Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Sci Adv ; 10(33): eadn0597, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39141739

RESUMO

Spiders produce nature's toughest fiber using renewable components at ambient temperatures and with water as solvent, making it highly interesting to replicate for the materials industry. Despite this, much remains to be understood about the bioprocessing and composition of spider silk fibers. Here, we identify 18 proteins that make up the spiders' strongest silk type, the major ampullate fiber. Single-cell RNA sequencing and spatial transcriptomics revealed that the secretory epithelium of the gland harbors six cell types. These cell types are confined to three distinct glandular zones that produce specific combinations of silk proteins. Image analysis of histological sections showed that the secretions from the three zones do not mix, and proteomics analysis revealed that these secretions form layers in the final fiber. Using a multi-omics approach, we provide substantial advancements in the understanding of the structure and function of the major ampullate silk gland as well as of the architecture and composition of the fiber it produces.


Assuntos
Genômica , Proteômica , Seda , Análise de Célula Única , Aranhas , Transcriptoma , Aranhas/metabolismo , Aranhas/genética , Animais , Seda/metabolismo , Seda/química , Seda/genética , Proteômica/métodos , Genômica/métodos , Análise de Célula Única/métodos , Perfilação da Expressão Gênica/métodos
2.
Biochem Pharmacol ; 227: 116465, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39102991

RESUMO

In sensory neurons that transmit pain signals, whether acute or chronic, voltage-gated sodium channels (VGSCs) are crucial for regulating excitability. NaV1.1, NaV1.3, NaV1.6, NaV1.7, NaV1.8, and NaV1.9 have been demonstrated and defined their functional roles in pain signaling based on their biophysical properties and distinct patterns of expression in each subtype of sensory neurons. Scorpions and spiders are traditional Chinese medicinal materials, belonging to the arachnid class. Most of the studied species of them have evolved venom peptides that exhibit a wide variety of knottins specifically targeting VGSCs with subtype selectivity and conformational specificity. This review provides an overview on the exquisite knottins from scorpion and spider venoms targeting pain-related NaV channels, describing the sequences and the structural features as well as molecular determinants that influence their selectivity on special subtype and at particular conformation, with an aim for the development of novel research tools on NaV channels and analgesics with minimal adverse effects.


Assuntos
Dor , Venenos de Escorpião , Transdução de Sinais , Venenos de Aranha , Canais de Sódio Disparados por Voltagem , Animais , Venenos de Escorpião/química , Venenos de Escorpião/farmacologia , Venenos de Escorpião/metabolismo , Venenos de Aranha/farmacologia , Venenos de Aranha/química , Venenos de Aranha/metabolismo , Canais de Sódio Disparados por Voltagem/metabolismo , Canais de Sódio Disparados por Voltagem/efeitos dos fármacos , Canais de Sódio Disparados por Voltagem/química , Canais de Sódio Disparados por Voltagem/fisiologia , Dor/tratamento farmacológico , Dor/metabolismo , Humanos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Escorpiões/metabolismo , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia , Bloqueadores do Canal de Sódio Disparado por Voltagem/química , Sequência de Aminoácidos , Aranhas/metabolismo
3.
Gigascience ; 132024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-39101784

RESUMO

BACKGROUND: Venom glands play a key role in the predation and defense strategies of almost all spider groups. However, the spider family Uloboridae lacks venom glands and has evolved an adaptive strategy: they excessively wrap their prey directly with spider silk instead of paralyzing it first with toxins. This shift in survival strategy is very fascinating, but the genetic underpinnings behind it are poorly understood. RESULTS: Spanning multiple spider groups, we conducted multiomics analyses on Octonoba sinensis and described the adaptive evolution of the Uloboridae family at the genome level. We observed the coding genes of myosin and twitchin in muscles are under positive selection, energy metabolism functions are enhanced, and gene families related to tracheal development and tissue mechanical strength are expanded or emerged, all of which are related to the unique anatomical structure and predatory behavior of spiders in the family Uloboridae. In addition, we also scanned the elements that are absent or under relaxed purifying selection, as well as toxin gene homologs in the genomes of 2 species in this family. The results show that the absence of regions and regions under relaxed selection in these spiders' genomes are concentrated in areas related to development and neurosystem. The search for toxin homologs reveals possible gene function shift between toxins and nontoxins and confirms that there are no reliable toxin genes in the genome of this group. CONCLUSIONS: This study demonstrates the trade-off between different predation strategies in spiders, using either chemical or physical strategy, and provides insights into the possible mechanism underlying this trade-off. Venomless spiders need to mobilize multiple developmental and metabolic pathways related to motor function and limb mechanical strength to cover the decline in adaptability caused by the absence of venom glands.


Assuntos
Evolução Molecular , Aranhas , Animais , Aranhas/genética , Aranhas/metabolismo , Venenos de Aranha/genética , Comportamento Predatório , Filogenia , Evolução Biológica , Genoma , Seleção Genética , Adaptação Fisiológica/genética
4.
Sci Rep ; 14(1): 15379, 2024 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965282

RESUMO

Venom is a remarkable innovation found across the animal kingdom, yet the evolutionary origins of venom systems in various groups, including spiders, remain enigmatic. Here, we investigated the organogenesis of the venom apparatus in the common house spider, Parasteatoda tepidariorum. The venom apparatus consists of a pair of secretory glands, each connected to an opening at the fang tip by a duct that runs through the chelicerae. We performed bulk RNA-seq to identify venom gland-specific markers and assayed their expression using RNA in situ hybridisation experiments on whole-mount time-series. These revealed that the gland primordium emerges during embryonic stage 13 at the chelicera tip, progresses proximally by the end of embryonic development and extends into the prosoma post-eclosion. The initiation of expression of an important toxin component in late postembryos marks the activation of venom-secreting cells. Our selected markers also exhibited distinct expression patterns in adult venom glands: sage and the toxin marker were expressed in the secretory epithelium, forkhead and sum-1 in the surrounding muscle layer, while Distal-less was predominantly expressed at the gland extremities. Our study provides the first comprehensive analysis of venom gland morphogenesis in spiders, offering key insights into their evolution and development.


Assuntos
Organogênese , Venenos de Aranha , Aranhas , Animais , Aranhas/embriologia , Aranhas/metabolismo , Venenos de Aranha/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Glândulas Exócrinas/metabolismo , Glândulas Exócrinas/embriologia
5.
Int J Biol Macromol ; 275(Pt 1): 133658, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38969044

RESUMO

Venomous toxins hold immense value as tools in elucidating the intricate structure and underlying mechanisms of ion channels. In this article, we identified of two novel toxins, Hainantoxin-XXI (HNTX-XXI) and Hainantoxin-XXII (HNTX-XXII), derived from the venom of the Chinese spider Ornithoctonus hainana. HNTX-XXI, boasting a molecular weight of 6869.095 Da, comprises 64 amino acid residues and contains 8 cysteines. Meanwhile, HNTX-XXII, with a molecular weight of 8623.732 Da, comprises 77 amino acid residues and contains 12 cysteines. Remarkably, we discovered that both HNTX-XXI and HNTX-XXII possess the ability to activate TRPV1. They activated TRPV1 with EC50 values of 3.6 ± 0.19 µM and 862 ± 56 nM, respectively. Furthermore, the current generated by the activation of TRPV1 by these toxins can be rapidly blocked by ruthenium red. Intriguingly, our analysis revealed that the interaction between HNTX-XXI and TRPV1 is mediated by three key amino acid residues: L465, V469, and D471. Similarly, the interaction between HNTX-XXII and TRPV1 is facilitated by four key amino acid residues: A657, F659, E600, and R601. These findings provide profound insights into the molecular basis of toxin-TRPV1 interactions and pave the way for future research exploring the therapeutic potential of these toxic peptides.


Assuntos
Venenos de Aranha , Canais de Cátion TRPV , Animais , Humanos , Sequência de Aminoácidos , Células HEK293 , Ligação Proteica , Venenos de Aranha/química , Venenos de Aranha/farmacologia , Aranhas/metabolismo , Canais de Cátion TRPV/metabolismo , Canais de Cátion TRPV/química , Canais de Cátion TRPV/genética
6.
Proc Natl Acad Sci U S A ; 121(31): e2406814121, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39042699

RESUMO

Animal vision depends on opsins, a category of G protein-coupled receptor (GPCR) that achieves light sensitivity by covalent attachment to retinal. Typically binding as an inverse agonist, 11-cis retinal photoisomerizes to the all-trans isomer and activates the receptor, initiating downstream signaling cascades. Retinal bound to bistable opsins isomerizes back to the 11-cis state after absorption of a second photon, inactivating the receptor. Bistable opsins are essential for invertebrate vision and nonvisual light perception across the animal kingdom. While crystal structures are available for bistable opsins in the inactive state, it has proven difficult to form homogeneous populations of activated bistable opsins either via illumination or reconstitution with all-trans retinal. Here, we show that a nonnatural retinal analog, all-trans retinal 6.11 (ATR6.11), can be reconstituted with the invertebrate bistable opsin, Jumping Spider Rhodopsin-1 (JSR1). Biochemical activity assays demonstrate that ATR6.11 functions as a JSR1 agonist. ATR6.11 binding also enables complex formation between JSR1 and signaling partners. Our findings demonstrate the utility of retinal analogs for biophysical characterization of bistable opsins, which will deepen our understanding of light perception in animals.


Assuntos
Opsinas , Retinaldeído , Animais , Retinaldeído/metabolismo , Retinaldeído/química , Retinaldeído/análogos & derivados , Opsinas/metabolismo , Opsinas/química , Rodopsina/metabolismo , Rodopsina/química , Aranhas/metabolismo , Humanos
7.
Mar Biotechnol (NY) ; 26(4): 716-731, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38896299

RESUMO

In the classic molecular model of nacreous layer formation, unusual acidic matrix proteins rich in aspartic acid (Asp) residues are essential for nacre nucleation due to their great affinity for binding calcium. However, the acidic matrix proteins discovered in the nacreous layer so far have been weakly acidic with a high proportion of glutamate. In the present study, several silk-like matrix proteins, including the novel matrix protein HcN57, were identified in the ethylenediaminetetraacetic acid-soluble extracts of the nacreous layer of Hyriopsis cumingii. HcN57 is a highly repetitive protein that consists of a high proportion of alanine (Ala, 34.4%), glycine (Gly, 22.5%), and serine (Ser, 11.4%). It forms poly Ala blocks, GlynX repeats, an Ala-Gly repeat, and a Ser-Ala-rich region, exhibiting significant similarity to silk proteins found in spider species. The expression of HcN57 was specifically located in the dorsal epithelial cells of the mantle pallium and mantle center. Notably, expression of HcN57 was relatively high during nacreous layer regeneration and pearl nacre deposition, suggesting HcN57 is a silk matrix protein in the nacreous layer. Importantly, HcN57 also contains a certain content of Asp residues, making it an unusual acidic matrix protein present in the nacreous layer. These Asp residues are mainly distributed in three large hydrophilic acidic regions, which showed inhibitory activity against aragonite deposition and morphological regulation of calcite in vitro. Moreover, HcN57-dsRNA injection resulted in failure of nacre nucleation in vivo. Taken together, our results show that HcN57 is a bifunctional silk protein with poly Ala blocks and Gly-rich regions that serve as space fillers within the chitinous framework to prevent crystallization at unnecessary nucleation sites and Asp-rich regions that create a calcium ion supersaturated microenvironment for nucleation in the center of nacre tablets. These observations contribute to a better understanding of the mechanism by which silk proteins regulate framework construction and nacre nucleation during nacreous layer formation.


Assuntos
Nácar , Animais , Nácar/metabolismo , Nácar/química , Seda/química , Seda/metabolismo , Sequência de Aminoácidos , Aranhas/metabolismo
8.
Nat Commun ; 15(1): 4670, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38821983

RESUMO

The major ampullate Spidroin 1 (MaSp1) is the main protein of the dragline spider silk. The C-terminal (CT) domain of MaSp1 is crucial for the self-assembly into fibers but the details of how it contributes to the fiber formation remain unsolved. Here we exploit the fact that the CT domain can form silk-like fibers by itself to gain knowledge about this transition. Structural investigations of fibers from recombinantly produced CT domain from E. australis MaSp1 reveal an α-helix to ß-sheet transition upon fiber formation and highlight the helix No4 segment as most likely to initiate the structural conversion. This prediction is corroborated by the finding that a peptide corresponding to helix No4 has the ability of pH-induced conversion into ß-sheets and self-assembly into nanofibrils. Our results provide structural information about the CT domain in fiber form and clues about its role in triggering the structural conversion of spidroins during fiber assembly.


Assuntos
Fibroínas , Aranhas , Fibroínas/química , Fibroínas/metabolismo , Animais , Aranhas/metabolismo , Seda/química , Seda/metabolismo , Domínios Proteicos , Sequência de Aminoácidos , Conformação Proteica em Folha beta , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Concentração de Íons de Hidrogênio , Conformação Proteica em alfa-Hélice , Estrutura Secundária de Proteína
9.
Sci Rep ; 14(1): 11011, 2024 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744937

RESUMO

Spider silk is a promising material with great potential in biomedical applications due to its incredible mechanical properties and resistance to degradation of commercially available bacterial strains. However, little is known about the bacterial communities that may inhabit spider webs and how these microorganisms interact with spider silk. In this study, we exposed two exopolysaccharide-secreting bacteria, isolated from webs of an orb spider, to major ampullate (MA) silk from host spiders. The naturally occurring lipid and glycoprotein surface layers of MA silk were experimentally removed to further probe the interaction between bacteria and silk. Extensibility of major ampullate silk produced by Triconephila clavata that was exposed to either Microbacterium sp. or Novosphigobium sp. was significantly higher than that of silk that was not exposed to bacteria (differed by 58.7%). This strain-enhancing effect was not observed when the lipid and glycoprotein surface layers of MA silks were removed. The presence of exopolysaccharides was detected through NMR from MA silks exposed to these two bacteria but not from those without exposure. Here we report for the first time that exopolysaccharide-secreting bacteria inhabiting spider webs can enhance extensibility of host MA silks and silk surface layers play a vital role in mediating such effects.


Assuntos
Seda , Aranhas , Animais , Aranhas/microbiologia , Aranhas/metabolismo , Seda/metabolismo , Bactérias/metabolismo , Polissacarídeos Bacterianos/metabolismo
10.
Pestic Biochem Physiol ; 199: 105798, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38458668

RESUMO

Spiders, the major predatory enemies of insect pests in fields, are vulnerable to insecticides. In this study, we observed that the recommended dose of buprofezin delayed the molting of the pond wolf spider Pardosa pseudoannulata, although it had no lethal effect on the spiders. Since buprofezin is an insect chitin biosynthesis inhibitor, we identified two chitin synthase genes (PpCHS1 and PpCHS2) in P. pseudoannulata. Tissue-specific expression profiling showed that PpCHS1 was most highly expressed in cuticle. In contrast, PpCHS2 showed highest mRNA levels in the midgut and fat body. RNAi knockdown of PpCHS1 significantly delayed the molting of 12-days old spiderlings, whereas no significant effect on the molting was observed in the PpCHS2-silencing spiderlings. The expression of PpCHS1 was significantly suppressed in the spiderlings treated with buprofezin, but rescued by exogenous ecdysteroid ponasterone A (PA). Consistent with this result, the molting delay caused by buprofezin was also rescued by PA. The results revealed that buprofezin delayed the molting of spiders by suppressing PpCHS1 expression, which will benefit the protection of P. pseudoannulate and related spider species.


Assuntos
Animais Peçonhentos , Quitina Sintase , Aranhas , Tiadiazinas , Animais , Quitina Sintase/genética , Quitina Sintase/metabolismo , Muda/genética , Insetos , Aranhas/genética , Aranhas/metabolismo , Quitina/metabolismo
11.
Methods Mol Biol ; 2758: 331-340, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38549023

RESUMO

Spider venoms are composed of hundreds of proteins and peptides. Several of these venom toxins are cysteine-rich peptides in the mass range of 3-9 kDa. Small peptides (<3 kDa) can be fully characterized by mass spectrometry analysis, while proteins are generally identified by the bottom-up approach in which proteins are first digested with trypsin to generate shorter peptides for MS/MS characterization. In general, it is sufficient for protein identification to sequence two or more peptides, but for venom peptidomics it is desirable to completely elucidate peptide sequences and the number of disulfide bonds in the molecules. In this chapter, we describe a methodology to completely sequence and determine the number of disulfide bonds of spider venom peptides in the mass range of 3-9 kDa by multiple enzyme digestion, mass spectrometry of native and digested peptides, de novo analysis, and sequence overlap alignment.


Assuntos
Venenos de Aranha , Aranhas , Animais , Espectrometria de Massas em Tandem , Venenos de Aranha/química , Peptídeos/química , Sequência de Aminoácidos , Dissulfetos/análise , Aranhas/metabolismo
12.
Adv Sci (Weinh) ; 11(22): e2400128, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38520721

RESUMO

The unique 3D structure of spider silk protein (spidroin) determines the excellent mechanical properties of spidroin fiber, but the difficulty of heterologous expression and poor spinning performance of recombinant spider silk protein limit its application. A high-yield low-molecular-weight biomimetic spidroin (Amy-6rep) is obtained by sequence modification, and its excellent spinning performance is verified by electrospinning it for use as a nanogenerator. Amy-6rep increases the highly fibrogenic microcrystalline region in the core repeat region of natural spidroin with limited sequence length and replaces the polyalanine sequence with an amyloid polypeptide through structural similarity. Due to sequence modification, the expression of Amy-6rep increased by ≈200%, and the self-assembly performance of Amy-6rep significantly increased. After electrospinning with Amy-6rep, the nanofibers exhibit good tribopower generation capacity. In this paper, a biomimetic spidroin sequence design with high yield and good spinning performance is reported, and a strategy for electrospinning to produce an artificial nanogenerator is explored.


Assuntos
Fibroínas , Fibroínas/química , Fibroínas/genética , Fibroínas/metabolismo , Animais , Nanofibras/química , Aranhas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Seda/química , Seda/genética
13.
BMC Genomics ; 25(1): 150, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326752

RESUMO

BACKGROUND: The common house spider Parasteatoda tepidariorum represents an emerging new model organism of arthropod evolutionary and developmental (EvoDevo) studies. Recent technical advances have resulted in the first single-cell sequencing (SCS) data on this species allowing deeper insights to be gained into its early development, but mid-to-late stage embryos were not included in these pioneering studies. RESULTS: Therefore, we performed SCS on mid-to-late stage embryos of Parasteatoda and characterized resulting cell clusters by means of in-silico analysis (comparison of key markers of each cluster with previously published information on these genes). In-silico prediction of the nature of each cluster was then tested/verified by means of additional in-situ hybridization experiments with additional markers of each cluster. CONCLUSIONS: Our data show that SCS data reliably group cells with similar genetic fingerprints into more or less distinct clusters, and thus allows identification of developing cell types on a broader level, such as the distinction of ectodermal, mesodermal and endodermal cell lineages, as well as the identification of distinct developing tissues such as subtypes of nervous tissue cells, the developing heart, or the ventral sulcus (VS). In comparison with recent other SCS studies on the same species, our data represent later developmental stages, and thus provide insights into different stages of developing cell types and tissues such as differentiating neurons and the VS that are only present at these later stages.


Assuntos
Aranhas , Animais , Aranhas/genética , Aranhas/metabolismo , Evolução Biológica , Mesoderma , Células Germinativas , Análise de Sequência de RNA
14.
Acta Biomater ; 176: 190-200, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38199426

RESUMO

Achieving ultra-high tensile strength and exceptional toughness is a longstanding goal for structural materials. However, previous attempts using covalent and non-covalent bonds have failed, leading to the belief that these two properties are mutually exclusive. Consequently, commercial fibers have been forced to compromise between tensile strength and toughness, as seen in the differences between nylon and Kevlar. To address this challenge, we drew inspiration from the disparate tensile strength and toughness of nylon and Kevlar, both of which are polyamide fibers, and developed an innovative approach that combines specific intermolecular disulfide bonds and reversible hydrogen bonds to create ultra-strong and ultra-tough polyamide spider silk fibers. Our resulting Supramolecular polyamide spider silk, which has a maximum molecular weight of 1084 kDa, exhibits high tensile strength (1180 MPa) and extraordinary toughness (433 MJ/m3), surpassing Kevlar's toughness 8-fold. This breakthrough presents a new opportunity for the sustainable development of spider silk as an environmentally friendly alternative to synthetic commercial fibers, as spider silk is composed of amino acids. Future research could explore the use of these techniques and fundamental knowledge to develop other super materials in various mechanical fields, with the potential to improve people's lives in many ways. STATEMENT OF SIGNIFICANCE: • By emulating synthetic commercial fibers such as nylon and polyethylene, we have successfully produced supramolecular-weight polyamide spider silk fibers with a molecular weight of 1084 kDa through a unique covalent bond-mediated linear polymerization reaction of spider silk protein molecules. This greatly surpasses the previous record of a maximum molecular weight of 556 kDa. • We obtained supramolecular polyamide spider silk fibers with both high-tensile strength and toughness. The stress at break is 1180 MPa, and the toughness is 8 times that of kevlar, reaching 433 MJ/m3. • Our results challenge the notion that it is impossible to manufacture fibers with both ultra-high tensile strength and ultra-toughness, and provide theoretical guidance for developing environmentally friendly and sustainable structural materials that meet industrial needs.


Assuntos
Seda , Aranhas , Humanos , Animais , Seda/química , Nylons , Ligação de Hidrogênio , Aranhas/metabolismo , Resistência à Tração
15.
Sci Rep ; 13(1): 22273, 2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-38097700

RESUMO

In order to produce artificial silk fibers with properties that match the native spider silk we likely need to closely mimic the spinning process as well as fiber architecture and composition. To increase our understanding of the structure and function of the different silk glands of the orb weaver Larinioides sclopetarius, we used resin sections for detailed morphology, paraffin embedded sections for a variety of different histological stainings, and a histochemical method for localization of carbonic anhydrase activity. Our results show that all silk glands, except the tubuliform glands, are composed of two or more columnar epithelial cell types, some of which have not been described previously. We observed distinct regionalization of the cell types indicating sequential addition of secretory products during silk formation. This means that the major ampullate, minor ampullate, aciniform type II, and piriform silk fibers most likely are layered and that each layer has a specific composition. Furthermore, a substance that stains positive for polysaccharides may be added to the silk in all glands except in the type I aciniform glands. Active carbonic anhydrase was found in all silk glands and/or ducts except in the type I aciniform and tubuliform glands, with the strongest staining in aggregate glands and their ductal nodules. Carbonic anhydrase plays an important role in the generation of a pH gradient in the major ampullate glands, and our results suggest that some other glands may also harbor pH gradients.


Assuntos
Anidrases Carbônicas , Fibroínas , Aranhas , Animais , Seda/química , Aranhas/metabolismo , Fibroínas/química
16.
P. R. health sci. j ; 11(2): 73-6, ago. 1992.
Artigo em Inglês | LILACS | ID: lil-176756

RESUMO

In studying the process of protein synthesis of a silk-producing organism we have found that several macromolecules must be synthesized in order for the process to occur. Through time course studies, we have found that small RNAs may play a paramount role in directing the finely orchestrated process. Alanine tRNA, U1 snRNA, and 5S RNA have been identified through Northern blotting as molecules timely and tissue-specific synthesized and upgraded as a prelude activity for the silk being produced


Assuntos
Animais , Feminino , Fibroínas/biossíntese , Aranhas/metabolismo , Northern Blotting , Eletroforese , RNA Nuclear Pequeno/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA