Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.403
Filtrar
1.
J Immunother Cancer ; 12(5)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724465

RESUMO

BACKGROUND: CD276 (B7-H3), a pivotal immune checkpoint, facilitates tumorigenicity, invasiveness, and metastasis by escaping immune surveillance in a variety of tumors; however, the underlying mechanisms facilitating immune escape in esophageal squamous cell carcinoma (ESCC) remain enigmatic. METHODS: We investigated the expression of CD276 in ESCC tissues from patients by using immunohistochemistry (IHC) assays. In vivo, we established a 4-nitroquinoline 1-oxide (4NQO)-induced CD276 knockout (CD276wKO) and K14cre; CD276 conditional knockout (CD276cKO) mouse model of ESCC to study the functional role of CD276 in ESCC. Furthermore, we used the 4NQO-induced mouse model to evaluate the effects of anti-CXCL1 antibodies, anti-Ly6G antibodies, anti-NK1.1 antibodies, and GSK484 inhibitors on tumor growth. Moreover, IHC, flow cytometry, and immunofluorescence techniques were employed to measure immune cell proportions in ESCC. In addition, we conducted single-cell RNA sequencing analysis to examine the alterations in tumor microenvironment following CD276 depletion. RESULTS: In this study, we elucidate that CD276 is markedly upregulated in ESCC, correlating with poor prognosis. In vivo, our results indicate that depletion of CD276 inhibits tumorigenesis and progression of ESCC. Furthermore, conditional knockout of CD276 in epithelial cells engenders a significant downregulation of CXCL1, consequently reducing the formation of neutrophil extracellular trap networks (NETs) via the CXCL1-CXCR2 signaling axis, while simultaneously augmenting natural killer (NK) cells. In addition, overexpression of CD276 promotes tumorigenesis via increasing NETs' formation and reducing NK cells in vivo. CONCLUSIONS: This study successfully elucidates the functional role of CD276 in ESCC. Our comprehensive analysis uncovers the significant role of CD276 in modulating immune surveillance mechanisms in ESCC, thereby suggesting that targeting CD276 might serve as a potential therapeutic approach for ESCC treatment.


Assuntos
Antígenos B7 , Quimiocina CXCL1 , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Receptores de Interleucina-8B , Animais , Carcinoma de Células Escamosas do Esôfago/imunologia , Carcinoma de Células Escamosas do Esôfago/patologia , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/metabolismo , Camundongos , Humanos , Receptores de Interleucina-8B/metabolismo , Neoplasias Esofágicas/imunologia , Neoplasias Esofágicas/patologia , Antígenos B7/metabolismo , Quimiocina CXCL1/metabolismo , Armadilhas Extracelulares/metabolismo , Evasão Tumoral , Feminino , Masculino , Camundongos Knockout , Microambiente Tumoral
2.
Medicine (Baltimore) ; 103(19): e38115, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38728509

RESUMO

Platelets are increasingly recognized for their multifaceted roles in inflammation beyond their traditional involvement in haemostasis. This review consolidates knowledge on platelets as critical players in inflammatory responses. This study did an extensive search of electronic databases and identified studies on platelets in inflammation, focusing on molecular mechanisms, cell interactions, and clinical implications, emphasizing recent publications. Platelets contribute to inflammation via surface receptors, release of mediators, and participation in neutrophil extracellular trap formation. They are implicated in diseases like atherosclerosis, rheumatoid arthritis, and sepsis, highlighting their interaction with immune cells as pivotal in the onset and resolution of inflammation. Platelets are central to regulating inflammation, offering new therapeutic targets for inflammatory diseases. Future research should explore specific molecular pathways of platelets in inflammation for therapeutic intervention.


Assuntos
Plaquetas , Inflamação , Humanos , Plaquetas/imunologia , Inflamação/imunologia , Armadilhas Extracelulares/imunologia , Armadilhas Extracelulares/metabolismo , Sepse/imunologia , Sepse/sangue , Artrite Reumatoide/imunologia , Artrite Reumatoide/sangue , Neutrófilos/imunologia
3.
Int J Mol Sci ; 25(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38731861

RESUMO

The expression of polysialic acid (polySia) on the neuronal cell adhesion molecule (NCAM) is called NCAM-polysialylation, which is strongly related to the migration and invasion of tumor cells and aggressive clinical status. Thus, it is important to select a proper drug to block tumor cell migration during clinical treatment. In this study, we proposed that lactoferrin (LFcinB11) may be a better candidate for inhibiting NCAM polysialylation when compared with CMP and low-molecular-weight heparin (LMWH), which were determined based on our NMR studies. Furthermore, neutrophil extracellular traps (NETs) represent the most dramatic stage in the cell death process, and the release of NETs is related to the pathogenesis of autoimmune and inflammatory disorders, with proposed involvement in glomerulonephritis, chronic lung disease, sepsis, and vascular disorders. In this study, the molecular mechanisms involved in the inhibition of NET release using LFcinB11 as an inhibitor were also determined. Based on these results, LFcinB11 is proposed as being a bifunctional inhibitor for inhibiting both NCAM polysialylation and the release of NETs.


Assuntos
Armadilhas Extracelulares , Lactoferrina , Moléculas de Adesão de Célula Nervosa , Ácidos Siálicos , Lactoferrina/farmacologia , Lactoferrina/metabolismo , Humanos , Armadilhas Extracelulares/metabolismo , Armadilhas Extracelulares/efeitos dos fármacos , Moléculas de Adesão de Célula Nervosa/metabolismo , Ácidos Siálicos/metabolismo , Neutrófilos/metabolismo , Neutrófilos/efeitos dos fármacos , Heparina de Baixo Peso Molecular/farmacologia
5.
J Vis Exp ; (206)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38738905

RESUMO

The primary aim of this research was to develop a reliable and efficient approach for isolating neutrophil extracellular traps (NETs) from rat bone marrow. This effort arose due to limitations associated with the traditional method of extracting NETs from peripheral blood, mainly due to the scarcity of available neutrophils for isolation. The study revealed two distinct methodologies for obtaining rat neutrophils from bone marrow: a streamlined one-step procedure that yielded satisfactory purification levels, and a more time-intensive two-step process that exhibited enhanced purification efficiency. Importantly, both techniques yielded a substantial quantity of viable neutrophils, ranging between 50 to 100 million per rat. This efficiency mirrored the results obtained from isolating neutrophils from both human and murine sources. Significantly, neutrophils derived from rat bone marrow exhibited comparable abilities to secrete NETs when compared with neutrophils obtained from peripheral blood. However, the bone marrow-based method consistently produced notably larger quantities of both neutrophils and NETs. This approach demonstrated the potential to obtain significantly greater amounts of these cellular components for further downstream applications. Notably, these isolated NETs and neutrophils hold promise for a range of applications, spanning the realms of inflammation, infection, and autoimmune diseases.


Assuntos
Células da Medula Óssea , Armadilhas Extracelulares , Neutrófilos , Animais , Neutrófilos/citologia , Ratos , Células da Medula Óssea/citologia , Técnicas Citológicas/métodos
6.
Cancer Immunol Immunother ; 73(6): 108, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642131

RESUMO

Tumor-associated macrophages (TAMs) are abundant in tumors and interact with tumor cells, leading to the formation of an immunosuppressive microenvironment and tumor progression. Although many studies have explored the mechanisms underlying TAM polarization and its immunosuppressive functions, understanding of its progression remains limited. TAMs promote tumor progression by secreting cytokines, which subsequently recruit immunosuppressive cells to suppress the antitumor immunity. In this study, we established an in vitro model of macrophage and non-small cell lung cancer (NSCLC) cell co-culture to explore the mechanisms of cell-cell crosstalk. We observed that in NSCLC, the C-X-C motif chemokine ligand 5 (CXCL5) was upregulated in macrophages because of the stimulation of A2AR by adenosine. Adenosine was catalyzed by CD39 and CD73 in macrophages and tumor cells, respectively. Nuclear factor kappa B (NFκB) mediated the A2AR stimulation of CXCL5 upregulation in macrophages. Additionally, CXCL5 stimulated NETosis in neutrophils. Neutrophil extracellular traps (NETs)-treated CD8+ T cells exhibited upregulation of exhaustion-related and cytosolic DNA sensing pathways and downregulation of effector-related genes. However, A2AR inhibition significantly downregulated CXCL5 expression and reduced neutrophil infiltration, consequently alleviating CD8+ T cell dysfunction. Our findings suggest a complex interaction between tumor and immune cells and its potential as therapeutic target.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Quimiocina CXCL5 , Neoplasias Pulmonares , Macrófagos , Humanos , Adenosina/metabolismo , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linfócitos T CD8-Positivos , Quimiocina CXCL5/genética , Quimiocina CXCL5/metabolismo , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Macrófagos/imunologia , Macrófagos/metabolismo , Microambiente Tumoral , Regulação para Cima , Receptor A2A de Adenosina/metabolismo , Armadilhas Extracelulares/imunologia , Armadilhas Extracelulares/metabolismo
7.
Cell Mol Neurobiol ; 44(1): 36, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637346

RESUMO

Surgical brain injury (SBI), induced by neurosurgical procedures or instruments, has not attracted adequate attention. The pathophysiological process of SBI remains sparse compared to that of other central nervous system diseases thus far. Therefore, novel and effective therapies for SBI are urgently needed. In this study, we found that neutrophil extracellular traps (NETs) were present in the circulation and brain tissues of rats after SBI, which promoted neuroinflammation, cerebral edema, neuronal cell death, and aggravated neurological dysfunction. Inhibition of NETs formation by peptidylarginine deiminase (PAD) inhibitor or disruption of NETs with deoxyribonuclease I (DNase I) attenuated SBI-induced damages and improved the recovery of neurological function. We show that SBI triggered the activation of cyclic guanosine monophosphate-adenosine monophosphate synthase stimulator of interferon genes (cGAS-STING), and that inhibition of the cGAS-STING pathway could be beneficial. It is worth noting that DNase I markedly suppressed the activation of cGAS-STING, which was reversed by the cGAS product cyclic guanosine monophosphate-adenosine monophosphate (cGMP-AMP, cGAMP). Furthermore, the neuroprotective effect of DNase I in SBI was also abolished by cGAMP. NETs may participate in the pathophysiological regulation of SBI by acting through the cGAS-STING pathway. We also found that high-dose vitamin C administration could effectively inhibit the formation of NETs post-SBI. Thus, targeting NETs may provide a novel therapeutic strategy for SBI treatment, and high-dose vitamin C intervention may be a promising translational therapy with an excellent safety profile and low cost.


Assuntos
Lesões Encefálicas , Armadilhas Extracelulares , Animais , Ratos , Encéfalo , Lesões Encefálicas/tratamento farmacológico , Ácido Ascórbico , Desoxirribonuclease I/farmacologia
8.
Respir Res ; 25(1): 183, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664728

RESUMO

BACKGROUND: Previous studies have indicated that neutrophil extracellular traps (NETs) play a pivotal role in pathogenesis of pulmonary arterial hypertension (PAH). However, the specific mechanism underlying the impact of NETs on pulmonary artery smooth muscle cells (PASMCs) has not been determined. The objective of this study was to elucidate underlying mechanisms through which NETs contribute to progression of PAH. METHODS: Bioinformatics analysis was employed in this study to screen for potential molecules and mechanisms associated with occurrence and development of PAH. These findings were subsequently validated in human samples, coiled-coil domain containing 25 (CCDC25) knockdown PASMCs, as well as monocrotaline-induced PAH rat model. RESULTS: NETs promoted proliferation of PASMCs, thereby facilitating pathogenesis of PAH. This phenomenon was mediated by the activation of transmembrane receptor CCDC25 on PASMCs, which subsequently activated ILK/ß-parvin/RAC1 pathway. Consequently, cytoskeletal remodeling and phenotypic transformation occur in PASMCs. Furthermore, the level of NETs could serve as an indicator of PAH severity and as potential therapeutic target for alleviating PAH. CONCLUSION: This study elucidated the involvement of NETs in pathogenesis of PAH through their influence on the function of PASMCs, thereby highlighting their potential as promising targets for the evaluation and treatment of PAH.


Assuntos
Proliferação de Células , Armadilhas Extracelulares , Miócitos de Músculo Liso , Ratos Sprague-Dawley , Animais , Ratos , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Proliferação de Células/fisiologia , Humanos , Masculino , Armadilhas Extracelulares/metabolismo , Artéria Pulmonar/patologia , Artéria Pulmonar/metabolismo , Hipertensão Arterial Pulmonar/metabolismo , Hipertensão Arterial Pulmonar/patologia , Células Cultivadas , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia
9.
Dev Comp Immunol ; 156: 105180, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38641186

RESUMO

Isoprostanes (isoP) are formed during conditions of oxidative stress (OS) through the oxidation of cell membrane fatty acids. Different classes of isoP are formed depending on the fatty acid being oxidized but the biological activity of these molecules in innate immune cells is poorly understood. Thus, the objective of this study was to compare in vitro the effects of F2- and F3-isoP on neutrophil microbicidal functions. We isolated neutrophils from 6 dairy cows and incubated them for 8 h at various concentrations of F2- and F3-isoP. Then, microbicidal function was assessed in terms of phagocytosis, respiratory burst, myeloperoxidase activity, and extracellular trap formation. In vitro supplementation with F3-isoP enhanced microbicidal capabilities whereas supplementation with F2-isoP decreased or did not impact these microbe killing functions. Hence, favoring the production of F3- over F2-isoprostanes may be a strategy to augment neutrophils' functional capacity during OS conditions. This should be tested in vivo.


Assuntos
Armadilhas Extracelulares , F2-Isoprostanos , Neutrófilos , Estresse Oxidativo , Peroxidase , Fagocitose , Explosão Respiratória , Animais , Neutrófilos/imunologia , Bovinos , F2-Isoprostanos/metabolismo , Armadilhas Extracelulares/imunologia , Armadilhas Extracelulares/metabolismo , Peroxidase/metabolismo , Células Cultivadas , Feminino , Imunidade Inata , Oxirredução
10.
Eur Heart J ; 45(18): 1662-1680, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38666340

RESUMO

BACKGROUND AND AIMS: The Glu504Lys polymorphism in the aldehyde dehydrogenase 2 (ALDH2) gene is closely associated with myocardial ischaemia/reperfusion injury (I/RI). The effects of ALDH2 on neutrophil extracellular trap (NET) formation (i.e. NETosis) during I/RI remain unknown. This study aimed to investigate the role of ALDH2 in NETosis in the pathogenesis of myocardial I/RI. METHODS: The mouse model of myocardial I/RI was constructed on wild-type, ALDH2 knockout, peptidylarginine deiminase 4 (Pad4) knockout, and ALDH2/PAD4 double knockout mice. Overall, 308 ST-elevation myocardial infarction patients after primary percutaneous coronary intervention were enrolled in the study. RESULTS: Enhanced NETosis was observed in human neutrophils carrying the ALDH2 genetic mutation and ischaemic myocardium of ALDH2 knockout mice compared with controls. PAD4 knockout or treatment with NETosis-targeting drugs (GSK484, DNase1) substantially attenuated the extent of myocardial damage, particularly in ALDH2 knockout. Mechanistically, ALDH2 deficiency increased damage-associated molecular pattern release and susceptibility to NET-induced damage during myocardial I/RI. ALDH2 deficiency induced NOX2-dependent NETosis via upregulating the endoplasmic reticulum stress/microsomal glutathione S-transferase 2/leukotriene C4 (LTC4) pathway. The Food and Drug Administration-approved LTC4 receptor antagonist pranlukast ameliorated I/RI by inhibiting NETosis in both wild-type and ALDH2 knockout mice. Serum myeloperoxidase-DNA complex and LTC4 levels exhibited the predictive effect on adverse left ventricular remodelling at 6 months after primary percutaneous coronary intervention in ST-elevation myocardial infarction patients. CONCLUSIONS: ALDH2 deficiency exacerbates myocardial I/RI by promoting NETosis via the endoplasmic reticulum stress/microsomal glutathione S-transferase 2/LTC4/NOX2 pathway. This study hints at the role of NETosis in the pathogenesis of myocardial I/RI, and pranlukast might be a potential therapeutic option for attenuating I/RI, particularly in individuals with the ALDH2 mutation.


Assuntos
Aldeído-Desidrogenase Mitocondrial , Armadilhas Extracelulares , Leucotrieno C4 , Camundongos Knockout , Traumatismo por Reperfusão Miocárdica , Proteína-Arginina Desiminase do Tipo 4 , Animais , Aldeído-Desidrogenase Mitocondrial/genética , Aldeído-Desidrogenase Mitocondrial/metabolismo , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/metabolismo , Armadilhas Extracelulares/metabolismo , Humanos , Camundongos , Proteína-Arginina Desiminase do Tipo 4/metabolismo , Leucotrieno C4/metabolismo , Masculino , Modelos Animais de Doenças , Neutrófilos/metabolismo , Antagonistas de Leucotrienos/farmacologia , Antagonistas de Leucotrienos/uso terapêutico , Feminino , Infarto do Miocárdio com Supradesnível do Segmento ST/metabolismo , Pessoa de Meia-Idade , Benzamidas , Benzodioxóis
12.
Int J Mol Sci ; 25(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38612596

RESUMO

A better understanding of the function of neutrophil extracellular traps (NETs) may facilitate the development of interventions for sepsis. The study aims to investigate the formation and degradation of NETs in three murine sepsis models and to analyze the production of reactive oxygen species (ROS) during NET formation. Murine sepsis was induced by midgut volvulus (720° for 15 min), cecal ligation and puncture (CLP), or the application of lipopolysaccharide (LPS) (10 mg/kg body weight i.p.). NET formation and degradation was modulated using mice that were genetically deficient for peptidyl arginine deiminase-4 (PAD4-KO) or DNase1 and 1L3 (DNase1/1L3-DKO). After 48 h, mice were killed. Plasma levels of circulating free DNA (cfDNA) and neutrophil elastase (NE) were quantified to assess NET formation and degradation. Plasma deoxyribonuclease1 (DNase1) protein levels, as well as tissue malondialdehyde (MDA) activity and glutathione peroxidase (GPx) activity, were quantified. DNase1 and DNase1L3 in liver, intestine, spleen, and lung tissues were assessed. The applied sepsis models resulted in a simultaneous increase in NET formation and oxidative stress. NET formation and survival differed in the three models. In contrast to LPS and Volvulus, CLP-induced sepsis showed a decreased and increased 48 h survival in PAD4-KO and DNase1/1L3-DKO mice, when compared to WT mice, respectively. PAD4-KO mice showed decreased formation of NETs and ROS, while DNase1/1L3-DKO mice with impaired NET degradation accumulated ROS and chronicled the septic state. The findings indicate a dual role for NET formation and degradation in sepsis and ischemia-reperfusion (I/R) injury: NETs seem to exhibit a protective capacity in certain sepsis paradigms (CLP model), whereas, collectively, they seem to contribute adversely to scenarios where sepsis is combined with ischemia-reperfusion (volvulus).


Assuntos
Antígenos de Grupos Sanguíneos , Ácidos Nucleicos Livres , Armadilhas Extracelulares , Volvo Intestinal , Traumatismo por Reperfusão , Sepse , Animais , Camundongos , Modelos Animais de Doenças , Lipopolissacarídeos , Espécies Reativas de Oxigênio , Sepse/complicações , Prótons , Isquemia
13.
Int J Mol Sci ; 25(7)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38612791

RESUMO

Neutrophil extracellular traps (NETs), composed of DNA, histones, and antimicrobial proteins, are released by neutrophils in response to pathogens but are also recognized for their involvement in a range of pathological processes, including autoimmune diseases, cancer, and cardiovascular diseases. This review explores the intricate roles of NETs in different cardiovascular conditions such as thrombosis, atherosclerosis, myocardial infarction, COVID-19, and particularly in the pathogenesis of abdominal aortic aneurysms. We elucidate the mechanisms underlying NET formation and function, provide a foundational understanding of their biological significance, and highlight the contribution of NETs to inflammation, thrombosis, and tissue remodeling in vascular disease. Therapeutic strategies for preventing NET release are compared with approaches targeting components of formed NETs in cardiovascular disease. Current limitations and potential avenues for clinical translation of anti-NET treatments are discussed.


Assuntos
Aneurisma da Aorta Abdominal , Sistema Cardiovascular , Armadilhas Extracelulares , Infarto do Miocárdio , Trombose , Humanos
14.
Cancer Med ; 13(7): e7165, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38613157

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is one of the most common malignant tumors worldwide, it has a poor prognosis due to its highly invasive and metastatic nature. Consequently, identifying effective prognostic markers and potential therapeutic targets has been extensively investigated. METTL5, an 18S rRNA methyltransferase, is abnormally high in HCC. But its biological function and prognostic significance in HCC remain largely unelucidated. This study aimed to investigate the role of METTL5 in HCC progression, and elucidate its possible molecular mechanisms in HCC via transcriptome sequencing, providing new insights for identifying new HCC prognostic markers and therapeutic targets. METHODS: The METTL5 expression in HCC and paracancerous tissues was analyzed using HCC immunohistochemical microarrays and bioinformatic retrieval methods to correlate METTL5 with clinicopathological features and survival prognosis. We constructed a METTL5 knockdown hepatocellular carcinoma cell line model and an animal model to determine the effect of METTL5 on hepatocellular carcinoma progression. Subsequently, RNA sequencing was performed to analyze the molecular mechanism of METTL5 in HCC based on the sequencing results, and relevant experiments were performed to verify it. RESULTS: We found that METTL5 expression was elevated in hepatocellular carcinoma tissues and correlated with poor patient prognosis, and in the analysis of clinicopathological features showed a correlation with TNM staging. In hepatocellular carcinoma cell lines with knockdown of METTL5, the malignant biological behavior was significantly reduced both in vitro and in vivo. Based on the sequencing results as well as the results of GO functional enrichment analysis and KEGG pathway enrichment analysis, we found that METTL5 could promote the generation and release of neutrophil extracellular capture network (NETs) and might further accelerate the progression of HCC. CONCLUSION: The m6A methyltransferase METTL5 is overexpressed in hepatocellular carcinoma (HCC) and correlates with poor prognosis. METTL5 accelerates malignant progression of HCC by promoting generation and release of the neutrophil extracellular traps (NETs) network, providing new insights for clinical biomarkers and immunotherapeutic targets in HCC prognosis.


Assuntos
Adenina , Carcinoma Hepatocelular , Armadilhas Extracelulares , Neoplasias Hepáticas , Animais , Humanos , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Metiltransferases/genética
15.
Sci Rep ; 14(1): 9107, 2024 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643283

RESUMO

Neutrophil extracellular traps (NETs) are defense mechanisms that trap and kill microorganisms and degrade cytokines. However, excessive production, dysregulation of suppression mechanisms, or inefficient removal of NETs can contribute to increased inflammatory response and the development of pathological conditions. Therefore, research has focused on identifying drugs that inhibit or delay the NET release process. Since reactive oxygen species (ROS) play a significant role in NET release, we aimed to investigate whether resveratrol (RSV), with a wide range of biological and pharmacological properties, could modulate NET release in response to different stimuli. Thus, human neutrophils were pretreated with RSV and subsequently stimulated with PMA, LPS, IL-8, or Leishmania. Our findings revealed that RSV reduced the release of NETs in response to all tested stimuli. RSV decreased hydrogen peroxide levels in PMA- and LPS-stimulated neutrophils, inhibited myeloperoxidase activity, and altered the localization of neutrophil elastase. RSV inhibition of NET generation was not mediated through A2A or A2B adenosine receptors or PKA. Based on the observed effectiveness of RSV in inhibiting NET release, our study suggests that this flavonoid holds potential as a candidate for treating NETs involving pathologies.


Assuntos
Armadilhas Extracelulares , Humanos , Armadilhas Extracelulares/metabolismo , Resveratrol/farmacologia , Resveratrol/metabolismo , Peróxido de Hidrogênio/metabolismo , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Neutrófilos/metabolismo , Espécies Reativas de Oxigênio/metabolismo
16.
Sci Rep ; 14(1): 9115, 2024 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643300

RESUMO

Acute Myeloid Leukemia (AML) is a malignant blood cancer with a high mortality rate. Neutrophil extracellular traps (NETs) influence various tumor outcomes. However, NET-related genes (NRGs) in AML had not yet received much attention. This study focuses on the role of NRGs in AML and their interaction with the immunological microenvironment. The gene expression and clinical data of patients with AML were downloaded from the TCGA-LAML and GEO cohorts. We identified 148 NRGs through the published article. Univariate Cox regression was used to analyze the association of NRGs with overall survival (OS). The least absolute shrinkage and selection operator were utilized to assess the predictive efficacy of NRGs. Kaplan-Meier plots visualized survival estimates. ROC curves assessed the prognostic value of NRG-based features. A nomogram, integrating clinical information and prognostic scores of patients, was constructed using multivariate logistic regression and Cox proportional hazards regression models. Twenty-seven NRGs were found to significantly impact patient OS. Six NRGs-CFTR, ENO1, PARVB, DDIT4, MPO, LDLR-were notable for their strong predictive ability regarding patient survival. The ROC values for 1-, 3-, and 5-year survival rates were 0.794, 0.781, and 0.911, respectively. In the training set (TCGA-LAML), patients in the high NRG risk group showed a poorer prognosis (p < 0.001), which was validated in two external datasets (GSE71014 and GSE106291). The 6-NRG signature and corresponding nomograms exhibit superior predictive accuracy, offering insights for pre-immune response evaluation and guiding future immuno-oncology treatments and drug selection for AML patients.


Assuntos
Armadilhas Extracelulares , Neoplasias Hematológicas , Leucemia Mieloide Aguda , Humanos , Prognóstico , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Nomogramas , Microambiente Tumoral
17.
Life Sci ; 346: 122648, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38631668

RESUMO

AIMS: Acute lung injury (ALI) is a life-threatening lung disease characterized by inflammatory cell infiltration and lung epithelial injury. Icariside II (ICS II), one of the main active ingredients of Herba Epimedii, exhibits anti-inflammatory and immunomodulatory effects. However, the effect and mechanism of ICS II in ALI remain unclear. The purpose of the current study was to investigate the pharmacological effect and underlying mechanism of ICS II in ALI. MAIN METHODS: Models of neutrophil-like cells, human peripheral blood neutrophils, and lipopolysaccharide (LPS)-induced ALI mouse model were utilized. RT-qPCR and Western blotting determined the gene and protein expression levels. Protein distribution and quantification were analyzed by immunofluorescence. KEY FINDINGS: ICS II significantly reduced lung histopathological damage, edema, and inflammatory cell infiltration, and it reduced pro-inflammatory cytokines in ALI. There is an excessive activation of neutrophils leading to a significant production of NETs in ALI mice, a process mitigated by the administration of ICS II. In vivo and in vitro studies found that ICS II could decrease NET formation by targeting neutrophil C-X-C chemokine receptor type 4 (CXCR4). Further data showed that ICS II reduces the overproduction of dsDNA, a NETs-related component, thereby suppressing cGAS/STING/NF-κB signalling pathway activation and inflammatory mediators release in lung epithelial cells. SIGNIFICANCE: This study suggested that ICS II may alleviate LPS-induced ALI by modulating the inflammatory response, indicating its potential as a therapeutic agent for ALI treatment.


Assuntos
Lesão Pulmonar Aguda , Armadilhas Extracelulares , Flavonoides , Lipopolissacarídeos , Camundongos Endogâmicos C57BL , Neutrófilos , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/imunologia , Animais , Camundongos , Armadilhas Extracelulares/efeitos dos fármacos , Armadilhas Extracelulares/metabolismo , Humanos , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Neutrófilos/imunologia , Flavonoides/farmacologia , Masculino , Pulmão/patologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/patologia , Anti-Inflamatórios/farmacologia
18.
Biochem Biophys Res Commun ; 710: 149896, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38604072

RESUMO

Pain is a widespread motivation for seeking healthcare and stands as a substantial global public health concern. Despite comprehensive investigations into the mechanisms of pain sensitization induced by inflammation, efficacious treatments options remain scarce. Neutrophil extracellular traps (NETs) have been associated with the progression and tissue damage of diverse inflammatory diseases. This study aims to explore the impact of NETs on the progression of inflammatory pain and explore potential therapeutic approaches. Initially, we observed neutrophil infiltration and the formation of NETs in the left hind paw of mice with inflammatory pain induced by complete Freund's adjuvant (CFA). Furthermore, we employed the peptidyl arginine deiminase 4 (PAD4) inhibitor Cl-amidine (diluted at 50 mg/kg in saline, administered via tail vein injection once daily for three days) to impede NETs formation and administered DNase1 (diluted at 10 mg/kg in saline, once daily for three days) to break down NETs. We investigated the pathological importance of peripheral NETs formation in inflammatory pain and its influence on the activation of spinal dorsal horn microglia. The findings indicate that neutrophils infiltrating locally generate NETs, leading to an increased release of inflammatory mediators that worsen peripheral inflammatory reactions. Consequently, this results in the transmission of more harmful peripheral stimuli to the spinal cord, triggering microglial activation and NF-κB phosphorylation, thereby escalating neuroinflammation and fostering pain sensitization. Suppression of peripheral NETs can mitigate peripheral inflammation in mice with inflammatory pain, reverse mechanical and thermal hypersensitivity by suppressing microglial activation in the spinal cord, ultimately diminishing inflammatory pain. In conclusion, these discoveries propose that obstructing or intervening with NETs introduces a novel therapeutic avenue for addressing inflammatory pain.


Assuntos
Armadilhas Extracelulares , Camundongos , Animais , Dor/tratamento farmacológico , Inflamação/patologia , Neutrófilos/patologia , Corno Dorsal da Medula Espinal
19.
Artigo em Chinês | MEDLINE | ID: mdl-38604682

RESUMO

OBJECTIVE: To investigate the expression of neutrophil extracellular traps (NETs) and phagocytic function in the peripheral blood of patients with hepatic alveolar echinococcosis (HAE), and to examine their correlations with clinical inflamma tory indicators and liver functions. METHODS: A total of 50 patients with HAE admitted to Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qinghai University from August 2022 to June 2023 were enrolled, while 50 age- and gender-matched healthy individuals from the Centre for Healthy Examinations of the hospital during the same period served as controls. The levels of NETs markers neutrophil myeloperoxidase (MPO) and neutrophil elastase (NE) were measured using enzyme-linked immunosorbent assay (ELISA). Peripheral blood neutrophils were isolated using density gradient centrifugation, stimulated in vitro using phorbol 12-myristate 13 acetate (PMA), and the levels of MPO and citrullination histone H3 (CitH3) released by neutrophils were quantified using flow cytometry. The phagocytic functions of neutrophils were examined using flow cytometry. In addition, the correlations of MPO and NE levels with clinical inflammatory indicators and liver biochemical indicators were examined using Spearman correlation analysis among HAE patients. RESULTS: The peripheral blood plasma MPOï¼»(417.15 ± 76.08) ng/mL vs. (255.70 ± 80.84) ng/mL; t = 10.28, P < 0.05ï¼½, NEï¼»(23.16 ± 6.75) ng/mL vs. (11.92 ± 3.17) ng/mL; t = 10.65, P < 0.05ï¼½and CitH3 levelsï¼»(33.93 ± 18.93) ng/mL vs. (19.52 ± 13.89) ng/mL; t = 4.34, P < 0.05ï¼½were all significantly higher among HAE patients than among healthy controls, and a lower phagocytosis rate of neutrophils was detected among HAE patients than among healthy controlsï¼»(70.85 ± 7.32)% vs. (94.04 ± 3.90)%; t = 20.18, P < 0.05ï¼½, and the ability to produce NETs by neutrophils was higher among HAE patients than among healthy controls following in vitro PMA stimulation. Pearson correlation analysis showed that the phagocytosis rate of neutrophils correlated negatively with platelet-to-lymphocyte ratio (PLR), neutrophil-to-lymphocyte ratio (NLR), interleukin-6 (IL-6) level and C-reactive protein (CRP) level (rs = -0.515 to -0.392, all P values < 0.05), and the MPO and NE levels positively correlated with inflammatory markers NLR, PLR, CRP and IL-6 (rs = 0.333 to 0.445, all P values < 0.05) and clinical liver biochemical indicators aspartic transaminase, alanine aminotransferase, direct bilirubin and total bilirubin among HAE patients (rs = 0.290 to 0.628, all P values < 0.001). CONCLUSIONS: Excessive formation of NETs is found among HAE patients, which affects the phagocytic ability of neutrophils and results in elevated levels of inflammatory indicators. NETs markers may be promising novel biomarkers for early diagnosis, monitoring, and severity assessment of liver disease.


Assuntos
Equinococose Hepática , Armadilhas Extracelulares , Humanos , Armadilhas Extracelulares/metabolismo , Interleucina-6/metabolismo , Neutrófilos , Acetato de Tetradecanoilforbol/metabolismo , Bilirrubina/metabolismo
20.
Biomolecules ; 14(4)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38672433

RESUMO

Neutrophil extracellular traps (NETs) are intricate fibrous structures released by neutrophils in response to specific stimuli. These structures are composed of depolymerized chromatin adorned with histones, granule proteins, and cytosolic proteins. NETs are formed via two distinct pathways known as suicidal NETosis, which involves NADPH oxidase (NOX), and vital NETosis, which is independent of NOX. Certain proteins found within NETs exhibit strong cytotoxic effects against both pathogens and nearby host cells. While NETs play a defensive role against pathogens, they can also contribute to tissue damage and worsen inflammation. Despite extensive research on the pathophysiological role of NETs, less attention has been paid to their components, which form a unique structure containing various proteins that have significant implications in a wide range of diseases. This review aims to elucidate the components of NETs and provide an overview of their impact on host defense against invasive pathogens, autoimmune diseases, and cancer.


Assuntos
Armadilhas Extracelulares , Neutrófilos , Armadilhas Extracelulares/metabolismo , Armadilhas Extracelulares/imunologia , Humanos , Neutrófilos/metabolismo , Neutrófilos/imunologia , Animais , NADPH Oxidases/metabolismo , Neoplasias/imunologia , Neoplasias/metabolismo , Neoplasias/patologia , Doenças Autoimunes/imunologia , Doenças Autoimunes/metabolismo , Inflamação/metabolismo , Inflamação/imunologia , Inflamação/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA