Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 653
Filtrar
1.
Anal Chim Acta ; 1315: 342814, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38879213

RESUMO

Arsenosugars are the predominant species of arsenic in most seaweed. The analysis of these compounds is hampered by the lack of calibration standards needed in their unambiguous identification and quantification. This affects the availability of reliable information on their potential toxicity, which is scarce and controversial. Knowing the potential of centrifugal partition chromatography (CPC) as a preparative separation technique applied to a number of natural compounds, the aim of this work is to investigate the feasibility of CPC in the case of isolation and purification of arsenosugars from algae extracts. Several biphasic solvents systems have been studied to evaluate the distribution of the As species. Given the physical characteristics of these compounds, the presence of strong acids, the formation of ionic pairs or the presence of salts at high ionic strength have been considered. System 1-BuOH/EtOH/sat.(NH4)2SO4/water at a volume ratio 0.2:1:1:1 originates adequate distribution constants of analytes that allows the required separation. The total arsenic content and the arsenic speciation of the eluted solutions from CPC were analyzed by ICP-MS and IC-ICP-MS, respectively. The developed CPC procedure allows us to obtain of the three arsenosugars with a purity of 98.7 % in PO4-Sug, 90.4 % in SO3-Sug and 96.1 % in SO4-Sug.


Assuntos
Distribuição Contracorrente , Distribuição Contracorrente/métodos , Arseniatos/isolamento & purificação , Arseniatos/análise , Arseniatos/química , Alga Marinha/química , Monossacarídeos
2.
Chemosphere ; 359: 142205, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38704050

RESUMO

The presence of arsenic in groundwater, and through this in drinking water, has been shown to present a serious risk to public health in many regions of the world. In this study, two iron-rich carbonous adsorbents were compared for the removal of arsenate (As(V)) from groundwater. Biochars (FeO-biochar and FeO-pyrochar) derived from biomass waste were functionalised in two different ways with iron chloride for comparation. Batch and dynamic parameters were optimised to achieve >99% As(V) removal efficiency. Experimental data were best described by the pseudo-second order kinetic model, while multi-stage diffusion appeared to limit mass transfer of As(V). Among the isotherm models evaluated, the Freundlich model best described the experimental results with high correlation coefficients (R2 ≥ 0.94) for both adsorbents. Monolayer adsorption capacities were found to be 4.34 mg/g and 8.66 mg/g for FeO-biochar and FeO-pyrochar, respectively. Batch studies followed by instrumental characterisation of the materials indicated the removal mechanisms involved to be electrostatic interactions (outer-sphere), OH- ligand exchange (inner-sphere complexation) and hydrogen bonding with functional groups. Higher pHpzc (9.1), SBET (167.2 m2/g), and iron/elemental content for the FeO-pyrochar (compared with the FeO-biochar) suggested that both surface chemistry and porosity/surface area were important in adsorption. Dynamic studies showed FeO-pyrochar can be used to remove As(V) from groundwater even at low 'environmental' concentrations relevant to legislative limits (<10 µg/L), whereby 7 g of FeO-pyrochar was able to treat 5.4 L groundwater.


Assuntos
Arseniatos , Carvão Vegetal , Água Subterrânea , Ferro , Poluentes Químicos da Água , Purificação da Água , Adsorção , Arseniatos/química , Água Subterrânea/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Carvão Vegetal/química , Ferro/química , Cinética , Carbono/química
3.
Water Res ; 256: 121580, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38614029

RESUMO

This study aimed to develop surface complexation modeling-machine learning (SCM-ML) hybrid model for chromate and arsenate adsorption on goethite. The feasibility of two SCM-ML hybrid modeling approaches was investigated. Firstly, we attempted to utilize ML algorithms and establish the parameter model, to link factors influencing the adsorption amount of oxyanions with optimized surface complexation constants. However, the results revealed the optimized chromate or arsenate surface complexation constants might fall into local extrema, making it unable to establish a reasonable mapping relationship between adsorption conditions and surface complexation constants by ML algorithms. In contrast, species-informed models were successfully obtained, by incorporating the surface species information calculated from the unoptimized SCM with the adsorption condition as input features. Compared with the optimized SCM, the species-informed model could make more accurate predictions on pH edges, isotherms, and kinetic data for various input conditions (for chromate: root mean square error (RMSE) on test set = 5.90 %; for arsenate: RMSE on test set = 4.84 %). Furthermore, the utilization of the interpretable formula based on Local Interpretable Model-Agnostic Explanations (LIME) enabled the species-informed model to provide surface species information like SCM. The species-informed SCM-ML hybrid modeling method proposed in this study has great practicality and application potential, and is expected to become a new paradigm in surface adsorption model.


Assuntos
Cromo , Compostos de Ferro , Aprendizado de Máquina , Adsorção , Cromo/química , Compostos de Ferro/química , Arsênio/química , Minerais/química , Arseniatos/química , Poluentes Químicos da Água/química , Cinética
4.
Environ Sci Pollut Res Int ; 31(21): 31042-31053, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38622419

RESUMO

Groundwater contamination is a global concern that has detrimental effect on public health and the environment. Sustainable groundwater treatment technologies such as adsorption require attaining a high removal efficiency at a minimal cost. This study investigated the adsorption of arsenate from groundwater utilizing chitosan-coated bentonite (CCB) under a fixed-bed column setup. Fuzzy multi-objective optimization was applied to identify the most favorable conditions for process variables, including volumetric flow rate, initial arsenate concentration, and CCB dosage. Empirical models were employed to examine how initial concentration, flow rate, and adsorbent dosage affect adsorption capacity at breakthrough, energy consumption, and total operational cost during optimization. The ε-constraint process was used in identifying the Pareto frontier, effectively illustrating the trade-off between adsorption capacity at breakthrough and the cost of the fixed-bed system. The integration of fuzzy optimization for adsorption capacity and its total operating cost utilized the global solver function in LINGO 20 software. A crucial equation derived from the Box-Behnken design and a cost equation based on energy and material usage in the fixed-bed system was employed. The results from identifying the Pareto front determined boundary limits for adsorption capacity at breakthrough (ranging from 12.96 ± 0.19 to 12.34 ± 0.42 µg/g) and total operating cost (ranging from 955.83 to 1106.32 USD/kg). An overall satisfaction level of 35.46% was achieved in the fuzzy optimization process. This results in a compromise solution of 12.90 µg/g for adsorption capacity at breakthrough and 1052.96 USD/kg for total operating cost. Henceforth, this can allow a suitable strategic decision-making approach for key stakeholders in future applications of the adsorption fixed-bed system.


Assuntos
Arseniatos , Bentonita , Quitosana , Água Subterrânea , Poluentes Químicos da Água , Purificação da Água , Quitosana/química , Arseniatos/química , Bentonita/química , Adsorção , Poluentes Químicos da Água/química , Água Subterrânea/química , Purificação da Água/métodos
5.
Environ Res ; 250: 118440, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38360164

RESUMO

Ferrihydrite is an effective adsorbent of chromate and arsenate. In order to gain insight into the application of ferrihydrite in water treatment, macroporous alginate/ferrihydrite beads, synthesized using two different methods (internal and encapsulation processes), were used in this work. The properties of the ferrihydrite were assessed using various techniques, including X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Brunauer-Emmett-Teller (BET) theory, and zetametry. The results showed that the specific surface area of the ferrihydrite was 242 m2/g, and the PZC was pH8. The kinetic and isotherm adsorption properties of the ferrihydrite were evaluated in this study. The results indicate that the pseudo second-order and Freundlich models accurately describe the kinetic and isotherm adsorption properties of chromates and arsenates. For chromate removal, ferrihydrite exhibited a relatively high adsorption capacity (40.7 mgCr/g) compared to other adsorbents. However, the arsenate adsorption capacity of MFHB-SI (140.8 mgAs/g) was shown to be the most optimal. The internal synthesis process was suitable for arsenate retention due to the resulting arsenate precipitation. The competitive adsorption analyses indicated that the presence of chromate does not limit the adsorption of arsenate. However, the presence of arsenate almost completely inhibits the adsorption of chromate when the arsenate concentration is above 50 mg/L, due to the precipitation reaction of arsenate.


Assuntos
Alginatos , Arseniatos , Cromatos , Compostos Férricos , Poluentes Químicos da Água , Arseniatos/química , Adsorção , Cromatos/química , Compostos Férricos/química , Alginatos/química , Poluentes Químicos da Água/química , Ácido Glucurônico/química , Cinética , Ácidos Hexurônicos/química , Purificação da Água/métodos
6.
Environ Sci Pollut Res Int ; 31(14): 21430-21441, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38393569

RESUMO

Fe3+ complexed with 3-aminopropyltriethoxysilane (APTES)-modified carboxymethyl chitosan (CMC) named Fe-ACMC was synthesized by a one-step method at room temperature and pressure. The surface morphology and chemical structure of Fe-ACMC were characterized by SEM-EDS, XRD, BET, FT-IR, XPS, and ζ-potential. In batch adsorption, the optimum pH for arsenate [As(V)] adsorption onto Fe-ACMC was 3-9 with removal efficiency > 99%. The adsorption of As(V) could reach equilibrium within 25 min and the maximum adsorption capacity was 84.18 mg g-1. The pseudo-second-order model fitted well the kinetic data (R2 = 0.995), while the Freundlich model well described the adsorption isotherm of As(V) on Fe-ACMC (R2 = 0.979). The co-existing anions (NO3-, CO32-, and SO42-) exhibited a slight impact on the As(V) adsorption efficiency, whereas PO43- inhibited As(V) adsorption on Fe-ACMC. The real applicability of Fe-ACMC was achieved to remove ca. 10.0 mg L-1 of As(V) from natural waters to below 0.05 mg L-1. The regeneration and reuse of Fe-ACMC for As(V) adsorption were achieved by adding 0.2 mol L-1 HCl. The main adsorption mechanism of As(V) on Fe-ACMC was attributed to electrostatic attraction and inner-sphere complexation between -NH2···Fe3+ and As(V). In fixed-bed column adsorption, the Thomas model was the most suitable model to elucidate the dynamic adsorption behavior of As(V). The loading capacity of the Fe-ACMC packed column for As(V) was 47.04 mg g-1 at pH 7 with an initial concentration of 60 mg L-1, flow rate of 3 mL min-1, and bed height of 0.6 cm.


Assuntos
Quitosana , Propilaminas , Silanos , Purificação da Água , Arseniatos/química , Água , Adsorção , Quitosana/química , Espectroscopia de Infravermelho com Transformada de Fourier , Purificação da Água/métodos
7.
Water Res ; 249: 120967, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38070343

RESUMO

As a widely used feed additives, p-arsanilic acid (p-AsA) frequently detected in the environment poses serious threats to aquatic ecology and water security due to its potential in releasing more toxic inorganic arsenic. In this work, the efficiency of Fe(II)/sulfite, Fe(II)/PDS and Fe(II)/PMS systems in p-AsA degradation and simultaneous arsenic removal was comparatively investigated for the first time. Efficient p-AsA abatement was achieved in theses Fe-based systems, while notable discrepancy in total arsenic removal was observed under identical acidic condition. By using chemical probing method, quenching experiments, isotopically labeled water experiments, p-AsA degradation was ascribed to the combined contribution of high-valent Fe(IV) and SO4•-in these Fe(II)-based system. In particular, the relative contribution of Fe(IV) and SO4•- in the Fe(II)/sulfite system was highly dependent on the molar ratio of [Fe(II)] and [sulfite]. Negligible arsenic removal was observed in the Fe(II)/sulfite and Fe(II)/PDS systems, while ∼80% arsenic was removed in the Fe(II)/PMS system under identical acidic condition. This interesting phenomenon was due to that ferric precipitation only occurred in the Fe(II)/PMS system. As(V) was further removed via adsorption onto the iron precipitate or the formation of ferric arsenate-sulfate compounds, which was confirmed by particle diameter measurements, fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Through tuning solution pH, complete removal of total arsenic could achieve in all three systems. Among these three Fe-based technologies, the hybrid oxidation-coagulation Fe(II)/PMS system demonstrated potential superiority for arsenic immobilization by not requiring pH adjustment for coagulation and facilitating the in-situ generation of ferric arsenate-sulfate compounds with comparably low solubility levels like scorodite. These findings would deepen the understanding of these three Fe-based Fenton-like technologies for decontamination in water treatment.


Assuntos
Arsênio , Poluentes Químicos da Água , Arsênio/química , Arseniatos/química , Ácido Arsanílico/química , Ferro/química , Compostos Férricos/química , Oxirredução , Sulfitos , Sulfatos , Óxidos de Enxofre , Compostos Ferrosos , Poluentes Químicos da Água/química
8.
Chemosphere ; 336: 139276, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37343632

RESUMO

Phosphate is the biggest competitor for arsenic removal. Nanoscale metal oxides (NMOs) are commonly used to treat arsenic-contaminated water, yet their selective adsorption mechanisms for arsenic and phosphate are poorly understood. We quantified the selectivity of iron oxide (Fe2O3), zinc oxide (ZnO), and titanium dioxide (TiO2) nanosheets for arsenic in systems containing arsenic and phosphate, and determined the interaction of phosphate and arsenate/arsenite on metal oxide surfaces through batch experiments, spectroscopic techniques, and DFT calculations. We found that Fe2O3, TiO2, and ZnO nanosheets exhibit selectivity for arsenate/arsenite in the presence of phosphate, with Fe2O3 the most selective, followed by TiO2 and ZnO. The bonding mechanism on these metallic oxide surfaces dominates the selectivity. The more stable inner-sphere complexes of arsenate on the surfaces of Fe2O3 (bidentate binuclear), TiO2 (bidentate binuclear), and ZnO nanosheets (tridentate trinuclear) contribute to their preference for arsenate over phosphate. This difference in arsenate selectivity can be reflected in the difference in adsorption energy, net electron transfer number, and M - O bond length of the most stable inner sphere complexes. Overall, our study elucidated the selective adsorption mechanisms of arsenate/arsenite on Fe2O3, TiO2, and ZnO surfaces and highlighted the need to consider the competition between arsenate and phosphate during their removal from contaminated water.


Assuntos
Arsênio , Fosfatos , Poluentes Químicos da Água , Adsorção , Arseniatos/química , Arsênio/química , Arsenitos/química , Teoria da Densidade Funcional , Concentração de Íons de Hidrogênio , Óxidos/química , Fosfatos/química , Água , Óxido de Zinco
9.
J Environ Radioact ; 262: 107168, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37003252

RESUMO

Arsenic (As) and uranium (U) frequently occur together naturally and, in consequence, transform into cocontaminants at sites of uranium mining and processing, yet the simultaneous interaction process of arsenic and uranium has not been well documented. In the present contribution, the influence of arsenate on the removal and reduction of uranyl by the indigenous microorganism Kocuria rosea was characterized using batch experiments combined with species distribution calculation, SEM-EDS, FTIR, XRD and XPS. The results showed that the coexistence of arsenic plays an active role in Kocuria rosea growth and the removal of uranium under neutral and slightly acidic conditions. U-As complex species of UO2HAsO4 (aq) had a positive effect on uranium removal, while Kocuria rosea cells appeared to have a large specific surface area serving as attachment sites. Furthermore, a large number of nano-sized flaky precipitates, constituted by uranium and arsenic, attached to the surface of Kocuria rosea cells at pH 5 through P=O, COO-, and C=O groups in phospholipids, polysaccharides, and proteins. The biological reduction of U(VI) and As(V) took place in a successive way, and the formation of a chadwickite-like uranyl arsenate precipitate further inhibited U(VI) reduction. The results will help to design more effective bioremediation strategies for arsenic-uranium cocontamination.


Assuntos
Arsênio , Monitoramento de Radiação , Urânio , Arseniatos/química , Urânio/metabolismo
10.
Environ Res ; 218: 115033, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36502897

RESUMO

Arsenic (As) is ubiquitous in geothermal fluids, which threatens both water supply safety and local ecology. The co-occurrence of sulfur (S) and As increases the complexity of As migration and transformation in hot springs. Microorganisms play important roles in As-S transformation processes. In the present study, two Tibetan alkaline hot springs (designated Gulu [GL] and Daba [DB]) with different total As concentrations (0.88 mg/L and 12.42 mg/L, respectively) and different sulfide/As ratios (3.97 and 0.008, respectively) were selected for investigating interactions between As-S geochemistry and microbial communities along the outflow channels. The results showed that As-S transformation processes were similar, although concentrations and percentages of As and S species differed between the two hot springs. Thioarsenates were detected at the vents of the hot springs (18% and 0.32%, respectively), and were desulfurized to arsenite along the drainage channel. Arsenite was finally oxidized to arsenate (532 µg/L and 12,700 µg/L, respectively). Monothioarsenate, total As, and sulfate were the key factors shaping the changes in microbial communities with geochemical gradients. The relative abundances of sulfur reduction genes (dsrAB) and arsenate reduction genes (arsC) were higher in upstream portions of GL explaining high thiolation. Arsenite oxidation genes (aoxAB) were relatively abundant in downstream parts of GL and at the vent of DB explaining low thiolation. Sulfur oxidation genes (soxABXYZ) were abundant in GL and DB. Putative sulfate-reducing bacteria (SRB), such as Desulfuromusa and Clostridium, might be involved in forming thioarsenates by producing reduced S for chemical reactions with arsenite. Sulfur-oxidizing bacteria (SOB), such as Elioraea, Pseudoxanthomonas and Pseudomonas, and arsenite-oxidizing bacteria (AsOB) such as Thermus, Sulfurihydrogenibium and Hydrogenophaga, may be responsible for the oxidation of As-bound S, thereby desulfurizing thioarsenates, forming arsenite and, by further abiotic or microbial oxidation, arsenate. This study improves our understanding of As and S biogeochemistry in hot springs.


Assuntos
Arsênio , Arsenitos , Fontes Termais , Microbiota , Arsênio/análise , Arseniatos/análise , Arseniatos/química , Fontes Termais/química , Fontes Termais/microbiologia , Uganda , Bactérias/genética , Oxirredução , Sulfetos , Sulfatos , Enxofre
11.
J Environ Manage ; 325(Pt A): 116417, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36257224

RESUMO

Wastewater from non-ferrous metal smelting is known as one of the most dangerous sources of arsenic (As) due to its high acidity and high arsenic content. Herein, we propose a new environmental protection process for the efficient purification and removal of arsenic from wastewater by the formation of an AlAsO4@silicate core-shell structure based on the characteristics of aluminum-containing waste residue (AWR). At room temperature, the investigation with AWR almost achieved 100% As removal efficiency from wastewater, reducing the arsenic concentration from 5500 mg/L to 52 µg/L. With Al/As molar ratio of 3.5, the structural properties of AWR provided good adsorption sites for arsenic adsorption, leading to the formation of arsenate and insoluble aluminum arsenate with As. As-containing AWR silicate shells were produced under alkaline conditions, resulting in an arsenic leaching concentration of 1.32 mg/L in the TCLP test. AWR, as an efficient As removal and fixation agent, shows great potential in the treatment of copper smelting wastewater, and is expected to achieve large-scale industrial As removal.


Assuntos
Arsênio , Poluentes Químicos da Água , Arsênio/química , Águas Residuárias , Arseniatos/química , Alumínio/química , Adsorção , Poluentes Químicos da Água/química , Concentração de Íons de Hidrogênio
12.
Dalton Trans ; 51(40): 15239-15245, 2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36205190

RESUMO

A second-generation hydrogen bond donor (HBD) anion receptor with an inner amide cavity and an outer urea cavity can selectively and efficiently extract arsenate (AsO43-) from water in the presence of competitive oxoanions and halides. The X-ray structure showed encapsulation of AsO43- in a π-stacked dimeric capsular assembly of the receptor, the first crystallography-based example of pentavalent AsO43- trianion recognition by a HBD receptor.


Assuntos
Arseniatos , Ureia , Amidas/química , Arseniatos/química , Modelos Moleculares , Ureia/química , Água/química
13.
J Hazard Mater ; 440: 129736, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-36027753

RESUMO

Irrigation activities can cause strong geochemical and hydrological fluctuations in the unsaturated zone, and affect arsenic (As) migration and transformation. The As geochemical cycle in the unsaturated zone is coupled with that of iron minerals through sorption-desorption, coprecipitation and redox processes. Dynamic batch experiments and wetting-drying cycling column experiments were conducted to evaluate As mobilization behaviors under the effects of exogenous substances, redox condition and intermittent flow. Our results show that As release under exogenous substances carried by irrigation (e.g., phosphate, carbonate, fulvic acid, humic acid, etc.) followed three trends with the types of exogenous inputs. Inorganic anions and organic matter resulted in opposite trends of arsenate release in different redox conditions. In anoxic environments, As(V) release was favored by the addition of phosphate and carbonate, while in oxic environments, the mobilization of As(V) was promoted by the addition of fulvic acid (FA). Further, intermittent irrigation promoted the reductive dissolution of Fe oxides and the mobilization of As. The addition of humic acid (HA) resulted in the mobilization of arsenate as As-Fe-HA ternary complexes. The mechanism of arsenic mobilization under irrigation has importance for prevention of arsenic exposure through soil to food chain transfer in typical high arsenic farmland.


Assuntos
Arsênio , Arseniatos/química , Arsênio/metabolismo , Substâncias Húmicas/análise , Ferro , Minerais , Oxirredução , Óxidos , Fosfatos/química , Solo
14.
Chemosphere ; 308(Pt 1): 136129, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35995195

RESUMO

Adsorption of natural organic matter (NOM) to mineral surfaces is an important process determining the environmental fate and biogeochemical cycling of many elements. Natural organic matter consists of a heterogeneous mixture of soft and flexible organic molecules. Upon adsorption, size fractionation may occur, as well as changes in molecular conformation. Although very important, these phenomena have been omitted in existing adsorption models. Filling this gap, a novel framework for NOM adsorption to metal (hydr)oxides is presented. Humic acid (HA) was used as an analog for studying experimentally the NOM adsorption to goethite and its size fractionation as a function of pH, ionic strength, and surface loading. Size fractionation was evaluated for adsorption isotherms collected at pH 4 and 6, showing HA molecules of low molar mass were preferentially adsorbed. This phenomenon was incorporated into the new model. Consistent description of the HA adsorption data over the entire range of pH (3-11), ionic strength (2-100 mM), and surface loading (0.1-3 mg m-2) indicated that the spatial distribution of HA molecules adsorbed in the interface is a trade-off between maximizing the interaction of the HA ligands with the oxide surface and minimizing the electrostatic repulsion between HA particles as a result of interfacial crowding. Our advanced consistent framework is able to quantify changes in molar mass and molecular conformation, thereby significantly contributing to an improved understanding of the competitive power of HA for interacting on oxides with other adsorbed small organic acids as well as environmentally important oxyanions, such as phosphate, arsenate, and others.


Assuntos
Arseniatos , Óxidos , Adsorção , Arseniatos/química , Substâncias Húmicas/análise , Metais , Minerais/química , Compostos Orgânicos , Óxidos/química , Fosfatos/química
15.
ACS Appl Mater Interfaces ; 14(28): 32457-32473, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35797477

RESUMO

Raising public awareness over the emerging health risk due to intake of arsenic-contaminated potable water is a matter of great concern. Exploration of cost-effective, self-testing kits is a substantial way to reach out to the masses and detect the presence of arsenate in water. With this agenda, a photoluminescent Mannich base Zn(II) complex (ZnMC = [Zn2(ML)2]·(ClO4)2·(H2O); HML = Mannich base ligand) has been synthesized, and its dinuclearity was verified with single-crystal X-ray diffraction structural analysis. Among a range of anions, ZnMC was found to detect arsenate selectively by showing a turn-off emission with a color change from bright green to dark under UV light. The real-life applicability of the ZnMC probe is somewhat restricted to only sensing of arsenate, but not its removal owing to the fact of its homogeneity. Considering the efficacy of ZnMC as well as a need for its easy removal from water, slight modification has been done with chloride ions in the form of ZnMC″ (=[Zn2(ML)2(Cl)2]), and finally, an interface between homogeneous and heterogeneous solid support has been explored with a strategic fabrication of ZnMC″ grafted ZnAl2O4, named as ZAZ nanomaterial. This not only imparts successful segregation of arsenate from drinking water but also provides naked-eye detection under ambient light as well as UV light. Thermodynamic parameters associated with the binding of arsenate to ZnMC and ZAZ have been evaluated through isothermal calorimetric (ITC) measurements. Steady-state and time-resolved fluorescence titration study, absorption titration study, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and computational calculations have been performed to get deep insights into the sensing properties. Proper justification of the sensing mechanism is the highlight of this work. ZAZ nanomaterial has been exploited to produce a self-test paper kit for arsenate detection with a limit of 9.86 ppb, which potentially enables applications in environmental monitoring.


Assuntos
Água Potável , Nanoestruturas , Arseniatos/química , Bases de Mannich , Microscopia Eletrônica de Varredura
16.
Environ Sci Process Impacts ; 24(9): 1383-1391, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-35838030

RESUMO

Schwertmannite is a common nanomineral in acid sulfate environments such as Acid Mine Drainage (AMD) and Acid Sulfate Soils (ASS). Its high surface area and positively charged surface result in a strong affinity towards toxic oxyanions such as arsenate in solution. However, natural precipitation of schwertmannite also involves the accumulation of other impurities, in particular aluminum, an element that is often incorporated into the structure of Fe-oxide minerals, such as goethite and ferrihydrite, affecting their structural and surface properties. However, little is known about the effect of Al incorporation in schwertmannite on the removal capacity of toxic oxyanions found in AMD and ASS (e.g. arsenate). In this paper, schwertmannite samples with variable Al concentration were synthetized and employed in arsenate adsorption isotherm experiments at a constant pH of 3.5. Solid samples before and after arsenate adsorption were characterized using high energy X-ray diffraction and pair distribution function analyses in order to identify structural differences correlated with the Al content as well as variations in the coordination of arsenate adsorbed on the mineral surface. These analyses showed limited Al accumulation on schwertmannite (up to 5%) with a low effect on its structure. The maximum arsenate sorption capacity (258 mmolH2AsO4 molFe-1) was in the range of that with pure schwertmannite, but a higher proportion of inner-sphere coordination was observed. Finally, Al was found to desorb from schwertmannite, with adsorbed arsenate preventing this effect and increasing the stability of the mineral. These results are useful to interpret observations from the field, in particular from river water affected by AMD and ASS, where similar conditions are observed, and where aluminum incorporation is expected.


Assuntos
Arseniatos , Compostos de Ferro , Adsorção , Alumínio , Arseniatos/química , Compostos Férricos/química , Concentração de Íons de Hidrogênio , Compostos de Ferro/química , Minerais/química , Óxidos , Solo , Sulfatos/química , Propriedades de Superfície , Água
17.
Spectrochim Acta A Mol Biomol Spectrosc ; 279: 121458, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35687989

RESUMO

Nine decorated lead-tin glazed earthenwares, colloquially termed 'delftware', produced in c. 1770 in Bristol, Lancaster and Liverpool, England, have been analysed non-invasively by Raman spectroscopy and electron microscopy. The body paste used to manufacture these west coast wares was attained by the blending of highly dolomitic [CaMg(CO3)2] "blue" clay sourced from Carrickfergus, County Antrim, Ireland, with locally sourced clays. Thus, the resulting body fabric of these wares contains significant MgO enabling them to be differentiated from MgO-free London manufactured delftware. The glazes employed all contain arsenic, obtained as a cobalt impurity or by deliberate addition. The presence of this unvolatilised arsenic in the glaze has then reacted with the lead during firing at temperatures approaching 1000 °C and then further reacted with calcium and magnesium to form needle-like crystals of lead arsenates in the form of mimetite [Pb5(AsO4)(Cl,OH)], schulténite [Pb(AsO3OH)], ß-roselite [Ca2Co(AsO4)2·2H2O], hedyphane [Ca2Pb3(AsO4)3Cl], wendwilsonite [Ca2Mg(AsO4)2·2H2O] and/or adelite [CaMgAsO4(OH)] during high temperature firing.


Assuntos
Arsênio , Análise Espectral Raman , Arseniatos/química , Chumbo , Microscopia Eletrônica
18.
J Environ Manage ; 317: 115497, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35751289

RESUMO

The adsorption of inorganic arsenic (As) plays an important role in the mobility and transport of As in the river environment. In this work, the adsorption and desorption of arsenite [As(III)] and arsenate [As(V)] on river sediment were conducted under different pH, initial As concentrations, river water and sediment composition to assess As adsorption behavior and mechanism. Both adsorption kinetics and equilibrium results showed higher adsorption capacity of sediment for As(V) than As(III). Adsorption of As(III) and As(V) on river sediment was favored in acidic to neutral conditions and on finer sediment particles, while sediment organic matter marginally reduced adsorption capacity. In addition, higher adsorption affinity of As(III) and As(V) in river sediment was observed in deionised water than in river water. For the release process, the desorption of both As(III) and As(V) followed nonlinear kinetic models well, showing higher amount of As(III) release from sediment than As(V). Adsorption isotherm was well described by both Langmuir and Freundlich models, demonstrating higher maximum adsorption capacity of As(V) at 298.7 mg/kg than As(III) at 263.3 mg/kg in deionised water, and higher maximum adsorption capacity of As(III) of 234.3 mg/kg than As(V) of 206.2 mg/kg in river water. The XRD showed the changes in the peaks of mineral groups of sediment whilst FTIR results revealed the changes related to surface functional groups before and after adsorption, indicating that Fe-O/Fe-OH, Si(Al)-O, hydroxyl and carboxyl functional groups were predominantly involved in As(III) and As(V) adsorption on sediment surface. XPS analysis evidenced the transformation between these As species in river sediment after adsorption, whilst SEM-EDS revealed higher amount of As(V) in river sediment than As(III) due to the lower signal of Al.


Assuntos
Arsênio , Arsenitos , Poluentes Químicos da Água , Purificação da Água , Adsorção , Arseniatos/química , Arsênio/química , Arsenitos/química , Concentração de Íons de Hidrogênio , Cinética , Rios , Água , Poluentes Químicos da Água/química , Purificação da Água/métodos
19.
J Environ Sci (China) ; 120: 125-134, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35623766

RESUMO

To meet the challenges posed by global arsenic water contamination, the MgAlMn-LDHs with extraordinary efficiency of arsenate removal was developed. In order to clarify the enhancement effect of the doped-Mn on the arsenate removal performance of the LDHs, the cluster models of the MgAlMn-LDHs and MgAl-LDHs were established and calculated by using density functional theory (DFT). The results shown that the doped-Mn can significantly change the electronic structure of the LDHs and improve its chemical activity. Compared with the MgAl-LDHs that without the doped-Mn, the HOMO-LUMO gap was smaller after doping. In addition, the -OH and Al on the laminates were also activated to improve the adsorption property of the LDHs. Besides, the doped-Mn existed as a novel active site. On the other hand, the MgAlMn-LDHs with the doped-Mn, the increased of the binding energy, as well as the decreased of the ion exchange energy of interlayer Cl-, making the ability to arsenate removal had been considerably elevated than the MgAl-LDHs. Furthermore, there is an obvious coordination covalent bond between arsenate and the laminates of the MgAlMn-LDHs that with the doped-Mn.


Assuntos
Arsênio , Poluentes Químicos da Água , Adsorção , Arseniatos/química , Hidróxidos/química , Poluentes Químicos da Água/análise
20.
Environ Sci Technol ; 56(9): 5563-5571, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35437983

RESUMO

Calcium arsenates such as pharmacolite (CaHAsO4·2H2O), haidingerite (CaHAsO4·H2O), and weilite (CaHAsO4) are important sinks for arsenic in mine tailings as well as other natural and contaminated sites and are useful for reducing the mobility and bioavailability of this toxic metalloid in the environment. However, calcium arsenates usually occur in trace amounts dominated by other phases, making their detection, identification, and quantification challenging. In this contribution, pharmacolite, haidingerite, and weilite are shown to exhibit subtle but distinct postedge differences in As K-edge X-ray absorption near-edge structure (XANES) spectra and feature characteristic [AsO3]2-, [AsO4]2-, and [AsO4]4- radicals, all derived from the diamagnetic [HAsO4]2- precursor during γ-ray irradiation, in electron paramagnetic resonance (EPR) spectra. In particular, the 75As (nuclear spin I = 3/2 and natural isotope abundance = 100%) hyperfine coupling constants of the [AsO3]2- radicals in pharmacolite and haidingerite as well as other minerals (e.g., calcite and gypsum) are clearly distinct, allowing the unambiguous identification of calcium arsenates by the EPR technique readily at ∼0.1 wt %. Similarly, linear combination fittings of As K-edge XANES spectra demonstrate that pharmacolite and haidingerite at ∼0.1 wt % each in gypsum-rich mixtures can be detected and quantified as well. Therefore, a combination of the EPR and XANES techniques is a powerful approach for the highly sensitive characterization of calcium arsenates in the quest for the safe management and remediation of arsenic contamination. This work demonstrates the highly sensitive characterization of calcium arsenates by integrated electron paramagnetic resonance and synchrotron X-ray absorption spectroscopy.


Assuntos
Arseniatos , Arsênio , Arseniatos/química , Arsênio/química , Cálcio/química , Compostos de Cálcio , Sulfato de Cálcio/química , Espectroscopia de Ressonância de Spin Eletrônica , Síncrotrons , Espectroscopia por Absorção de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA