interaction between its PH domain and PI(3,4,5)P3 might play a key role in neurite outgrowth in Aplysia.


Assuntos
Proteínas de Fluorescência Verde/metabolismo , Fosfatidilinositóis/metabolismo , Sequência de Aminoácidos , Animais , Aplysia/citologia , Aplysia/genética , Aplysia/metabolismo , Proteínas de Fluorescência Verde/análise , Proteínas de Fluorescência Verde/genética , Células HEK293 , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Proteínas Recombinantes de Fusão/análise , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
16.
J Neurosci ; 35(4): 1617-26, 2015 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-25632137

RESUMO

Memory impairment is often associated with disrupted regulation of gene induction. For example, deficits in cAMP response element-binding protein (CREB) binding protein (CBP; an essential cofactor for activation of transcription by CREB) impair long-term synaptic plasticity and memory. Previously, we showed that small interfering RNA (siRNA)-induced knockdown of CBP in individual sensory neurons significantly reduced levels of CBP and impaired 5-HT-induced long-term facilitation (LTF) in sensorimotor cocultures from Aplysia. Moreover, computational simulations of the biochemical cascades underlying LTF successfully predicted training protocols that restored LTF following CBP knockdown. We examined whether simulations could also predict a training protocol that restores LTF impaired by siRNA-induced knockdown of the transcription factor CREB1. Simulations based on a previously described model predicted rescue protocols that were specific to CREB1 knockdown. Empirical studies demonstrated that one of these rescue protocols partially restored impaired LTF. In addition, the effectiveness of the rescue protocol was enhanced by pretreatment with rolipram, a selective cAMP phosphodiesterase inhibitor. These results provide further evidence that computational methods can help rescue disruptions in signaling cascades underlying memory formation. Moreover, the study demonstrates that the effectiveness of computationally designed training protocols can be enhanced with complementary pharmacological approaches.


Assuntos
Proteína de Ligação a CREB/metabolismo , Potenciação de Longa Duração/efeitos dos fármacos , RNA Interferente Pequeno/farmacologia , Sinapses/efeitos dos fármacos , Animais , Aplysia/citologia , Biofísica , Proteína de Ligação a CREB/antagonistas & inibidores , Técnicas de Cocultura , Simulação por Computador , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Estimulação Elétrica , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciação de Longa Duração/fisiologia , Modelos Neurológicos , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/fisiologia , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/fisiologia , Serotonina/farmacologia , Sinapses/fisiologia , Fatores de Tempo
17.
J Am Soc Mass Spectrom ; 25(11): 1897-907, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25183225

RESUMO

We describe a hybrid MALDI/C(60)-SIMS Q-TOF mass spectrometer and corresponding sample preparation protocols to image intact biomolecules and their fragments in mammalian spinal cord, individual invertebrate neurons, and cultured neuronal networks. A lateral spatial resolution of 10 µm was demonstrated, with further improvement feasible to 1 µm, sufficient to resolve cell outgrowth and interconnections in neuronal networks. The high mass resolution (>13,000 FWHM) and tandem mass spectrometry capability of this hybrid instrument enabled the confident identification of cellular metabolites. Sublimation of a suitable matrix, 2,5-dihydroxybenzoic acid, significantly enhanced the ion signal intensity for intact glycerophospholipid ions from mammalian nervous tissue, facilitating the acquisition of high-quality ion images for low-abundance biomolecules. These results illustrate that the combination of C60-SIMS and MALDI mass spectrometry offers particular benefits for studies that require the imaging of intact biomolecules with high spatial and mass resolution, such as investigations of single cells, subcellular organelles, and communities of cells.


Assuntos
Imagem Molecular/métodos , Análise de Célula Única/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais , Aplysia/química , Aplysia/citologia , Fulerenos , Masculino , Rede Nervosa/química , Rede Nervosa/citologia , Ratos , Ratos Long-Evans , Medula Espinal/química , Medula Espinal/citologia
18.
Proc Natl Acad Sci U S A ; 111(23): 8667-72, 2014 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-24872449

RESUMO

In this work, we show the feasibility of performing functional MRI studies with single-cell resolution. At ultrahigh magnetic field, manganese-enhanced magnetic resonance microscopy allows the identification of most motor neurons in the buccal network of Aplysia at low, nontoxic Mn(2+) concentrations. We establish that Mn(2+) accumulates intracellularly on injection into the living Aplysia and that its concentration increases when the animals are presented with a sensory stimulus. We also show that we can distinguish between neuronal activities elicited by different types of stimuli. This method opens up a new avenue into probing the functional organization and plasticity of neuronal networks involved in goal-directed behaviors with single-cell resolution.


Assuntos
Aplysia/fisiologia , Imageamento por Ressonância Magnética/métodos , Neurônios Motores/fisiologia , Análise de Célula Única/métodos , Animais , Aplysia/citologia , Aplysia/metabolismo , Comportamento Apetitivo/fisiologia , Estudos de Viabilidade , Comportamento Alimentar/fisiologia , Gânglios dos Invertebrados/citologia , Gânglios dos Invertebrados/metabolismo , Manganês/metabolismo , Manganês/farmacocinética , Neurônios Motores/metabolismo , Reprodutibilidade dos Testes
19.
NMR Biomed ; 27(3): 280-90, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24403001

RESUMO

There is evidence that physiological or pathological cell swelling is associated with a decrease of the apparent diffusion coefficient (ADC) of water in tissues, as measured with MRI. However the mechanism remains unclear. Magnetic resonance microscopy, performed on small tissue samples, has the potential to distinguish effects occurring at cellular and tissue levels. A three-dimensional diffusion prepared fast imaging with steady-state free precession sequence for MR microscopy was implemented on a 17.2 T imaging system and used to investigate the effect of two biological challenges known to cause cell swelling, exposure to a hypotonic solution or to ouabain, on Aplysia nervous tissue. The ADC was measured inside isolated neuronal soma and in the region of cell bodies of the buccal ganglia. Both challenges resulted in an ADC increase inside isolated neuronal soma (+31 ± 24% and +30 ± 11%, respectively) and an ADC decrease at tissue level in the buccal ganglia (-12 ± 5% and -18 ± 8%, respectively). A scenario involving a layer of water molecules bound to the inflating cell membrane surface is proposed to reconcile this apparent discrepancy.


Assuntos
Aplysia/citologia , Aplysia/fisiologia , Especificidade de Órgãos/efeitos dos fármacos , Pressão Osmótica , Ouabaína/farmacologia , Água/química , Animais , Aplysia/efeitos dos fármacos , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Difusão , Gânglios dos Invertebrados/citologia , Gânglios dos Invertebrados/efeitos dos fármacos , Gânglios dos Invertebrados/fisiologia , Holografia , Imageamento por Ressonância Magnética , Imagens de Fantasmas , Reprodutibilidade dos Testes
20.
PLoS One ; 8(9): e73389, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24039928

RESUMO

Adhesions are multi-molecular complexes that transmit forces generated by a cell's acto-myosin networks to external substrates. While the physical properties of some of the individual components of adhesions have been carefully characterized, the mechanics of the coupling between the cytoskeleton and the adhesion site as a whole are just beginning to be revealed. We characterized the mechanics of nascent adhesions mediated by the immunoglobulin-family cell adhesion molecule apCAM, which is known to interact with actin filaments. Using simultaneous visualization of actin flow and quantification of forces transmitted to apCAM-coated beads restrained with an optical trap, we found that adhesions are dynamic structures capable of transmitting a wide range of forces. For forces in the picoNewton scale, the nascent adhesions' mechanical properties are dominated by an elastic structure which can be reversibly deformed by up to 1 µm. Large reversible deformations rule out an interface between substrate and cytoskeleton that is dominated by a number of stiff molecular springs in parallel, and favor a compliant cross-linked network. Such a compliant structure may increase the lifetime of a nascent adhesion, facilitating signaling and reinforcement.


Assuntos
Citoesqueleto de Actina/metabolismo , Aplysia/citologia , Moléculas de Adesão Celular/metabolismo , Animais , Aplysia/metabolismo , Adesão Celular , Células Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA