Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.555
Filtrar
1.
Sci Adv ; 10(19): eadk7636, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38728397

RESUMO

Corticotropin releasing factor (CRF) network in the oval nucleus of bed nuclei of the stria terminalis (ovBNST) is generally indicated in stress, but its role in female-biased susceptibility to anxiety is unknown. Here, we established a female-biased stress paradigm. We found that the CRF release in ovBNST during stress showed female-biased pattern, and ovBNST CRF neurons were more prone to be hyperexcited in female mice during stress in both in vitro and in vivo studies. Moreover, optogenetic modulation to exchange the activation pattern of ovBNST CRF neurons during stress between female and male mice could reverse their susceptibility to anxiety. Last, CRF receptor type 1 (CRFR1) mediated the CRF-induced excitation of ovBNST CRF neurons and showed female-biased expression. Specific knockdown of the CRFR1 level in ovBNST CRF neurons in female or overexpression that in male could reverse their susceptibility to anxiety. Therefore, we identify that CRFR1-mediated hyperexcitation of ovBNST CRF neurons in female mice encode the female-biased susceptibility to anxiety.


Assuntos
Ansiedade , Hormônio Liberador da Corticotropina , Neurônios , Receptores de Hormônio Liberador da Corticotropina , Núcleos Septais , Animais , Feminino , Ansiedade/metabolismo , Masculino , Neurônios/metabolismo , Hormônio Liberador da Corticotropina/metabolismo , Núcleos Septais/metabolismo , Camundongos , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Receptores de Hormônio Liberador da Corticotropina/genética , Aprendizagem da Esquiva/fisiologia , Estresse Psicológico/metabolismo , Comportamento Animal
2.
Commun Biol ; 7(1): 576, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755409

RESUMO

Avoidance, a hallmark of anxiety-related psychopathology, often comes at a cost; avoiding threat may forgo the possibility of a reward. Theories predict that optimal approach-avoidance arbitration depends on threat-induced psychophysiological states, like freezing-related bradycardia. Here we used model-based fMRI analyses to investigate whether and how bradycardia states are linked to the neurocomputational underpinnings of approach-avoidance arbitration under varying reward and threat magnitudes. We show that bradycardia states are associated with increased threat-induced avoidance and more pronounced reward-threat value comparison (i.e., a stronger tendency to approach vs. avoid when expected reward outweighs threat). An amygdala-striatal-prefrontal circuit supports approach-avoidance arbitration under threat, with specific involvement of the amygdala and dorsal anterior cingulate (dACC) in integrating reward-threat value and bradycardia states. These findings highlight the role of human freezing states in value-based decision making, relevant for optimal threat coping. They point to a specific role for amygdala/dACC in state-value integration under threat.


Assuntos
Imageamento por Ressonância Magnética , Humanos , Masculino , Adulto , Feminino , Adulto Jovem , Bradicardia/fisiopatologia , Aprendizagem da Esquiva/fisiologia , Tonsila do Cerebelo/fisiologia , Recompensa , Giro do Cíngulo/fisiologia , Medo/fisiologia , Ansiedade/fisiopatologia , Frequência Cardíaca/fisiologia , Tomada de Decisões/fisiologia
3.
Nat Commun ; 15(1): 4318, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773067

RESUMO

Neural circuits with specific structures and diverse neuronal firing features are the foundation for supporting intelligent tasks in biology and are regarded as the driver for catalyzing next-generation artificial intelligence. Emulating neural circuits in hardware underpins engineering highly efficient neuromorphic chips, however, implementing a firing features-driven functional neural circuit is still an open question. In this work, inspired by avoidance neural circuits of crickets, we construct a spiking feature-driven sensorimotor control neural circuit consisting of three memristive Hodgkin-Huxley neurons. The ascending neurons exhibit mixed tonic spiking and bursting features, which are used for encoding sensing input. Additionally, we innovatively introduce a selective communication scheme in biology to decode mixed firing features using two descending neurons. We proceed to integrate such a neural circuit with a robot for avoidance control and achieve lower latency than conventional platforms. These results provide a foundation for implementing real brain-like systems driven by firing features with memristive neurons and put constructing high-order intelligent machines on the agenda.


Assuntos
Potenciais de Ação , Modelos Neurológicos , Redes Neurais de Computação , Neurônios , Robótica , Robótica/instrumentação , Robótica/métodos , Neurônios/fisiologia , Animais , Potenciais de Ação/fisiologia , Gryllidae/fisiologia , Rede Nervosa/fisiologia , Inteligência Artificial , Aprendizagem da Esquiva/fisiologia
4.
Nat Commun ; 15(1): 4233, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38762463

RESUMO

The ventral pallidum (VP) contains GABA and glutamate neurons projecting to ventral tegmental area (VTA) whose stimulation drives approach and avoidance, respectively. Yet little is known about the mechanisms by which VP cell types shape VTA activity and drive behavior. Here, we found that both VP GABA and glutamate neurons were activated during approach to reward or by delivery of an aversive stimulus. Stimulation of VP GABA neurons inhibited VTA GABA, but activated dopamine and glutamate neurons. Remarkably, stimulation-evoked activation was behavior-contingent such that VTA recruitment was inhibited when evoked by the subject's own action. Conversely, VP glutamate neurons activated VTA GABA, as well as dopamine and glutamate neurons, despite driving aversion. However, VP glutamate neurons evoked dopamine in aversion-associated ventromedial nucleus accumbens (NAc), but reduced dopamine release in reward-associated dorsomedial NAc. These findings show how heterogeneous VP projections to VTA can be engaged to shape approach and avoidance behaviors.


Assuntos
Aprendizagem da Esquiva , Prosencéfalo Basal , Neurônios GABAérgicos , Ácido Glutâmico , Recompensa , Área Tegmentar Ventral , Área Tegmentar Ventral/fisiologia , Área Tegmentar Ventral/metabolismo , Área Tegmentar Ventral/citologia , Animais , Ácido Glutâmico/metabolismo , Prosencéfalo Basal/metabolismo , Prosencéfalo Basal/fisiologia , Masculino , Neurônios GABAérgicos/metabolismo , Neurônios GABAérgicos/fisiologia , Aprendizagem da Esquiva/fisiologia , Camundongos , Dopamina/metabolismo , Núcleo Accumbens/metabolismo , Núcleo Accumbens/citologia , Núcleo Accumbens/fisiologia , Neurônios/metabolismo , Neurônios/fisiologia , Ácido gama-Aminobutírico/metabolismo , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/fisiologia , Camundongos Endogâmicos C57BL , Comportamento Animal/fisiologia
5.
Curr Biol ; 34(8): R320-R322, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38653200

RESUMO

During social interactions, individuals evaluate relationships with their peers and switch from approach to avoidance, particularly in response to aggressive encounters. A new study in mice investigated the underlying brain mechanisms and identified oxytocin as a key regulator of social avoidance learning.


Assuntos
Ocitocina , Animais , Ocitocina/metabolismo , Ocitocina/fisiologia , Camundongos , Agressão , Aprendizagem da Esquiva/fisiologia , Comportamento Social , Encéfalo/fisiologia , Neurociências , Interação Social , Humanos
6.
Cell Rep ; 43(4): 114042, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38573858

RESUMO

Pathogenic infection elicits behaviors that promote recovery and survival of the host. After exposure to the pathogenic bacterium Pseudomonas aeruginosa PA14, the nematode Caenorhabditis elegans modifies its sensory preferences to avoid the pathogen. Here, we identify antagonistic neuromodulators that shape this acquired avoidance behavior. Using an unbiased cell-directed neuropeptide screen, we show that AVK neurons upregulate and release RF/RYamide FLP-1 neuropeptides during infection to drive pathogen avoidance. Manipulations that increase or decrease AVK activity accelerate or delay pathogen avoidance, respectively, implicating AVK in the dynamics of avoidance behavior. FLP-1 neuropeptides drive pathogen avoidance through the G protein-coupled receptor DMSR-7, as well as other receptors. DMSR-7 in turn acts in multiple neurons, including tyraminergic/octopaminergic neurons that receive convergent avoidance signals from the cytokine DAF-7/transforming growth factor ß. Neuromodulators shape pathogen avoidance through multiple mechanisms and targets, in agreement with the distributed neuromodulatory connectome of C. elegans.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Neuropeptídeos , Pseudomonas aeruginosa , Animais , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/microbiologia , Neuropeptídeos/metabolismo , Pseudomonas aeruginosa/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Monoaminas Biogênicas/metabolismo , Neurônios/metabolismo , Aprendizagem da Esquiva/fisiologia , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais
7.
J Integr Neurosci ; 23(4): 84, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38682230

RESUMO

BACKGROUND: Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is a well-established treatment for the motor symptoms of Parkinson's disease (PD). While PD is primarily characterized by motor symptoms such as tremor, rigidity, and bradykinesia, it also involves a range of non-motor symptoms, and anxiety is one of the most common. The relationship between PD and anxiety is complex and can be a result of both pathological neural changes and the psychological and emotional impacts of living with a chronic progressive condition. Managing anxiety in PD is critical for improving the patients' quality of life. However, patients undergoing STN DBS can occasionally experience increased anxiety. METHODS: This study investigates changes in risk-avoidant behavior following STN DBS in a pre-motor animal model of PD under chronic and acute unilateral high frequency stimulation. RESULTS: No significant changes in risk-avoidant behaviors were observed in rats who underwent STN DBS compared with sham stimulation controls. Chronic stimulation prevented sensitization in the elevated zero maze. CONCLUSIONS: These results suggest that unilateral stimulation of the STN may have minimal effects on risk-avoidant behaviors in PD. However, additional research is required to fully understand the mechanisms responsible for changes in anxiety during STN DBS for PD.


Assuntos
Estimulação Encefálica Profunda , Modelos Animais de Doenças , Oxidopamina , Núcleo Subtalâmico , Animais , Oxidopamina/farmacologia , Masculino , Comportamento Animal/fisiologia , Transtornos Parkinsonianos/terapia , Transtornos Parkinsonianos/fisiopatologia , Ansiedade/etiologia , Ansiedade/fisiopatologia , Ratos , Ratos Sprague-Dawley , Aprendizagem da Esquiva/fisiologia , Doença de Parkinson/terapia , Doença de Parkinson/fisiopatologia
8.
J Exp Psychol Anim Learn Cogn ; 50(2): 144-160, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38587941

RESUMO

Taste aversion learning has sometimes been considered a specialized form of learning. In several other conditioning preparations, after a conditioned stimulus (CS) is conditioned and extinguished, reexposure to the unconditioned stimulus (US) by itself can reinstate the extinguished conditioned response. Reinstatement has been widely studied in fear and appetitive Pavlovian conditioning, as well as operant conditioning, but its status in taste aversion learning is more controversial. Six taste-aversion experiments with rats therefore sought to discover conditions that might encourage it there. The results often yielded little to no evidence of reinstatement, and we also found no evidence of concurrent recovery, a related phenomenon in which responding to a CS that has been conditioned and extinguished is restored if a second CS is separately conditioned. However, a key result was that reinstatement occurred when the conditioning procedure involved multiple closely spaced conditioning trials that could have allowed the animal to learn that a US presentation signaled or set the occasion for another trial with a US. Such a mechanism is precluded in many taste aversion experiments because they often use very few conditioning trials. Overall, the results suggest that taste aversion learning is experimentally unique, though not necessarily biologically or evolutionarily unique. (PsycInfo Database Record (c) 2024 APA, all rights reserved).


Assuntos
Extinção Psicológica , Paladar , Ratos , Animais , Paladar/fisiologia , Extinção Psicológica/fisiologia , Condicionamento Clássico/fisiologia , Condicionamento Operante , Aprendizagem , Aprendizagem da Esquiva/fisiologia
9.
Psychopharmacology (Berl) ; 241(6): 1191-1203, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38383904

RESUMO

RATIONALE: Preclinical studies report attenuated ethanol-induced conditioned taste aversion (CTA) following chronic ethanol exposure, suggesting that tolerance develops to the aversive properties of ethanol. However, these studies are confounded by pre-exposure to the unconditioned stimulus (US; ethanol), which is well known to hinder conditioning. OBJECTIVES: This study was designed to determine whether chronic ethanol exposure produces tolerance to the aversive properties of ethanol in the absence of a US pre-exposure confound. METHODS: CTA was performed in adult male and female Long-Evans rats by pairing 0.1% ingested saccharin with an intraperitoneal injection of ethanol (1.5 or 2.0 g/kg) or saline. Rats were then rendered ethanol dependent using chronic intermittent ethanol (CIE) vapor exposure. Controls were exposed to room air (AIR). The effect of chronic ethanol on CTA expression and reconditioning were examined following vapor exposure. RESULTS: Prior to vapor exposure, both sexes developed CTA to a comparable degree with 2.0 g/kg producing greater CTA than 1.5 g/kg ethanol. Following vapor exposure, AIR controls exhibited an increase in CTA magnitude compared to pre-vapor levels. This effect was largely absent in CIE-exposed rats. Re-conditioning after vapor exposure facilitated increased CTA magnitude to a similar degree in AIR- and CIE-exposed males. In contrast, CTA magnitude was unchanged by re-conditioning in females. CONCLUSIONS: These data suggest that chronic ethanol does not facilitate tolerance to the aversive properties of ethanol but rather attenuates incubation of ethanol-induced CTA. Loss of CTA incubation suggests that CIE exposure disrupts circuits encoding aversion.


Assuntos
Aprendizagem da Esquiva , Etanol , Ratos Long-Evans , Sacarina , Paladar , Animais , Masculino , Etanol/administração & dosagem , Etanol/farmacologia , Feminino , Ratos , Aprendizagem da Esquiva/efeitos dos fármacos , Aprendizagem da Esquiva/fisiologia , Paladar/efeitos dos fármacos , Sacarina/administração & dosagem , Modelos Animais de Doenças , Alcoolismo/fisiopatologia , Relação Dose-Resposta a Droga , Condicionamento Clássico/efeitos dos fármacos , Condicionamento Psicológico/efeitos dos fármacos
10.
J Neurochem ; 168(3): 312-327, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38317429

RESUMO

To survive, individuals must learn to associate cues in the environment with emotionally relevant outcomes. This association is partially mediated by the nucleus accumbens (NAc), a key brain region of the reward circuit that is mainly composed by GABAergic medium spiny neurons (MSNs), that express either dopamine receptor D1 or D2. Recent studies showed that both populations can drive reward and aversion, however, the activity of these neurons during appetitive and aversive Pavlovian conditioning remains to be determined. Here, we investigated the relevance of D1- and D2-neurons in associative learning, by measuring calcium transients with fiber photometry during appetitive and aversive Pavlovian tasks in mice. Sucrose was used as a positive valence unconditioned stimulus (US) and foot shock was used as a negative valence US. We show that during appetitive Pavlovian conditioning, D1- and D2-neurons exhibit a general increase in activity in response to the conditioned stimuli (CS). Interestingly, D1- and D2-neurons present distinct changes in activity after sucrose consumption that dynamically evolve throughout learning. During the aversive Pavlovian conditioning, D1- and D2-neurons present an increase in the activity in response to the CS and to the US (shock). Our data support a model in which D1- and D2-neurons are concurrently activated during appetitive and aversive conditioning.


Assuntos
Núcleo Accumbens , Receptores de Dopamina D1 , Animais , Camundongos , Núcleo Accumbens/metabolismo , Receptores de Dopamina D1/metabolismo , Condicionamento Clássico , Neurônios/metabolismo , Aprendizagem da Esquiva/fisiologia , Sacarose/farmacologia
11.
eNeuro ; 11(2)2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38365840

RESUMO

Organisms learn to gain reward and avoid punishment through action-outcome associations. Reinforcement learning (RL) offers a critical framework to understand individual differences in this associative learning by assessing learning rate, action bias, pavlovian factor (i.e., the extent to which action values are influenced by stimulus values), and subjective impact of outcomes (i.e., motivation to seek reward and avoid punishment). Nevertheless, how these individual-level metrics are represented in the brain remains unclear. The current study leveraged fMRI in healthy humans and a probabilistic learning go/no-go task to characterize the neural correlates involved in learning to seek reward and avoid pain. Behaviorally, participants showed a higher learning rate during pain avoidance relative to reward seeking. Additionally, the subjective impact of outcomes was greater for reward trials and associated with lower response randomness. Our imaging findings showed that individual differences in learning rate and performance accuracy during avoidance learning were positively associated with activities of the dorsal anterior cingulate cortex, midcingulate cortex, and postcentral gyrus. In contrast, the pavlovian factor was represented in the precentral gyrus and superior frontal gyrus (SFG) during pain avoidance and reward seeking, respectively. Individual variation of the subjective impact of outcomes was positively predicted by activation of the left posterior cingulate cortex. Finally, action bias was represented by the supplementary motor area (SMA) and pre-SMA whereas the SFG played a role in restraining this action tendency. Together, these findings highlight for the first time the neural substrates of individual differences in the computational processes during RL.


Assuntos
Individualidade , Aprendizagem , Humanos , Reforço Psicológico , Recompensa , Dor/diagnóstico por imagem , Imageamento por Ressonância Magnética , Aprendizagem da Esquiva/fisiologia
12.
Pain ; 165(6): 1304-1316, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38277178

RESUMO

ABSTRACT: Abnormal encoding of somatosensory modalities (ie, mechanical, cold, and heat) are a critical part of pathological pain states. Detailed phenotyping of patients' responses to these modalities have raised hopes that analgesic treatments could one day be tailored to a patient's phenotype. Such precise treatment would require a profound understanding of the underlying mechanisms of specific pain phenotypes at molecular, cellular, and circuitry levels. Although preclinical pain models have helped in that regard, the lack of a unified assay quantifying detailed mechanical, cold, and heat pain responses on the same scale precludes comparing how analgesic compounds act on different sensory phenotypes. The conflict avoidance assay is promising in that regard, but testing conditions require validation for its use with multiple modalities. In this study, we improve upon the conflict avoidance assay to provide a validated and detailed assessment of all 3 modalities within the same animal, in mice. We first optimized testing conditions to minimize the necessary amount of training and to reduce sex differences in performances. We then tested what range of stimuli produce dynamic stimulus-response relationships for different outcome measures in naive mice. We finally used this assay to show that nerve injury produces modality-specific sex differences in pain behavior. Our improved assay opens new avenues to study the basis of modality-specific abnormalities in pain behavior.


Assuntos
Aprendizagem da Esquiva , Hiperalgesia , Medição da Dor , Caracteres Sexuais , Animais , Feminino , Masculino , Camundongos , Aprendizagem da Esquiva/fisiologia , Medição da Dor/métodos , Hiperalgesia/fisiopatologia , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Limiar da Dor/fisiologia , Estimulação Física , Conflito Psicológico
13.
Cogn Affect Behav Neurosci ; 24(3): 469-490, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38291308

RESUMO

Psychological research on human motivation repeatedly observed that approach goals (i.e., goals to attain success) increase task enjoyment and intrinsic motivation more strongly than avoidance goals (i.e., goals to avoid failure). The present study sought to address how the reward network in the brain-including the striatum and ventromedial prefrontal cortex-is involved when individuals engage in the same task with a focus on approach or avoidance goals. Participants reported stronger positive emotions when they focused on approach goals, but stronger anxiety and disappointment when they focused on avoidance goals. The fMRI analyses revealed that the reward network in the brain showed similar levels of activity to cues predictive of approach and avoidance goals. In contrast, the two goal states were associated with different patterns of activity in the visual cortex, hippocampus, and cerebellum during success and failure outcomes. Representation similarity analysis further revealed shared and different representations within the striatum and vmPFC between the approach and avoidance goal states, suggesting both the similarity and uniqueness of the mechanisms behind the two goal states. In addition, the distinct patterns of activation in the striatum were associated with distinct subjective experiences participants reported between the approach and the avoidance conditions. These results suggest the importance of examining the pattern of striatal activity in understanding the mechanisms behind different motivational states in humans.


Assuntos
Ansiedade , Mapeamento Encefálico , Encéfalo , Objetivos , Imageamento por Ressonância Magnética , Motivação , Recompensa , Humanos , Masculino , Feminino , Motivação/fisiologia , Adulto Jovem , Ansiedade/fisiopatologia , Encéfalo/fisiologia , Encéfalo/diagnóstico por imagem , Adulto , Aprendizagem da Esquiva/fisiologia , Felicidade , Adolescente
14.
Nature ; 626(7998): 347-356, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38267576

RESUMO

To survive in a complex social group, one needs to know who to approach and, more importantly, who to avoid. In mice, a single defeat causes the losing mouse to stay away from the winner for weeks1. Here through a series of functional manipulation and recording experiments, we identify oxytocin neurons in the retrochiasmatic supraoptic nucleus (SOROXT) and oxytocin-receptor-expressing cells in the anterior subdivision of the ventromedial hypothalamus, ventrolateral part (aVMHvlOXTR) as a key circuit motif for defeat-induced social avoidance. Before defeat, aVMHvlOXTR cells minimally respond to aggressor cues. During defeat, aVMHvlOXTR cells are highly activated and, with the help of an exclusive oxytocin supply from the SOR, potentiate their responses to aggressor cues. After defeat, strong aggressor-induced aVMHvlOXTR cell activation drives the animal to avoid the aggressor and minimizes future defeat. Our study uncovers a neural process that supports rapid social learning caused by defeat and highlights the importance of the brain oxytocin system in social plasticity.


Assuntos
Agressão , Aprendizagem da Esquiva , Hipotálamo , Vias Neurais , Neurônios , Ocitocina , Aprendizado Social , Animais , Camundongos , Agressão/fisiologia , Aprendizagem da Esquiva/fisiologia , Sinais (Psicologia) , Medo/fisiologia , Hipotálamo/citologia , Hipotálamo/metabolismo , Vias Neurais/fisiologia , Neurônios/metabolismo , Ocitocina/metabolismo , Receptores de Ocitocina/metabolismo , Comportamento Social , Aprendizado Social/fisiologia , Núcleo Supraóptico/citologia , Núcleo Supraóptico/metabolismo , Núcleo Hipotalâmico Ventromedial/citologia , Núcleo Hipotalâmico Ventromedial/metabolismo , Plasticidade Neuronal
15.
Int J Eat Disord ; 57(3): 624-634, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38263753

RESUMO

OBJECTIVE: Food avoidance is central to patients with anorexia nervosa-restrictive type (AN-R). Competing accounts in experimental psychopathology research suggest that food avoidance may result from automatic, habitual responses or from elevated inhibitory control abilities. This study investigated behavioral trajectories of food avoidance in a novel virtual reality stopping task. METHOD: Sixty patients with AN-R and 29 healthy controls with normal weight were investigated using a novel, kinematic task in virtual reality. We recorded spatial displacement in stop- and go-trials to virtual food and control objects. Inhibitory control abilities were operationalized by the VR task in stopping performance (i.e., interrupted movement in stop-trials), whereas we also measured habitual avoidance of virtual food across both go- and stop-trials (i.e., delayed movement relative to nonfood objects). RESULTS: In patients with AN-R, hand displacements were shorter to food versus nonfood across stop- and go-trials, reflected in a Stimulus × Group interaction. Healthy controls showed no differences. Importantly, the food-specific effect in AN-R was identical across stop- and go-trials, indicating habitual food avoidance. Moreover, stop error rates (i.e., stop-trials with response) were lower in patients with AN-R. DISCUSSION: The findings suggest food-specific habitual avoidance and heightened generalized inhibitory control in AN-R. The continuously delayed displacements during active hand movements across stop- and go-trials indicated the persistence of patients' avoidance of food. PUBLIC SIGNIFICANCE: Experimental research investigates the mechanisms underlying mental disorders such as anorexia nervosa. In this study, we measured interrupted hand movements in response to food pictures or neutral pictures (shoes) in patients with anorexia nervosa and healthy controls. A virtual reality scenario was used. Findings indicated that patients were slower at approaching food, interrupted or not. Key mechanisms of food avoidance can be translated into habit-based treatment options in future research.


Assuntos
Anorexia Nervosa , Humanos , Anorexia Nervosa/terapia , Alimentos , Hábitos , Atenção , Aprendizagem da Esquiva/fisiologia
16.
eNeuro ; 11(2)2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38272673

RESUMO

Learning and adaptation during sources of threat and safety are critical mechanisms for survival. The prelimbic (PL) and infralimbic (IL) subregions of the medial prefrontal cortex (mPFC) have been broadly implicated in the processing of threat and safety. However, how these regions regulate threat and safety during naturalistic conditions involving thermal challenge still remains elusive. To examine this issue, we developed a novel paradigm in which adult mice learned that a particular zone that was identified with visuospatial cues was associated with either a noxious cold temperature ("threat zone") or a pleasant warm temperature ("safety zone"). This led to the rapid development of avoidance behavior when the zone was paired with cold threat or approach behavior when the zone was paired with warm safety. During a long-term test without further thermal reinforcement, mice continued to exhibit robust avoidance or approach to the zone of interest, indicating that enduring spatial-based memories were formed to represent the thermal threat and thermal safety zones. Optogenetic experiments revealed that neural activity in PL and IL was not essential for establishing the memory for the threat zone. However, PL and IL activity bidirectionally regulated memory formation for the safety zone. While IL activity promoted safety memory during normal conditions, PL activity suppressed safety memory especially after a stress pretreatment. Therefore, a working model is proposed in which balanced activity between PL and IL is favorable for safety memory formation, whereas unbalanced activity between these brain regions is detrimental for safety memory after stress.


Assuntos
Sinais (Psicologia) , Córtex Pré-Frontal , Camundongos , Animais , Córtex Pré-Frontal/fisiologia , Aprendizagem da Esquiva/fisiologia
17.
Animal ; 18(2): 101050, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38215678

RESUMO

Taste plays an essential role in regulating the feeding behaviors of animals. The present study aimed to characterize the taste sensory profiles of amino acids and sugars in chickens. To achieve this, we employed a conditioned taste aversion learning method, which is characterized by a specific pairing of gastrointestinal malaise and taste perception. Our findings revealed that chickens were able to learn to avoid L-Val, L-Lys, and L-His through conditioned taste aversion learning, and exhibited a strong aversion to L-Arg. These results suggest that chickens are primarily sensitive to basic amino acids, including L-Lys, which is a crucial limiting amino acid in feeds. Interstingly, this sensitivity to basic amino acids in chickens contrasts with humans, who are mainly sensitive to acidic amino acids as umami taste. Furthermore, despite the absence of a mammalian sweet taste receptor gene in the chicken genome, we demonstrated that chickens learned to avoid glucose, galactose, sucrose, and maltose by conditioned taste aversion learning. Taken together, the present study provides the idea that chickens possess a gustatory perception toward specific amino acids and sugars for the detection of beneficial nutrients in their feeds.


Assuntos
Aminoácidos , Percepção Gustatória , Humanos , Animais , Percepção Gustatória/fisiologia , Paladar/fisiologia , Galinhas , Açúcares , Aprendizagem da Esquiva/fisiologia , Arginina , Aminas , Mamíferos
18.
Nature ; 625(7996): 743-749, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38233522

RESUMO

Survival requires the selection of appropriate behaviour in response to threats, and dysregulated defensive reactions are associated with psychiatric illnesses such as post-traumatic stress and panic disorder1. Threat-induced behaviours, including freezing and flight, are controlled by neuronal circuits in the central amygdala (CeA)2; however, the source of neuronal excitation of the CeA that contributes to high-intensity defensive responses is unknown. Here we used a combination of neuroanatomical mapping, in vivo calcium imaging, functional manipulations and electrophysiology to characterize a previously unknown projection from the dorsal peduncular (DP) prefrontal cortex to the CeA. DP-to-CeA neurons are glutamatergic and specifically target the medial CeA, the main amygdalar output nucleus mediating conditioned responses to threat. Using a behavioural paradigm that elicits both conditioned freezing and flight, we found that CeA-projecting DP neurons are activated by high-intensity threats in a context-dependent manner. Functional manipulations revealed that the DP-to-CeA pathway is necessary and sufficient for both avoidance behaviour and flight. Furthermore, we found that DP neurons synapse onto neurons within the medial CeA that project to midbrain flight centres. These results elucidate a non-canonical top-down pathway regulating defensive responses.


Assuntos
Aprendizagem da Esquiva , Núcleo Central da Amígdala , Vias Neurais , Neurônios , Aprendizagem da Esquiva/fisiologia , Núcleo Central da Amígdala/citologia , Núcleo Central da Amígdala/fisiologia , Neurônios/fisiologia , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/fisiologia , Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacologia , Ácido Glutâmico/metabolismo , Vias Neurais/fisiologia , Cálcio/análise , Eletrofisiologia , Ponte/citologia , Ponte/fisiologia
19.
Behav Brain Res ; 459: 114762, 2024 02 29.
Artigo em Inglês | MEDLINE | ID: mdl-37977340

RESUMO

The Roman high- (RHA) and low-avoidance (RLA) rats were bidirectionally selected and bred for, respectively, their rapid vs. extremely poor acquisition in the two-way active avoidance task. Consistent between-strain neurobehavioural differences have been found in anxiety- and stress-linked traits, as well as in schizophrenia-related phenotypes. RLAs display enhanced anxious- and stress-related phenotypes, whereas RHA rats show impulsivity, hyperactivity and attention/cognition-related impairments. Many of these typical behavioural phenotypes have been reported to be positively modulated by environmental treatments such as neonatal handling (NH). However, most studies on the Roman rat strains have been carried out in males. Thus, the present study for the first time focused on the joint evaluation of differences in novel object exploration (NOE), social interaction (SI), prepulse inhibition of the startle response (PPI), and cognitive performance and flexibility in various spatial tasks (using the Morris water maze, MWM) in females of both Roman rat strains. We also aimed at evaluating the long-lasting effects of NH treatment on the RHA vs. RLA profiles in these tests/tasks. Results show that anxiety-related behavior, as measured by the NOE test and self-grooming in the SI test, was increased in RLA rats, and dramatically reduced by NH. In the SI test RLA rats displayed diminished social interaction, which was rescued by NH. RHA females exhibited a deficit of PPI, which was not affected by NH. Spatial tasks in the MWM showed impairments of working memory, reference learning/memory and spatial reversal learning (i.e., cognitive flexibility) in RHA females. Spatial reference learning and cognitive flexibility (i.e., reversal task) showed some improvement in rats (mainly in RHAs) that had received NH during the first three weeks of life. With the exception of the SI test, the pattern of differences between female RHA vs. RLA profiles was overall consistent with what has previously been found in males of both strains, and NH treatment was able to enduringly improve some emotion-related and (spatial) cognitive outcomes in both strains.


Assuntos
Esquizofrenia , Feminino , Masculino , Ratos , Animais , Inibição Pré-Pulso/fisiologia , Reflexo de Sobressalto , Cognição/fisiologia , Atenção , Aprendizagem da Esquiva/fisiologia
20.
Behav Res Ther ; 172: 104442, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38086158

RESUMO

Most experimental avoidance paradigms lack either control over the experimental situation or simplify real-life avoidance behavior to a great extent, making it difficult to generalize the results to the complex approach-avoidance situations that anxious individuals face in daily life. The current study aimed to examine the usability of our recently developed free-exploratory avoidance paradigm in Virtual Reality (VR) that allows for the assessment of subjective as well as behavioral avoidance in participants with varying levels of spider fear. In a VR escape room, participants searched for cues to decipher a code-locked door. Opening a wooden box marked with a post-it note (conditioned stimulus, CS) resulted in exposure to a virtual crawling spider (unconditioned stimulus, US). Avoidance of the original CS and other objects marked with the CS (generalization stimuli, GSs; EXPgen condition) or non-marked (CONT condition) objects was measured via questionnaires and relative manipulation times in a novel room. We expected a positive linear relationship between US aversiveness (levels of spider fear) and (generalization of) fear and avoidance behaviors. Avoidance learning and generalization was demonstrated on both a subjective and behavioral level. Higher levels of spider fear were, overall, related to more negative emotions in response to the encounter with the spider, higher US expectancies for the GSs, and more self-reported and behavioral avoidance of the original CS and the GSs. Finally, we explored relationships between trait anxiety and intolerance of uncertainty and fear and avoidance (generalization), but no robust associations were observed. In conclusion, we confirmed the expected positive linear relationship between spider fear and (generalization of) fear and avoidance behaviors. Our results suggest that our free-exploratory VR avoidance paradigm is well-suited to investigate avoidance behaviors and the generalization of avoidance.


Assuntos
Transtornos Fóbicos , Aranhas , Animais , Humanos , Medo/psicologia , Transtornos Fóbicos/psicologia , Ansiedade/psicologia , Aprendizagem da Esquiva/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA