Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Chemosphere ; 364: 143042, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39117085

RESUMO

The effectiveness of phosphorus (P) removal by sand filters is limited during septic tank effluent (STE) treatment. The elevated effluent P concentrations pose threats to drinking water quality and contribute to eutrophication. The concern of P leaching from sand filters is further exacerbated by the increased frequency of flooding and natural precipitation due to climate change. This study aimed to understand P attenuation and leaching dynamics, as well as the removal mechanisms in sand filters treating STE, offering insights into the design and implementation of P removal/recovery modules to onsite wastewater treatment systems. P attenuation and leaching during STE treatment and rainfall were studied in bench-scale columns (new vs. aged sand). At standard STE loading (1.2 gallon d-1 ft-2), 24-32% removal of total phosphorus (TP) was achieved, while increased P removal efficiency (35-53%) was observed at low loading (0.6 gallon d-1 ft-2) with influent containing 10.3-20.0 mg P L-1. Complete breakthroughs were observed in both aged (12-70 days) and new columns (27-73 days) at test hydraulic loadings. The maximum TP attenuation level was 20.6-45.3 mg P kg-1 and 25.3-33.0 mg P kg-1, in aged and new sand columns, respectively. When simulated rain was applied (15-60 mm h-1), 80-97% of the attenuated P leached out and the leaching dynamics were impacted by rainfall duration rather than the intensity. The highest concentrations of TP (15.6-15.9 mg L-1) were leached out from both columns within the first 2-6 h. Orthophosphate was the dominant P species in treated effluent (83-84%) and leachate (69-88%), demonstrating its significance as the major P form in the discharge. In addition, aged sand (>5 years) accumulated higher levels of Mg, Al, Ca, and Fe, thus enhancing the P attenuation level during STE treatment. Collectively, this study underscored the importance of frequent field monitoring for reliable long-term P removal estimates.


Assuntos
Filtração , Fósforo , Areia , Eliminação de Resíduos Líquidos , Águas Residuárias , Poluentes Químicos da Água , Fósforo/análise , Águas Residuárias/química , Filtração/métodos , Poluentes Químicos da Água/análise , Eliminação de Resíduos Líquidos/métodos , Areia/química , Purificação da Água/métodos
2.
Chemosphere ; 364: 143090, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39154765

RESUMO

Oil sands process-affected water (OSPW) is a source of atmospheric emission for polycyclic aromatic compounds (PACs), compounds known to have toxic effects on humans. Estimating emissions and assessing the chemical fate of PACs requires measured or predicted physical-chemical properties such as Henry's law constants (H), that can be used to predict chemical transfer into the atmosphere. OSPW is a complex water-based mixture that is highly variable in composition and nature and contains both organic and inorganic ions. This study uses COSMO-RS solvation theory to estimate and compare Henry's law constants for a set of PACs in both water and theoretically modelled OSPW, to assess the expected deviation that occurs from pure water H values due to the ionic content within OSPW. Experimental measurements of Henry's law constants for PACs in pure water and OSPW using EVA-coated passive dosing and sampler beads were also made in support of our theoretical predictions. For the theory work, OSPW composition data for the Athabasca oil sands in Alberta were used to model a simulated OSPW environment with realistic sodium, chloride, fluoride, sulfate, potassium, bicarbonate, and naphthenic acid concentrations. Theory results indicate that the combined presence of these ions at OSPW concentrations has a negligible effect on H values, causing on average a 3% or 0.014 log unit deviation. By comparison, temperature has a much larger influence on H values, with estimations showing an average 0.20 log unit increase for a 5 °C increase in temperature. The experimental results demonstrate that Henry's law constants can be accurately and precisely measured with this technique in pure water but with less precision in OSPW. Nevertheless, the experimental results support the conclusion that Henry's law constants for OSPW can be accurately estimated assuming a pure water phase.


Assuntos
Campos de Petróleo e Gás , Hidrocarbonetos Policíclicos Aromáticos , Água , Hidrocarbonetos Policíclicos Aromáticos/química , Hidrocarbonetos Policíclicos Aromáticos/análise , Água/química , Campos de Petróleo e Gás/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Alberta , Areia/química , Modelos Químicos , Monitoramento Ambiental
3.
Environ Sci Pollut Res Int ; 31(40): 52905-52916, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39168933

RESUMO

In this research paper, we introduce a novel and sustainable approach for forecasting the hydraulic conductivity of sand layers subjected to microbial-induced carbonate precipitation (MICP) to mitigate the diffusion of toxic pollutants. The proposed model uniquely integrates the impact of varying CaCO3 contents on the void ratio and estimates the average particle size of CaCO3 crystals through scanning electron microscopy (SEM) analysis. By incorporating these parameters into the K-C equation, a simplified predictive model is formulated for assessing the hydraulic conductivity of MICP-treated sand layers. The model's effectiveness is validated through comparison with experimental data and alternative models. The outcomes demonstrate a substantial reduction in hydraulic conductivity, with a decrease ranging between 93 and 97% in the initial assessment and a decrease between 67 and 92% in the follow-up assessment, both at 10% CaCO3 content. Notably, the hydraulic conductivity shows an initial sharp decrease followed by stabilization. These findings provide valuable insights into improving the prediction of hydraulic conductivity in MICP-treated sand layers, promoting a sustainable method for preventing pollution dispersion.


Assuntos
Areia , Areia/química , Carbonato de Cálcio/química , Modelos Teóricos , Carbonatos/química
4.
Environ Sci Technol ; 58(35): 15827-15835, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39171685

RESUMO

Understanding contaminant transport through unsaturated porous media is a considerable challenge, given the complex interplay of nonlinear physical and biogeochemical processes driven by variations in water saturation. In this study, we tackled this challenge through a series of column experiments involving fine (100-300 µm) and coarse (1.0-1.4 mm) sand particles coated with birnessite (MnO2) under variable saturation degrees. Dynamic flow experiments in sand columns revealed that desaturation altered the ability of MnO2 in removing tetracycline (TTC), a redox-active antibiotic, yet the effect depends on the sand type and then on the saturation degree. Moderate saturation degrees in fine-grained sand columns promoted fractional and preferential water flow which favored a more acidic pH and increased dissolved oxygen levels. These conditions enhanced TTC removal, despite the reduced physical accessibility of reactive phases. In contrast, lower saturation degrees in coarse-grained sand columns induced stronger flow heterogeneity with a very small fraction of the water content participating in flow. The mobility behavior of all the columns was predicted using transport models that consider TTC adsorption and transformation, as well as dual porosity under variable water saturation degrees. This research offers valuable insights into predicting the fate and transport of redox-active contaminants in unsaturated soils and subsurface environments.


Assuntos
Antibacterianos , Porosidade , Antibacterianos/química , Água/química , Compostos de Manganês/química , Areia/química , Adsorção , Poluentes Químicos da Água/química
5.
J Contam Hydrol ; 265: 104395, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39018629

RESUMO

Microplastics (MPs) are emerging contaminants that are attracting increasing interest from researchers, and the safety of drinking water is greatly affected by their transportation during filtration. Polystyrene (PS) was selected as a representative MPs, and three filter media (quartz sand, zeolite, and anthracite) commonly found in water plants were used. The retention patterns of PS-MPs by various filter media under various background water quality conditions were methodically investigated with the aid of DLVO theory and colloidal filtration theory. The results show that the different structures and elemental compositions of the three filter media cause them to exhibit different surface roughnesses and surface potentials. A greater surface roughness of the filter media can provide more deposition sites for PS-MPs, and the greater surface roughness of zeolite and anthracite significantly enhances their ability to inhibit the migration of PS-MPs compared with that of quartz sand. However, surface roughness is not the only factor affecting the migration of MPs. The lower absolute value of the surface potential of anthracite causes the DLVO energy between it and PS-MPs to be significantly lower than that between zeolite and PS-MPs, which results in stronger retention of PS-MPs by anthracite, which has a lower surface roughness, than zeolite, which has a higher surface roughness. The transport of PS-MPs in the medium is affected by the combination of the surface roughness of the filter media and the DLVO energy. Under the same operating conditions, the retention efficiencies of the three filter materials for PS-MPs followed the order of quartz sand < zeolite < anthracite. Additionally, the conditions of the solution markedly influenced the transport ability of PS-MPs within the simulated filter column. The transport PS-MPs in the simulated filter column decreased with increasing solution ionic strength and cation valence. Naturally, dissolved organic matter promoted the transfer of PS-MPs in the filter layer, and humic acid had a much stronger facilitating impact than fulvic acid. The study findings might offer helpful insight for improving the ability of filter units ability to retain MPs.


Assuntos
Filtração , Microplásticos , Poliestirenos , Zeolitas , Zeolitas/química , Poliestirenos/química , Microplásticos/química , Quartzo/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/análise , Areia/química , Purificação da Água/métodos , Propriedades de Superfície
6.
Water Sci Technol ; 90(1): 61-74, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39007307

RESUMO

Wastewater reuse is one of the crucial water resources in Egypt due to the ongoing need to increase water resources and close the supply-demand gap. In this study, a new coagulant has been investigated before sand filters as an advanced wastewater treatment method. The sand filter pilot was run at a hydraulic loading rate of 0.75 m/h and two different dosages of three coagulants (Alum, FeCl3, and Ferrate VI) were selected using the jar tests. The sand filter without coagulant removed 12% of BOD5 and 70% of turbidity. Applying in-line coagulation before the sand filter provided effluents with better quality, especially for turbidity, organics, and microorganisms. Ferrate provided the highest removal of turbidity (90%) and BOD5 (93%) at very low dosages and lower costs compared with other coagulants, however, it adversely impacted both conductivity and dissolved solids. A significant effect on reducing bacteria was obtained with 40.0 mg/L of alum. According to the study's findings, the ferrate coagulant enhanced the sand filter's performance producing effluents with high quality, enabling it to meet strict water reuse regulations as well as aquatic environmental and health preservations.


Assuntos
Filtração , Ferro , Águas Residuárias , Purificação da Água , Filtração/métodos , Ferro/química , Águas Residuárias/química , Purificação da Água/métodos , Eliminação de Resíduos Líquidos/métodos , Areia/química , Dióxido de Silício/química
7.
J Environ Manage ; 366: 121687, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38986374

RESUMO

Enzyme-induced carbonate precipitation (EICP) is a promising technique for soil reinforcement. To select a suitable calcium source and a suitable solution amount for aeolian sand stabilization using EICP, specimens treated with different solution amounts (1.5, 2, 2.5, 3, and 3.5 L/m2). Surface strength, crust thickness, calcium carbonate content (CCC) and water vapor adsorption tests were performed to evaluate the effect of two calcium sources (calcium acetate and calcium chloride) on aeolian sand solidification. The plant suitability of solidified sand was investigated by the sea buckthorn growth test. The suitable calcium source was then used for the laboratory wind tunnel test and the field test to examine the erosion resistance of solidified sand. The results demonstrated that Ca(CH3COO)2-treated specimens exhibited higher strength than CaCl2-treated specimens at the same EICP solution amount, and the water vapor equilibrium adsorption mass of Ca(CH3COO)2-treated specimens was less, indicating that Ca(CH3COO)2-solidified sand was more effective and had better long-term stability. In addition, plants grown in Ca(CH3COO)2-treated sand had greater seedling emergence percentage and higher average height, which indicated that calcium acetate is a more suitable calcium source for EICP treatment. Furthermore, the surface strength and crust thickness of solidified sand increased with increasing the solution amount. For sand treated with 3 L/m2 of solution, the excessive strength and thickness of the crust made plants growth difficult, and the performance of sand treated with more than 2 L/m2 of solution significantly improved. Thus, the solution amount of 2-3 L/m2 is suggested for engineering applications. The sand solidified using EICP in the field could effectively mitigate wind erosion and facilitate the growth of native plants. Therefore, EICP can be combined with vegetative method to achieve long-term wind erosion control in the future.


Assuntos
Cálcio , Areia , Areia/química , Cálcio/química , Solo/química , Carbonatos/química , Enzimas/metabolismo , Precipitação Química , Carbonato de Cálcio/química
8.
Environ Res ; 259: 119529, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38960359

RESUMO

In this study, pomegranate seed waste (PSW) was added into sand filter (SF) to increase removal efficiency of Lead (Pb(II)) and Copper (Cu(II)) from polluted water. The performance of PSW was compared with activated carbon (AC) as a typical adsorbent. Based on the SEM, EDX, FTIR, XRD, BET and proximate analyses, PSW had porous structure with specific surface area of 2.76 m2/g and active compounds which suggested PSW as an appropriate adsorbent for heavy metals (HMs) adsorption. According to the batch experiments, SF without treatment could only remove 46% and 35% of Pb(II) and Cu(II), respectively. These numbers increased to 88% and 75% for Pb(II) and Cu(II) by adding 3 g/kg PSW to the SF, respectively under the optimal conditions of HMs initial concentrations = 100 mg/L, pH = 7 and contact time = 60 min. The adsorption kinetic and isotherm followed the pseudo-first-order and Langmuir models, respectively indicating that mainly physisorption was involved in the HMs adsorption process of PSW. Based on the column experiments (flow rate = 62.5 mL/min), the Pb(II) and Cu(II) removal increased from 14% to 60% and 10%-55%, respectively after 5 pore volumes (40 min) by adding 3 g/kg PSW to the SF. Breakthrough curves matched better with Thomas mode rather than Adam's Bohart proving Langmuir adsorption isotherm. Our finding suggested modification of SF with PSW is a promising approach for efficient removal of HMs from water.


Assuntos
Cobre , Filtração , Chumbo , Poluentes Químicos da Água , Purificação da Água , Adsorção , Cobre/química , Cobre/isolamento & purificação , Chumbo/química , Chumbo/isolamento & purificação , Cinética , Poluentes Químicos da Água/química , Poluentes Químicos da Água/análise , Filtração/métodos , Purificação da Água/métodos , Areia/química , Punica granatum/química , Sementes/química
9.
Int J Biol Macromol ; 275(Pt 1): 133490, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38960257

RESUMO

Sandy soils are suffering from water loss and desertification, which severely restrict the development of local agriculture. In this work, an eco-friendly hydrogel composed of borax and locust bean gum was synthesized to enhance the water retention capacity of sandy soil and support agricultural development in arid regions. Locust bean gum/borax hydrogel with a 3D network structure exhibited great water-absorbing capacity (130.29 g/g) within 30 min. After mixing 0.9 wt% hydrogel with sandy soil, the maximum soil water content, water retention time, soil porosity and soil organic matter were increased by 32.03 %, 14 days, 38.9 % and 8.64 g/kg respectively. Little effect on soil microorganisms revealed barely toxicity. Furthermore, the hydrogel was confirmed to be biodegradable at 43.47 % after 4 weeks. According to the study, locust bean gum/borax hydrogel possesses good water absorbing capacity, soil water retention ability, soil optimization ability and low adverse environmental impact. Together, it is inferred that the hydrogel can improve the water retention capacity of sandy soil in arid areas, promoting plant growth in arid areas.


Assuntos
Galactanos , Hidrogéis , Mananas , Gomas Vegetais , Solo , Água , Gomas Vegetais/química , Galactanos/química , Mananas/química , Solo/química , Água/química , Hidrogéis/química , Porosidade , Areia/química , Biodegradação Ambiental , Microbiologia do Solo , Boratos
10.
Bioprocess Biosyst Eng ; 47(9): 1453-1469, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38976006

RESUMO

Bio-cement is a green and energy-saving building material that has attracted much attention in the field of ecological environment and geotechnical engineering in recent years. The aim of this study is to investigate the use of bio-cement (enzyme-induced calcium carbonate precipitation-EICP) in combination with admixtures for the improvement of desert sands, which can effectively improve the mechanical properties of desert sands and is particularly suitable for sand-rich countries. In addition, the suitability of tap water in bio-cement was elucidated and the optimum ratio of each influencing factor when tap water is used as a solvent was derived. The results showed that peak values of unconfined compressive strength (maximum increase of about 130 times), shear strength (increase of 27.09%), calcium carbonate precipitation value (increase of about 4.39 times), and permeability (decrease of about 93.72 times) were obtained in the specimens modified by EICP combined with admixture as compared to the specimens modified by EICP only. The incorporation of skimmed milk powder, though significantly increasing the strength, is not conducive to cost control. The microscopic tests show that the incorporation of admixtures can provide nucleation sites for EICP, thus improving the properties of desert sand. This work can provide new research ideas for cross-fertilization between the disciplines of bio-engineering, ecology, and civil engineering.


Assuntos
Carbonato de Cálcio , Areia , Areia/química , Carbonato de Cálcio/química , Materiais de Construção , Clima Desértico , Força Compressiva
11.
Ecotoxicol Environ Saf ; 282: 116732, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39018733

RESUMO

Process affected water and other industrial wastewaters are a major environmental concern. During oil sands mining, large amounts of oil sands process affected water (OSPW) are generated and stored in ponds until reclaimed and ready for surface water discharge. While much research has focused on organics in process waters, trace metals at high concentrations may also pose environmental risks. Phytoremediation is a cost effective and sustainable approach that employs plants to extract and reduce contaminants in water. The research was undertaken in mesocosm scale constructed wetlands with plants exposed to OSPW for 60 days. The objective was to screen seven native emergent wetland species for their ability to tolerate high metal concentrations (arsenic, cadmium, copper, chromium, copper, nickel, selenium, zinc), and then to evaluate the best performing species for OSPW phytoremediation. All native plant species, except Glyceria grandis, tolerated and grew in OSPW. Carex aquatilis (water sedge), Juncus balticus (baltic rush), and Typha latifolia (cattail) had highest survival and growth, and had high metal removal efficiencies for arsenic (81-87 %), chromium (78-86 %), and cadmium (74-84 %), relative to other metals; and greater than 91 % of the dissolved portions were removed. The native plant species were efficient accumulators of all metals, as demonstrated by high root and shoot bioaccumulation factors; root accumulation was greater than shoot accumulation. Translocation factor values were greater than one for Juncus balticus (chromium, zinc) and Carex aquatilis (cadmium, chromium, cobalt, nickel). The results demonstrate the potential suitability of these species for phytoremediation of a number of metals of concern and could provide an effective and environmentally sound remediation approach for wastewaters.


Assuntos
Metais , Óleos , Areia , Áreas Alagadas , Areia/química , Óleos/química , Água/química , Metais/metabolismo , Carex (Planta)/química , Carex (Planta)/metabolismo , Typhaceae/química , Typhaceae/metabolismo , Magnoliopsida/química , Campos de Petróleo e Gás , Poluentes Químicos da Água/química , Poluentes Químicos da Água/metabolismo
12.
Chemosphere ; 363: 142890, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39025311

RESUMO

Soil improvement techniques utilizing the metabolic functions of microorganisms, including microbially induced carbonate precipitation (MICP), have been extensively researched over the past few decades as part of bio-inspired geotechnical engineering research. Given that metabolic reactions in microorganisms produce carbonate minerals, an enhanced understanding of microbial interaction with soils could improve the effectiveness of MICP as a soil improvement technique. Therefore, this study investigated the effects of sands on MICP by denitrification to employ MICP for geotechnical soil improvement. Under the coexistence of natural sand and artificial silica sand, nitrate-reducing bacteria were cultured in a mixed liquid medium with nitrate, acetate, and calcium ions at 37 °C. Nitrate reduction occurred only in the presence of natural sand. However, the lack of chemical weathering of the composed minerals likely prevented the progress of bacterial growth and nitrate reduction in artificial silica sands. For natural sand, artificial chemical weathering by acid wash and ferrihydrite coating of the sand improved bacterial growth and accelerated nitrate reduction. The calcium carbonate formation induced by denitrification was also influenced by the state of the minerals in the soil and the nitrate reduction rate. The observed MICP enhancement is due to the involvement of coexisting secondary minerals like ferrihydrite with large specific surface areas and surface charges, which may improve the reaction efficiency by serving as adsorbents for bacteria and electron donors and acceptors in the solid phases, thereby promoting the precipitation and crystallization of calcium carbonate on the surfaces. This crystal formation in the minerals provides valuable insights for improving sand solidification via MICP. Considering the interactions between the target soil and microorganisms is essential to improving MICP processes for ground improvement.


Assuntos
Carbonatos , Precipitação Química , Desnitrificação , Minerais , Nitratos , Areia , Microbiologia do Solo , Solo , Nitratos/metabolismo , Areia/química , Carbonatos/química , Minerais/química , Solo/química , Dióxido de Silício/química , Carbonato de Cálcio/química , Bactérias/metabolismo
13.
J Contam Hydrol ; 266: 104410, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39067353

RESUMO

In this study, we focused on the 3D dispersion of colloids. To our knowledge, we were the first to do so. Thereto, we injected silica encapsulated DNA tagged superparamagnetic particles (SiDNAmag) in a homogeneous coarse grain sand tank. At four downstream locations, SiDNAmag concentrations were determined as a function of time. Longitudinal and transverse dispersivity values and associated uncertainties of SiDNAmag were determined using Monte Carlo modelling approach. The parameter associated uncertainties of hydraulic conductivity as well as of the effective porosity estimated from SiDNAmag breakthrough curves were statistically similar to those estimated from salt tracer breakthrough curves. Further, the SiDNAmag dispersivity uncertainty ranges were then statistically compared with the salt tracer (NaCl, and fluorescein) dispersivities. Our results indicated that time to rise, time of peak concentration and shape of the breakthrough curves of SiDNAmag were similar to those of the salt tracer breakthrough curves. Despite the size difference between the salt tracer molecules and SiDNAmag, size exclusion did not occur, probably due to the large pore throat diameter to SiDNAmag diameter ratio. The median longitudinal dispersivity (αL) of salt tracer and SiDNAmag were 4.9 and 5.8 × 10-4 m, respectively. The median ratio of horizontal and vertical transverse dispersivities to αL, (αTH /αL and αTV /αL, respectively), for salt tracer and SiDNAmag ranged between 0.52 and 0.56. Through the statistical tests, we concluded that the longitudinal and traverse dispersivities of SiDNAmag were not statistically significantly different from salt tracer in 3 dimensions and could be used to characterize the dispersive properties of the medium we used. Our work contributes to a better understanding of 3D dispersion of SiDNAmag in saturated porous media.


Assuntos
DNA , Areia , Dióxido de Silício , Dióxido de Silício/química , DNA/química , Areia/química , Porosidade , Método de Monte Carlo
14.
Environ Res ; 260: 119588, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39019136

RESUMO

The extensive use of plasticizers in various industries has made Diethyl phthalate (DEP), a serious threat to the environment and ecological water security, owing to its complex-structure and low-biodegradability. Thus, the present study aimed to design a sustainable sand-coated nano glutathione (GSH) -Fe3O4-loaded/activated carbon (AC) bionanocomposite (AC-GSH-Fe3O4@sand bionanocomposite) for effective removal of DEP from water. Characterization results suggested bionanocomposites' rough and irregular texture due to the uneven distribution of AC and Fe3O4 nanoparticles over the sand. The XRD spectra indicated high crystallinity of bionanocomposites, while the FTIR spectra confirmed the presence of all individual components, i.e., GSH, AC, Fe3O4, and sand. EDX-mapping, AFM, and TGA further verified its elemental composition, topographical changes and thermal stability. The influence of pH (3, 7, 9), bed height (2, 4, 6) cm, and flow rate (2.5, 3.5, 4.5) mL min-1 were studied in a dynamic system with an initial DEP concentration of 50 mg L-1 to investigate the removal behavior of the bionanocomposites. The best DEP removal efficiency (90.18 %) was achieved over 28-h at pH 9, bed-height-4 cm, and flow-rate-3.5 mL min-1, with an optimum qmax-200.25 mg g-1 as determined through Thomas-model. Breakthrough curves were predicted using various column models, and the corresponding parameters essential for column-reactor process design were calculated. The high reusability up to the 10th cycle (≥83.32%) and the effective treatment in complex matrices (tap-water: 90.11 %, river-water: 89.72 %, wastewater: 83.83%) demonstrated bionanocomposites' prominent sustainability. Additionally, the production cost at 6.64 USD per Kg, underscores its potentiality for industrial application. Phytotoxicity assessment on mung-bean revealed better root (5.02 ± 0.27 cm) and shoot (17.64 ± 0.35 cm) growth in the bionanocomposite-treated DEP samples over the untreated samples. Thus, AC-GSH-Fe3O4@sand bionanocomposites could be considered a highly-sustainable, low-cost technique for the effective removal of DEP and other phthalate-esters from contaminated matrices.


Assuntos
Glutationa , Nanocompostos , Ácidos Ftálicos , Poluentes Químicos da Água , Ácidos Ftálicos/química , Poluentes Químicos da Água/química , Nanocompostos/química , Glutationa/química , Carvão Vegetal/química , Areia/química , Purificação da Água/métodos
15.
Environ Res ; 260: 119660, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39048066

RESUMO

The knowledge about co-transport of goethite and As3+ to investigate the effect of goethite colloids on As3+ transport under various degrees of seawater intrusion, particular extremely conditions, in groundwater environment is still limited. The main objective is to investigate the influence of seawater intrusion on the sorption, migration, and reaction of As3+and goethite colloids into sand aquifer media under anoxic conditions by using the bench-scale and reactive geochemical modeling. The research consisted of two parts as follows: 1) column transport experiments consisting of 8 columns, which were packed by using synthesis groundwater at IS of 0.5, 50, 200, and 400 mM referring to the saline of seawater system in the study area, and 2) reactive transport modeling, the mathematical model (HYDRUS-1D) was applied to describe the co-transport of As3+ and goethite. Finally, to explain the interaction of goethite and As3+, the Derjaguin-Landau-Verwey-Overbeek (DLVO) calculation was considered to support the experimental results and HYDRUS-1D model. The results of column experiments showed goethite colloids can significantly inhibit the mobility of As3+ under high IS conditions (>200 mM). The Rf of As3+ bound to goethite grows to higher sizes (47.5 and 65.0 µm for 200 and 400 mM, respectively) of goethite colloid, inhibiting As3+ migration through the sand columns. In contrast, based on Rf value, goethite colloids transport As3+ more rapidly than a solution with a lower IS (0.5 and 50 mM). The knowledge gained from this study would help to better understand the mechanisms of As3+ contamination in urbanized coastal groundwater aquifers and to assess the transport of As3+ in groundwater, which is useful for groundwater management, including the optimum pumping rate and long-term monitoring of groundwater quality.


Assuntos
Arsenitos , Coloides , Compostos de Ferro , Minerais , Compostos de Ferro/química , Coloides/química , Minerais/química , Concentração Osmolar , Arsenitos/química , Arsenitos/análise , Água Subterrânea/química , Areia/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Modelos Químicos , Modelos Teóricos , Água do Mar/química
16.
Environ Sci Pollut Res Int ; 31(27): 39748-39759, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38833052

RESUMO

The objective of this study is to assess the effectiveness of a novel structure comprising a geocomposite drainage layer and a thin sand layer (GDL + sand) in mitigating the rapid dumping of excavated clay and its associated issues, such as landslides. Two sets of direct shear tests were conducted to investigate the influence of sand layer thickness and compaction degree on the interface shear behavior of the GDL + sand structure. As the sand layer thickness increased, both the interface shear strength and friction angle gradually increased, first more sharply and then at a slower rate toward stability, while the interface cohesion decreased gradually. The optimal sand layer thickness for achieving the most effective reinforcement in stabilizing the clay was identified as 10 mm. A higher sand layer compaction degree was found to result in increased interface shear strength, interface friction angle, and interface cohesion. Building on these findings, the reinforcing efficiency of the GDL + sand structure was investigated through mechanism analysis in comparison to that of a geogrid + sand structure and GDL structure as per the interface friction coefficient. The ranking of interface friction coefficients among the three structures emerged as: geogrid + sand > GDL + sand > GDL. These results suggests that the GDL + sand structure exhibits superior reinforcement efficiency compared to the GDL structure and offers better drainage efficiency than the geogrid + sand structure.


Assuntos
Argila , Areia , Areia/química , Argila/química , Resistência ao Cisalhamento , Silicatos de Alumínio/química , Dióxido de Silício/química
17.
J Equine Vet Sci ; 139: 105126, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38852928

RESUMO

A study comprising 74 colic and 74 control horses admitted to an animal hospital was performed. Faecal samples were collected and analysed for dry matter concentration, particle size distribution using wet-sieving, and sand presence through a sand sedimentation test. Data on horse breed, age, gender and basic feeding variables was collected and analysed using χ2-tests. Faecal dry matter concentration, particle size distribution and sand score was compared between colic and non-colic horses, and between horses with different colic types, using one-way ANOVA. Results showed that colic and non-colic horse groups were similar in breed, age, gender and basic feeding variables. Faecal dry matter concentration, particle size distribution and sand score were similar among colic and non-colic horses. Horses diagnosed with "unknown colic cause" had higher proportion of particles >0.5 <1.0 mm size compared to horses with colic due to impactions in caecum or colon, torsion or gas accumulation (P<0.05), but this difference was very small and most likely not of biological importance. Faecal dry matter concentration and sand score were similar among horses with different types of colic. Increased knowledge of the composition of particles of different size in equine faeces may enhance our understanding of digesta passage rate in colic and non-colic horses, which is needed to develop preventative measures of certain types of colic.


Assuntos
Cólica , Fezes , Doenças dos Cavalos , Tamanho da Partícula , Areia , Animais , Cavalos , Cólica/veterinária , Fezes/química , Doenças dos Cavalos/patologia , Areia/química , Masculino , Feminino
18.
Sci Rep ; 14(1): 12412, 2024 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816387

RESUMO

This study introduces microbiologically induced calcium phosphate precipitation (MICPP) as a novel and environmentally sustainable method of soil stabilization. Using Limosilactobacillus sp., especially NBRC 14511 and fish bone solution (FBS) extracted from Tuna fish bones, the study was aimed at testing the feasibility of calcium phosphate compounds (CPCs) deposition and sand stabilization. Dynamic changes in pH and calcium ion (Ca2+) concentration during the precipitation experiments affected the precipitation and sequential conversion of dicalcium phosphate dihydrate (DCPD) to hydroxyapatite (HAp), which was confirmed by XRD and SEM analysis. Sand solidification experiments demonstrated improvements in unconfined compressive strength (UCS), especially at higher Urea/Ca2+ ratios. The UCS values obtained were 10.35 MPa at a ratio of 2.0, 3.34 MPa at a ratio of 1.0, and 0.43 MPa at a ratio of 0.5, highlighting the advantages of MICPP over traditional methods. Microstructural analysis further clarified the mineral composition, demonstrating the potential of MICPP in environmentally friendly soil engineering. The study highlights the promise of MICPP for sustainable soil stabilization, offering improved mechanical properties and reducing environmental impact, paving the way for novel geotechnical practices.


Assuntos
Fosfatos de Cálcio , Precipitação Química , Areia , Fosfatos de Cálcio/química , Fosfatos de Cálcio/metabolismo , Areia/química , Animais , Concentração de Íons de Hidrogênio , Durapatita/química , Solo/química , Força Compressiva , Difração de Raios X
19.
Environ Sci Technol ; 58(19): 8531-8541, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38690765

RESUMO

Colloidal activated carbon (CAC) is an emerging technology for the in situ remediation of groundwater impacted by per- and polyfluoroalkyl substances (PFAS). In assessing the long-term effectiveness of a CAC barrier, it is crucial to evaluate the potential of emplaced CAC particles to be remobilized and migrate away from the sorptive barrier. We examine the effect of two polymer stabilizers, carboxymethyl cellulose (CMC) and polydiallyldimethylammonium chloride (PolyDM), on CAC deposition and remobilization in saturated sand columns. CMC-modified CAC showed high mobility in a wide ionic strength (IS) range from 0.1 to 100 mM, which is favorable for CAC delivery at a sufficient scale. Interestingly, the mobility of PolyDM-modified CAC was high at low IS (0.1 mM) but greatly reduced at high IS (100 mM). Notably, significant remobilization (release) of deposited CMC-CAC particles occurred upon the introduction of solution with low IS following deposition at high IS. In contrast, PolyDM-CAC did not undergo any remobilization following deposition due to its favorable interactions with the quartz sand. We further elucidated the CAC deposition and remobilization behaviors by analyzing colloid-collector interactions through the application of Derjaguin-Landau-Verwey-Overbeek theory, and the inclusion of a discrete representation of charge heterogeneity on the quartz sand surface. The classical colloid filtration theory was also employed to estimate the travel distance of CAC in saturated columns. Our results underscore the roles of polymer coatings and solution chemistry in CAC transport, providing valuable guidelines for the design of in situ CAC remediation with maximized delivery efficiency and barrier longevity.


Assuntos
Coloides , Recuperação e Remediação Ambiental , Água Subterrânea , Água Subterrânea/química , Coloides/química , Recuperação e Remediação Ambiental/métodos , Polímeros/química , Carvão Vegetal/química , Areia/química , Poluentes Químicos da Água/química , Carbono/química
20.
J Contam Hydrol ; 264: 104363, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38805790

RESUMO

A series of laboratory experiments are conducted to simulate the acidification and subsequent recovery of a sand aquifer exploited by in situ recovery (ISR) mining. A sulfuric acid solution (pH 2) is first injected into a column packed with sand from the Zoovch Ovoo uranium roll front deposit (Mongolia). Solutions representative of local groundwater or enriched in cations (Na+, Mg2+) are then circulated through the column to simulate the inflow of aquifer water. pH and major ion concentrations (Na+, Cl-, SO42-, Ca2+, Mg2+, K+) measured at the column outlet reproduce the overall evolution of porewater chemistry observed in the field. The presence of minor quantities of swelling clay minerals (≈6 wt% smectite) is shown to exert an important influence on the behavior of inorganic cations, particularly H+, via ion-exchange reactions. Numerical models that consider ion-exchange on smectite as the sole solid-solution interaction are able to reproduce variations in pH and cation concentrations in the column experiments. This highlights the importance of clay minerals in controlling H+ mobility and demonstrates that sand from the studied aquifer can be described to a first order as an ion-exchanger. The present study confirms the key role of clay minerals in controlling water chemistry in acidic environments through ion-exchange processes. In a context of managing the long-term environmental footprint of industrial and mining activities (ISR, acid mine drainage…), this work will bring insights for modeling choices and identification of key parameters to help operators to define their production and/or remediation strategies.


Assuntos
Silicatos de Alumínio , Cátions , Argila , Água Subterrânea , Mineração , Areia , Argila/química , Concentração de Íons de Hidrogênio , Cátions/química , Água Subterrânea/química , Silicatos de Alumínio/química , Areia/química , Modelos Químicos , Modelos Teóricos , Ácidos Sulfúricos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA