Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 714
Filtrar
1.
J Microbiol ; 62(8): 611-625, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38985432

RESUMO

Most microorganisms resist pure cultivation under conventional laboratory conditions. One of the primary issues for this un-culturability is the absence of biologically produced growth-promoting factors in traditionally defined growth media. However, whether cultivating microbes by providing spent culture supernatant of pivotal microbes in the growth medium can be an effective approach to overcome this limitation is still an under-explored area of research. Here, we used the spent culture medium (SCM) method to isolate previously uncultivated marine bacteria and compared the efficiency of this method with the traditional cultivation (TC) method. In the SCM method, Ca. Bathyarchaeia-enriched supernatant (10%) was used along with recalcitrant organic substrates such as lignin, humic acid, and organic carbon mixture. Ca. Bathyarchaeia, a ubiquitous class of archaea, have the capacity to produce metabolites, making their spent culture supernatant a key source to recover new bacterial stains. Both cultivation methods resulted in the recovery of bacterial species from the phyla Pseudomonadota, Bacteroidota, Actinomycetota, and Bacillota. However, our SCM approach also led to the recovery of species from rarely cultivated groups, such as Planctomycetota, Deinococcota, and Balneolota. In terms of the isolation of new taxa, the SCM method resulted in the cultivation of 80 potential new strains, including one at the family, 16 at the genus, and 63 at the species level, with a novelty ratio of ~ 35% (80/219). In contrast, the TC method allowed the isolation of ~ 10% (19/171) novel strains at species level only. These findings suggest that the SCM approach improved the cultivation of novel and diverse bacteria.


Assuntos
Bactérias , Meios de Cultura , Sedimentos Geológicos , RNA Ribossômico 16S , Água do Mar , Bactérias/metabolismo , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/crescimento & desenvolvimento , Bactérias/genética , Sedimentos Geológicos/microbiologia , Meios de Cultura/química , Água do Mar/microbiologia , RNA Ribossômico 16S/genética , Filogenia , Archaea/metabolismo , Archaea/classificação , Archaea/crescimento & desenvolvimento , Archaea/isolamento & purificação , DNA Bacteriano/genética , Oceanos e Mares
2.
Nature ; 632(8027): 1118-1123, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39048824

RESUMO

Methane is the second most abundant climate-active gas, and understanding its sources and sinks is an important endeavour in microbiology, biogeochemistry, and climate sciences1,2. For decades, it was thought that methanogenesis, the ability to conserve energy coupled to methane production, was taxonomically restricted to a metabolically specialized group of archaea, the Euryarchaeota1. The discovery of marker genes for anaerobic alkane cycling in metagenome-assembled genomes obtained from diverse habitats has led to the hypothesis that archaeal lineages outside the Euryarchaeota are also involved in methanogenesis3-6. Here we cultured Candidatus Methanosuratincola verstraetei strain LCB70, a member of the archaeal class Methanomethylicia (formerly Verstraetearchaeota) within the phylum Thermoproteota, from a terrestrial hot spring. Growth experiments combined with activity assays, stable isotope tracing, and genomic and transcriptomic analyses demonstrated that this thermophilic archaeon grows by means of methyl-reducing hydrogenotrophic methanogenesis. Cryo-electron tomography revealed that Ca. M. verstraetei are coccoid cells with archaella and chemoreceptor arrays, and that they can form intercellular bridges connecting two to three cells with continuous cytoplasm and S-layer. The wide environmental distribution of Ca. M. verstraetei suggests that they might play important and hitherto overlooked roles in carbon cycling within diverse anoxic habitats.


Assuntos
Archaea , Metano , Archaea/classificação , Archaea/citologia , Archaea/genética , Archaea/crescimento & desenvolvimento , Archaea/metabolismo , Genoma Arqueal/genética , Fontes Termais/microbiologia , Metano/biossíntese , Metano/metabolismo , Filogenia , Hidrogênio/metabolismo , Oxirredução , Perfilação da Expressão Gênica , Tomografia com Microscopia Eletrônica , Ciclo do Carbono
3.
Nature ; 632(8027): 1131-1136, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39048017

RESUMO

Methanogenesis mediated by archaea is the main source of methane, a strong greenhouse gas, and thus is critical for understanding Earth's climate dynamics. Recently, genes encoding diverse methanogenesis pathways have been discovered in metagenome-assembled genomes affiliated with several archaeal phyla1-7. However, all experimental studies on methanogens are at present restricted to cultured representatives of the Euryarchaeota. Here we show methanogenic growth by a member of the lineage Korarchaeia within the phylum Thermoproteota (TACK superphylum)5-7. Following enrichment cultivation of 'Candidatus Methanodesulfokora washburnenis' strain LCB3, we used measurements of metabolic activity and isotope tracer conversion to demonstrate methanol reduction to methane using hydrogen as an electron donor. Analysis of the archaeon's circular genome and transcriptome revealed unique modifications in the energy conservation pathways linked to methanogenesis, including enzyme complexes involved in hydrogen and sulfur metabolism. The cultivation and characterization of this new group of archaea is critical for a deeper evaluation of the diversity, physiology and biochemistry of methanogens.


Assuntos
Archaea , Metano , Archaea/classificação , Archaea/enzimologia , Archaea/genética , Archaea/crescimento & desenvolvimento , Archaea/metabolismo , Elétrons , Genoma Arqueal/genética , Hidrogênio/metabolismo , Metano/biossíntese , Metano/metabolismo , Metanol/metabolismo , Oxirredução , Filogenia , Enxofre/metabolismo , Transcriptoma
5.
Nat Commun ; 15(1): 515, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38225278

RESUMO

The archaeal ancestor of eukaryotes apparently belonged to the phylum Asgardarchaeota, but the ecology and evolution of Asgard archaea are poorly understood. The optimal GDP-binding temperature of a translation elongation factor (EF-1A or EF-Tu) has been previously shown to correlate with the optimal growth temperature of diverse prokaryotes. Here, we reconstruct ancestral EF-1A sequences and experimentally measure the optimal GDP-binding temperature of EF-1A from ancient and extant Asgard archaea, to infer the evolution of optimal growth temperatures in Asgardarchaeota. Our results suggest that the Asgard ancestor of eukaryotes was a moderate thermophile, with an optimal growth temperature around 53 °C. The origin of eukaryotes appears to coincide with a transition from thermophilic to mesophilic lifestyle during the evolution of Asgard archaea.


Assuntos
Archaea , Guanosina Difosfato , Fator 1 de Elongação de Peptídeos , Archaea/crescimento & desenvolvimento , Filogenia , Temperatura , Guanosina Difosfato/metabolismo , Fator 1 de Elongação de Peptídeos/metabolismo
6.
Nature ; 613(7943): 332-339, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36544020

RESUMO

Asgard archaea are considered to be the closest known relatives of eukaryotes. Their genomes contain hundreds of eukaryotic signature proteins (ESPs), which inspired hypotheses on the evolution of the eukaryotic cell1-3. A role of ESPs in the formation of an elaborate cytoskeleton and complex cellular structures has been postulated4-6, but never visualized. Here we describe a highly enriched culture of 'Candidatus Lokiarchaeum ossiferum', a member of the Asgard phylum, which thrives anaerobically at 20 °C on organic carbon sources. It divides every 7-14 days, reaches cell densities of up to 5 × 107 cells per ml and has a significantly larger genome compared with the single previously cultivated Asgard strain7. ESPs represent 5% of its protein-coding genes, including four actin homologues. We imaged the enrichment culture using cryo-electron tomography, identifying 'Ca. L. ossiferum' cells on the basis of characteristic expansion segments of their ribosomes. Cells exhibited coccoid cell bodies and a network of branched protrusions with frequent constrictions. The cell envelope consists of a single membrane and complex surface structures. A long-range cytoskeleton extends throughout the cell bodies, protrusions and constrictions. The twisted double-stranded architecture of the filaments is consistent with F-actin. Immunostaining indicates that the filaments comprise Lokiactin-one of the most highly conserved ESPs in Asgard archaea. We propose that a complex actin-based cytoskeleton predated the emergence of the first eukaryotes and was a crucial feature in the evolution of the Asgard phylum by scaffolding elaborate cellular structures.


Assuntos
Citoesqueleto de Actina , Archaea , Eucariotos , Filogenia , Citoesqueleto de Actina/metabolismo , Actinas/classificação , Actinas/genética , Actinas/metabolismo , Archaea/classificação , Archaea/citologia , Archaea/genética , Archaea/crescimento & desenvolvimento , Eucariotos/classificação , Eucariotos/citologia , Eucariotos/metabolismo , Anaerobiose , Ribossomos/metabolismo , Estruturas da Membrana Celular/metabolismo , Proteínas Arqueais/classificação , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Evolução Molecular
7.
Nature ; 612(7941): 764-770, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36477536

RESUMO

The ocean-atmosphere exchange of CO2 largely depends on the balance between marine microbial photosynthesis and respiration. Despite vast taxonomic and metabolic diversity among marine planktonic bacteria and archaea (prokaryoplankton)1-3, their respiration usually is measured in bulk and treated as a 'black box' in global biogeochemical models4; this limits the mechanistic understanding of the global carbon cycle. Here, using a technology for integrated phenotype analyses and genomic sequencing of individual microbial cells, we show that cell-specific respiration rates differ by more than 1,000× among prokaryoplankton genera. The majority of respiration was found to be performed by minority members of prokaryoplankton (including the Roseobacter cluster), whereas cells of the most prevalent lineages (including Pelagibacter and SAR86) had extremely low respiration rates. The decoupling of respiration rates from abundance among lineages, elevated counts of proteorhodopsin transcripts in Pelagibacter and SAR86 cells and elevated respiration of SAR86 at night indicate that proteorhodopsin-based phototrophy3,5-7 probably constitutes an important source of energy to prokaryoplankton and may increase growth efficiency. These findings suggest that the dependence of prokaryoplankton on respiration and remineralization of phytoplankton-derived organic carbon into CO2 for its energy demands and growth may be lower than commonly assumed and variable among lineages.


Assuntos
Organismos Aquáticos , Archaea , Bactérias , Ciclo do Carbono , Respiração Celular , Plâncton , Alphaproteobacteria/genética , Alphaproteobacteria/crescimento & desenvolvimento , Alphaproteobacteria/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Dióxido de Carbono/metabolismo , Plâncton/classificação , Plâncton/genética , Plâncton/crescimento & desenvolvimento , Plâncton/metabolismo , Água do Mar/microbiologia , Organismos Aquáticos/classificação , Organismos Aquáticos/genética , Organismos Aquáticos/crescimento & desenvolvimento , Organismos Aquáticos/metabolismo , Archaea/genética , Archaea/crescimento & desenvolvimento , Archaea/metabolismo , Respiração Celular/fisiologia , Fotossíntese
8.
Sci Rep ; 12(1): 2064, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35136122

RESUMO

Microbial community metabolism and functionality play a key role modulating global biogeochemical processes. However, the metabolic activities and contribution of actively growing prokaryotes to ecosystem energy fluxes remain underexplored. Here we describe the temporal and spatial dynamics of active prokaryotes in the different water masses of the Mediterranean Sea using a combination of bromodeoxyuridine labelling and 16S rRNA gene Illumina sequencing. Bulk and actively dividing prokaryotic communities were drastically different and depth stratified. Alteromonadales were rare in bulk communities (contributing 0.1% on average) but dominated the actively dividing community throughout the overall water column (28% on average). Moreover, temporal variability of actively dividing Alteromonadales oligotypes was evinced. SAR86, Actinomarinales and Rhodobacterales contributed on average 3-3.4% each to the bulk and 11, 8.4 and 8.5% to the actively dividing communities in the epipelagic zone, respectively. SAR11 and Nitrosopumilales contributed less to the actively dividing than to the bulk communities during all the study period. Noticeably, the large contribution of these two taxa to the total prokaryotic communities (23% SAR11 and 26% Nitrosopumilales), especially in the meso- and bathypelagic zones, results in important contributions to actively dividing communities (11% SAR11 and 12% Nitrosopumilales). The intense temporal and spatial variability of actively dividing communities revealed in this study strengthen the view of a highly dynamic deep ocean. Our results suggest that some rare or low abundant phylotypes from surface layers down to the deep sea can disproportionally contribute to the activity of the prokaryotic communities, exhibiting a more dynamic response to environmental changes than other abundant phylotypes, emphasizing the role they might have in community metabolism and biogeochemical processes.


Assuntos
Alphaproteobacteria/crescimento & desenvolvimento , Archaea/crescimento & desenvolvimento , Gammaproteobacteria/crescimento & desenvolvimento , Microbiota/genética , Alphaproteobacteria/classificação , Alphaproteobacteria/genética , Archaea/classificação , Archaea/genética , Bromodesoxiuridina/química , Meio Ambiente , Gammaproteobacteria/classificação , Gammaproteobacteria/genética , Mar Mediterrâneo , Microbiota/fisiologia , RNA Ribossômico 16S/genética , Água do Mar/microbiologia
9.
Sci Rep ; 12(1): 2675, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35177734

RESUMO

Life at hydrothermal vent sites is based on chemosynthetic primary producers that supply heterotrophic microorganisms with substrates and generate biomass for higher trophic levels. Often, chemoautotrophs associate with the hydrothermal vent megafauna. To investigate attached bacterial and archaeal communities on deep-sea squat lobsters, we collected ten specimens from a hydrothermal vent in the Guaymas Basin (Gulf of California). All animals were identified as Munidopsis alvisca via morphological and molecular classification, and intraspecific divergence was determined. Amplicon sequencing of microbial DNA and cDNA revealed significant differences between microbial communities on the carapaces of M. alvisca and those in ambient sea water. Major epibiotic bacterial taxa were chemoautotrophic Gammaproteobacteria, such as Thiotrichaceae and Methylococcaceae, while archaea were almost exclusively represented by sequences affiliated with Ca. Nitrosopumilus. In sea water samples, Marine Group II and III archaea and organoheterotrophic Alphaproteobacteria, Flavobacteriia and Planctomycetacia were more dominant. Based on the identified taxa, we assume that main metabolic processes, carried out by M. alvisca epibiota, include ammonia, methane and sulphide oxidation. Considering that M. alvisca could benefit from sulphide detoxification by its epibiota, and that attached microbes are supplied with a stable habitat in proximity to substrate-rich hydrothermal fluids, a mutualistic host-microbe relationship appears likely.


Assuntos
Anomuros/microbiologia , Archaea , Bactérias , Microbiota , Animais , Archaea/classificação , Archaea/crescimento & desenvolvimento , Bactérias/classificação , Bactérias/crescimento & desenvolvimento , Água do Mar/microbiologia
10.
Sci Rep ; 12(1): 80, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34997015

RESUMO

The cumulative effects of anthropogenic stress on freshwater ecosystems are becoming increasingly evident and worrisome. In lake sediments contaminated by heavy metals, the composition and structure of microbial communities can change and affect nutrient transformation and biogeochemical cycling of sediments. In this study, bacterial and archaeal communities of lake sediments under fish pressure contaminated with heavy metals were investigated by the Illumina MiSeq platform. Despite the similar content of most of the heavy metals in the lagoon sediments, we found that their microbial communities were different in diversity and composition. This difference would be determined by the resilience or tolerance of the microbial communities to the heavy metal enrichment gradient. Thirty-two different phyla and 66 different microbial classes were identified in sediment from the three lagoons studied. The highest percentages of contribution in the differentiation of microbial communities were presented by the classes Alphaproteobacteria (19.08%), Cyanophyceae (14.96%), Betaproteobacteria (9.01%) y Actinobacteria (7.55%). The bacteria that predominated in sediments with high levels of Cd and As were Deltaproteobacteria, Actinobacteria, Coriobacteriia, Nitrososphaeria and Acidobacteria (Pomacocha), Alphaproteobacteria, Chitinophagia, Nitrospira and Clostridia (Tipicocha) and Betaproteobacteria (Tranca Grande). Finally, the results allow us to expand the current knowledge of microbial diversity in lake sediments contaminated with heavy metals and to identify bioindicators taxa of environmental quality that can be used in the monitoring and control of heavy metal contamination.


Assuntos
Archaea/efeitos dos fármacos , Bactérias/efeitos dos fármacos , Pesqueiros , Sedimentos Geológicos/microbiologia , Lagos/microbiologia , Metais Pesados/toxicidade , Microbiologia da Água , Poluentes Químicos da Água/toxicidade , Archaea/crescimento & desenvolvimento , Bactérias/crescimento & desenvolvimento , Monitoramento Ambiental , Metais Pesados/análise , Microbiota , Filogenia , Poluentes Químicos da Água/análise
11.
Appl Environ Microbiol ; 87(20): e0103821, 2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34347515

RESUMO

In the environment, nutrients are rarely available in a constant supply. Therefore, microorganisms require strategies to compete for limiting nutrients. In freshwater systems, ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) compete with heterotrophic bacteria, photosynthetic microorganisms, and each other for ammonium, which AOA and AOB utilize as their sole source of energy and nitrogen. We investigated the competition between highly enriched cultures of AOA (AOA-AC1) and AOB (AOB-G5-7) for ammonium. Based on the amoA gene, the newly enriched archaeal ammonia oxidizer in AOA-AC1 was closely related to Nitrosotenuis spp., and the bacterial ammonia oxidizer in AOB-G5-7, Nitrosomonas sp. strain Is79, belonged to the Nitrosomonas oligotropha group (Nitrosomonas cluster 6a). Growth experiments in batch cultures showed that AOB-G5-7 had higher growth rates than AOA-AC1 at higher ammonium concentrations. During chemostat competition experiments under ammonium-limiting conditions, AOA-AC1 dominated the cultures, while AOB-G5-7 decreased in abundance. In batch cultures, the outcome of the competition between AOA and AOB was determined by the initial ammonium concentrations. AOA-AC1 was the dominant ammonia oxidizer at an initial ammonium concentration of 50 µM, and AOB-G5-7 was dominant at 500 µM. These findings indicate that during direct competition, AOA-AC1 was able to use ammonium that was unavailable to AOB-G5-7, while AOB-G5-7 dominated at higher ammonium concentrations. The results are in strong accordance with environmental survey data suggesting that AOA are mainly responsible for ammonia oxidation under more oligotrophic conditions, whereas AOB dominate under eutrophic conditions. IMPORTANCE Nitrification is an important process in the global nitrogen cycle. The first step, ammonia oxidation to nitrite, can be carried out by ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB). In many natural environments, these ammonia oxidizers coexist. Therefore, it is important to understand the population dynamics in response to increasing ammonium concentrations. Here, we study the competition between AOA and AOB enriched from freshwater systems. The results demonstrate that AOA are more abundant in systems with low ammonium availabilities and that AOB are more abundant when the ammonium availability increases. These results will help to predict potential shifts in the community composition of ammonia oxidizers in the environment due to changes in ammonium availability.


Assuntos
Amônia/metabolismo , Archaea/metabolismo , Água Doce/microbiologia , Interações Microbianas , Nitrosomonas/metabolismo , Archaea/genética , Archaea/crescimento & desenvolvimento , Nitrosomonas/genética , Nitrosomonas/crescimento & desenvolvimento , Oxirredução , Filogenia
12.
Commun Biol ; 4(1): 845, 2021 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-34234272

RESUMO

The contribution of oxic methane production to greenhouse gas emissions from lakes is globally relevant, yet uncertainties remain about the levels up to which methanogenesis can counterbalance methanotrophy by leading to CH4 oversaturation in productive surface waters. Here, we explored the biogeochemical and microbial community variation patterns in a meromictic soda lake, in the East African Rift Valley (Kenya), showing an extraordinarily high concentration of methane in oxic waters (up to 156 µmol L-1). Vertical profiles of dissolved gases and their isotopic signature indicated a biogenic origin of CH4. A bloom of Oxyphotobacteria co-occurred with abundant hydrogenotrophic and acetoclastic methanogens, mostly found within suspended aggregates promoting the interactions between Bacteria, Cyanobacteria, and Archaea. Moreover, aggregate sedimentation appeared critical in connecting the lake compartments through biomass and organic matter transfer. Our findings provide insights into understanding how hydrogeochemical features of a meromictic soda lake, the origin of carbon sources, and the microbial community profiles, could promote methane oversaturation and production up to exceptionally high rates.


Assuntos
Archaea/crescimento & desenvolvimento , Cianobactérias/crescimento & desenvolvimento , Água Doce/microbiologia , Lagos/microbiologia , Metano/análise , Archaea/classificação , Archaea/genética , Biomassa , Cianobactérias/classificação , Cianobactérias/genética , Cromatografia Gasosa-Espectrometria de Massas , Geografia , Gases de Efeito Estufa/análise , Quênia , RNA Ribossômico 16S/genética
13.
PLoS One ; 16(6): e0253233, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34129622

RESUMO

The spatial and temporal distribution of the archaeal community and its driving factors in the sediments of large-scale regulated rivers, especially in rivers with cascade hydropower development rivers, remain poorly understood. Quantitative PCR (qPCR) and Illumina MiSeq sequencing of the 16S rRNA archaeal gene were used to comprehensively investigate the spatiotemporal diversity and structure of archaeal community in the sediments of the Lancang River cascade reservoirs (LRCR). The archaeal abundance ranged from 5.11×104 to 1.03×106 16S rRNA gene copies per gram dry sediment and presented no temporal variation. The richness, diversity, and community structure of the archaeal community illustrated a drastic spatial change. Thaumarchaeota and Euryyarchaeota were the dominant archaeal phyla in the sediments of the cascade rivers, and Bathyarchaeota was also an advantage in the sediments. PICRUSt metabolic inference analysis revealed a growing number of genes associated with xenobiotic metabolism and carbon and nitrogen metabolism in downstream reservoirs, indicating that anthropogenic pollution discharges might act as the dominant selective force to alter the archaeal communities. Nitrate and C/N ratio were found to play important roles in the formation of the archaeal community composition. In addition, the sediment archaeal community structure was also closely related to the age of the cascade reservoir and hydraulic retention time (HRT). This finding indicates that the engineering factors of the reservoir might be the greatest contributor to the archaeal community structure in the LRCR.


Assuntos
Archaea/crescimento & desenvolvimento , Sedimentos Geológicos/microbiologia , Rios/microbiologia , Archaea/genética , Archaea/metabolismo , Archaea/fisiologia , China , DNA Arqueal/genética , Variação Genética/genética , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/genética , Análise Espaço-Temporal
14.
Nat Commun ; 12(1): 2069, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33824308

RESUMO

The oxygenation of early Earth's atmosphere during the Great Oxidation Event, is generally accepted to have been caused by oceanic Cyanobacterial oxygenic photosynthesis. Recent studies suggest that Fe(II) toxicity delayed the Cyanobacterial expansion necessary for the GOE. This study investigates the effects of Fe(II) on two Cyanobacteria, Pseudanabaena sp. PCC7367 and Synechococcus sp. PCC7336, in a simulated shallow-water marine Archean environment. A similar Fe(II) toxicity response was observed as reported for closed batch cultures. This toxicity was not observed in cultures provided with continuous gaseous exchange that showed significantly shorter doubling times than the closed-culture system, even with repeated nocturnal addition of Fe(II) for 12 days. The green rust (GR) formed under high Fe(II) conditions, was not found to be directly toxic to Pseudanabaena sp. PCC7367. In summary, we present evidence of diurnal Fe cycling in a simulated shallow-water marine environment for two ancestral strains of Cyanobacteria, with increased O2 production under anoxic conditions.


Assuntos
Organismos Aquáticos/metabolismo , Archaea/metabolismo , Ritmo Circadiano , Ferro/metabolismo , Oxigênio/metabolismo , Organismos Aquáticos/efeitos dos fármacos , Organismos Aquáticos/crescimento & desenvolvimento , Archaea/efeitos dos fármacos , Archaea/crescimento & desenvolvimento , Atmosfera , Clorofila A/metabolismo , Ferro/toxicidade , Modelos Biológicos , Água do Mar
15.
Gut Microbes ; 13(1): 1-25, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33779487

RESUMO

Brain-gut microbiota interactions are intensively studied in connection with various neurological and psychiatric diseases. While anorexia nervosa (AN) pathophysiology is not entirely clear, it is presumably linked to microbiome dysbiosis. We aimed to elucidate the gut microbiota contribution in AN disease pathophysiology. We analyzed the composition and diversity of the gut microbiome of patients with AN (bacteriome and mycobiome) from stool samples before and after renourishment, and compared them to healthy controls. Further, levels of assorted neurotransmitters and short-chain fatty acids (SCFA) were analyzed in stool samples by MS and NMR, respectively. Biochemical, anthropometric, and psychometric profiles were assessed. The bacterial alpha-diversity parameter analyses revealed only increased Chao 1 index in patients with AN before the realimentation, reflecting their interindividual variation. Subsequently, core microbiota depletion signs were observed in patients with AN. Overrepresented OTUs (operation taxonomic units) in patients with AN taxonomically belonged to Alistipes, Clostridiales, Christensenellaceae, and Ruminococcaceae. Underrepresented OTUs in patients with AN were Faecalibacterium, Agathobacter, Bacteroides, Blautia, and Lachnospira. Patients exhibited greater interindividual variation in the gut bacteriome, as well as in metagenome content compared to controls, suggesting altered bacteriome functions. Patients had decreased levels of serotonin, GABA, dopamine, butyrate, and acetate in their stool samples compared to controls. Mycobiome analysis did not reveal significant differences in alpha diversity and fungal profile composition between patients with AN and healthy controls, nor any correlation of the fungal composition with the bacterial profile. Our results show the changed profile of the gut microbiome and its metabolites in patients with severe AN. Although therapeutic partial renourishment led to increased body mass index and improved psychometric parameters, SCFA, and neurotransmitter profiles, as well as microbial community compositions, did not change substantially during the hospitalization period, which can be potentially caused by only partial weight recovery.


Assuntos
Anorexia Nervosa/metabolismo , Anorexia Nervosa/microbiologia , Ácidos Graxos Voláteis/metabolismo , Microbioma Gastrointestinal , Neurotransmissores/metabolismo , Adulto , Archaea/classificação , Archaea/crescimento & desenvolvimento , Bactérias/classificação , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Índice de Massa Corporal , Eixo Encéfalo-Intestino , Fezes/microbiologia , Feminino , Fungos/classificação , Fungos/crescimento & desenvolvimento , Fungos/metabolismo , Humanos , Estudos Longitudinais , Metagenoma , Micobioma , Adulto Jovem
16.
BMC Microbiol ; 21(1): 12, 2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-33407126

RESUMO

BACKGROUND: An aquaponic system couples cultivation of plants and fish in the same aqueous medium. The system consists of interconnected compartments for fish rearing and plant production, as well as for water filtration, with all compartments hosting diverse microbial communities, which interact within the system. Due to the design, function and operation mode of the individual compartments, each of them exhibits unique biotic and abiotic conditions. Elucidating how these conditions shape microbial communities is useful in understanding how these compartments may affect the quality of the water, in which plants and fish are cultured. RESULTS: We investigated the possible relationships between microbial communities from biofilms and water quality parameters in different compartments of the aquaponic system. Biofilm samples were analyzed by total community profiling for bacterial and archaeal communities. The results implied that the oxygen levels could largely explain the main differences in abiotic parameters and microbial communities in each compartment of the system. Aerobic system compartments are highly biodiverse and work mostly as a nitrifying biofilter, whereas biofilms in the anaerobic compartments contain a less diverse community. Finally, the part of the system connecting the aerobic and anaerobic processes showed common conditions where both aerobic and anaerobic processes were observed. CONCLUSION: Different predicted microbial activities for each compartment were found to be supported by the abiotic parameters, of which the oxygen saturation, total organic carbon and total nitrogen differentiated clearly between samples from the main aerobic loop and the anaerobic compartments. The latter was also confirmed using microbial community profile analysis.


Assuntos
Archaea/crescimento & desenvolvimento , Bactérias/crescimento & desenvolvimento , Biofilmes/crescimento & desenvolvimento , Plantas/microbiologia , Tilápia/microbiologia , Aerobiose , Anaerobiose , Animais , Archaea/metabolismo , Bactérias/metabolismo , Carbono/metabolismo , Microbiota , Nitrogênio/metabolismo , Oxigênio/metabolismo , Microbiologia da Água
17.
Ecotoxicol Environ Saf ; 208: 111669, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33396179

RESUMO

In this study, one lab-scale EGSB reactor (1.47 L volume) was designed to treat the antibiotic wastewater under different environmental factors, including the addition of cephalexin (CFX), Temperature (T) and Hydraulic Retention Time (HRT). The microbial community structure in EGSB reactor was analyzed with high-throughput sequencing technology to investigate their response to environmental factors changes, and then the random-matrix-theory (RMT)-based network analysis was used to investigate the microbial community's molecular ecological network in EGSB systems treating antibiotics wastewater. Moreover, the explanatory value of each environmental factor on the change of microbial community structure was obtained through the result of redundancy analysis (RDA). The results showed that the addition of cephalexin (CFX), decline of T and decline of HRT (8 h) would decrease the removal efficiency of COD decreasing. And the removal efficiency of CFX would not be affected by decline of T and HRT, except the producing and degrading process of CFX by-products was changed obviously. The result of RDA analysis suggested the environmental factors mainly affected bacterial and fungal microbial community structure but not archaeal ones. The result of high-throughput sequencing showed the relative abundance (RA) of Firmicutes had been obviously affected by T and HRT, which might be main reason leading to the decrease of COD removal efficiency. In addition, molecular ecological network analysis showed the growth of Bacteroidetes occupied the niche of functional microorganism and led to the unstable operation of EGSB when T declined. What's more, the molecular ecological network analysis revealed that Exophiala which belonged to fungi Ascomycota phylum was the hub genus to degrade complex refractory organic pollutants, and Aceticlastic methanogens Methanosaeta was the core functional archaea genus.


Assuntos
Antibacterianos/isolamento & purificação , Reatores Biológicos/microbiologia , Microbiota , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos , Antibacterianos/metabolismo , Archaea/classificação , Archaea/genética , Archaea/crescimento & desenvolvimento , Archaea/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Fungos/classificação , Fungos/genética , Fungos/crescimento & desenvolvimento , Fungos/metabolismo , Temperatura , Águas Residuárias/química , Poluentes Químicos da Água/metabolismo
18.
J Appl Microbiol ; 130(5): 1442-1455, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33021028

RESUMO

AIMS: Ammonia oxidation is a significant process of nitrogen cycles in a lot of ecosystems sediments while there are few studies in shrimp culture pond (SCP) sediments. This paper attempted to explore the community diversity and abundance of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in SCP sediments at different culture stages. METHODS AND RESULTS: We collected SCP sediments and analysed the community diversity and abundance of AOA and bacteria in shrimp pond sediment at different culture stages using the ammonia monooxygenase (amoA) gene with quantitative PCR (qPCR) and 16S rRNA gene sequencing. The AOB-amoA gene abundance was showed higher than AOA-amoA gene abundance in SCP sediments on Day 50 and Day 60 after shrimp larvae introducing into the pond, and the diversity of AOA in SCP sediments was higher than that of AOB. The phylogenetic tree revealed that the most of AOA were the member of Nitrosopumilus and Nitrososphaera, and the majority of AOB sequences were clustered into Nitrosospira, Nitrosomonas clusters 6a and 7. The AOA community has close relationship with total organic carbon (TOC), pH, total phosphorus (TP), nitrate reductase, urease, acid phosphatase and ß-glucosidase. The AOB community was related to TOC, C/N and nitrate reductase. CONCLUSIONS: AOA and AOB play the different ecological roles in SCP sediments at different culture stages. SIGNIFICANCE AND IMPACT OF THE STUDY: Our results suggested that the different community diversity and abundance of AOA and AOB in SCP sediments, which may improve our ecological cognition of shrimp culture stages in SCP ecosystems.


Assuntos
Amônia/metabolismo , Aquicultura , Archaea/metabolismo , Bactérias/metabolismo , Sedimentos Geológicos/microbiologia , Microbiota/fisiologia , Penaeidae/crescimento & desenvolvimento , Animais , Archaea/classificação , Archaea/genética , Archaea/crescimento & desenvolvimento , Bactérias/classificação , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Ecossistema , Sedimentos Geológicos/química , Ciclo do Nitrogênio , Nitrosomonadaceae/classificação , Nitrosomonadaceae/crescimento & desenvolvimento , Nitrosomonadaceae/metabolismo , Oxirredução , Filogenia , Lagoas/microbiologia , RNA Ribossômico 16S
19.
Nat Rev Microbiol ; 19(4): 225-240, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33093661

RESUMO

Despite the surge of microbial genome data, experimental testing is important to confirm inferences about the cell biology, ecological roles and evolution of microorganisms. As the majority of archaeal and bacterial diversity remains uncultured and poorly characterized, culturing is a priority. The growing interest in and need for efficient cultivation strategies has led to many rapid methodological and technological advances. In this Review, we discuss common barriers that can hamper the isolation and culturing of novel microorganisms and review emerging, innovative methods for targeted or high-throughput cultivation. We also highlight recent examples of successful cultivation of novel archaea and bacteria, and suggest key microorganisms for future cultivation attempts.


Assuntos
Archaea/crescimento & desenvolvimento , Archaea/isolamento & purificação , Bactérias/crescimento & desenvolvimento , Bactérias/isolamento & purificação , Técnicas Bacteriológicas/métodos , Meios de Cultura
20.
Environ Microbiol ; 23(2): 1186-1198, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33283960

RESUMO

Deep-sea ecosystems, such as cold seeps and hydrothermal vents, have high biomass, even though they are located in the benthic zone, where no sunlight is present to provide energy for organism proliferation. Based on the coexistence of the reduced gases and chemoautotrophic microbes, it is inferred that the energy from the reduced gases supports the biocoenosis of deep-sea ecosystems. However, there is no direct evidence to support this deduction. Here, we developed and placed a biocoenosis generator, a device that continuously seeped methane, on the 1000-m deep-sea floor of the South China Sea to artificially construct a deep-sea ecosystem biocoenosis. The results showed that microorganisms, including bacteria and archaea, appeared in the biocoenosis generator first, followed by jellyfish and Gammaridea arthropods, indicating that a biocoenosis had been successfully constructed in the deep sea. Anaerobic methane-oxidizing archaea, which shared characteristics with the archaea of natural deep-sea cold seeps, acted as the first electron acceptors of the emitted methane; then, the energy in the electrons was transferred to downstream symbiotic archaea and bacteria and finally to animals. Nitrate-reducing bacteria served as partners to complete anaerobic oxidation of methane process. Further analysis revealed that viruses coexisted with these organisms during the origin of the deep-sea biocoenosis. Therefore, our study mimics a natural deep-sea ecosystem and provides the direct evidence to show that the chemical energy of reduced organic molecules, such as methane, supports the biocoenosis of deep-sea ecosystems.


Assuntos
Biota , Ecossistema , Metano/metabolismo , Água do Mar , Animais , Archaea/crescimento & desenvolvimento , Archaea/metabolismo , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Crescimento Quimioautotrófico , Metano/análise , Oceanos e Mares , Água do Mar/química , Água do Mar/microbiologia , Vírus/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA