Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
1.
BMC Vet Res ; 20(1): 126, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561770

RESUMO

BACKGROUND: Ethno-veterinary practices could be used as a sustainable developmental tool by integrating traditional phytotherapy and husbandry. Phytotherapeutics are available and used worldwide. However, evidence of their antiparasitic efficacy is currently very limited. Parasitic diseases have a considerable effect on pig production, causing economic losses due to high morbidity and mortality. In this respect, especially smallholders and organic producers face severe challenges. Parasites, as disease causing agents, often outcompete other pathogens in such extensive production systems. A total of 720 faecal samples were collected in two farms from three age categories, i.e. weaners, fatteners, and sows. Flotation (Willis and McMaster method), modified Ziehl-Neelsen stained faecal smear, centrifugal sedimentation, modified Blagg technique, and faecal cultures were used to identify parasites and quantify the parasitic load. RESULTS: The examination confirmed the presence of infections with Eimeria spp., Cryptosporidium spp., Balantioides coli (syn. Balantidium coli), Ascaris suum, Oesophagostomum spp., Strongyloides ransomi, and Trichuris suis, distributed based on age category. A dose of 180 mg/kg bw/day of Allium sativum L. and 90 mg/kg bw/day of Artemisia absinthium L. powders, administered for 10 consecutive days, revealed a strong, taxonomy-based antiprotozoal and anthelmintic activity. CONCLUSIONS: The results highlighted the therapeutic potential of both A. sativum and A. absinthium against gastrointestinal parasites in pigs. Their therapeutic effectiveness may be attributed to the content in polyphenols, tocopherols, flavonoids, sterols, sesquiterpene lactones, and sulfoxide. Further research is required to establish the minimal effective dose of both plants against digestive parasites in pigs.


Assuntos
Anti-Infecciosos , Artemisia absinthium , Criptosporidiose , Cryptosporidium , Alho , Enteropatias Parasitárias , Parasitos , Doenças dos Suínos , Animais , Suínos , Feminino , Antiparasitários/farmacologia , Antiparasitários/uso terapêutico , Fazendas , Enteropatias Parasitárias/tratamento farmacológico , Enteropatias Parasitárias/veterinária , Enteropatias Parasitárias/parasitologia , Doenças dos Suínos/tratamento farmacológico , Doenças dos Suínos/parasitologia , Fezes/parasitologia , Prevalência
2.
Sci Rep ; 14(1): 2692, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302508

RESUMO

Artemisia absinthium has long been used traditionally as an anti-microbial and antioxidant agent. Various biologically active secondary metabolites, including phenolic compounds such as gallic acid and p-coumaric acid, have been reported from the species. In addition, growing the plants under in vitro conditions enriched with elicitors is a cost-effective approach to enhance secondary metabolite production. This paper examined microcrystalline cellulose (MCC) and nanocrystalline cellulose (NCC) effects on morphological characteristics, phenolic compounds, antioxidant activity, and volatile oil content of A. absinthium. The treated shoots with various concentrations of MCC and NCC were subjected to spectrophotometric, GC-MS, and LC-MS analysis. FESEM-EDX, TEM, XRD, and DLS methods were applied to characterize MCC and NCC properties. Morphological findings revealed that the stem length, dry, and fresh weights were improved significantly (P ≤ 0.05) under several MCC and NCC concentrations. Some treatments enhanced gallic and p-coumaric acid levels in the plant. Although 1.5 g/L of MCC treatment showed the highest antioxidant activity, all NCC treatments reduced the antioxidant effect. The findings suggest that both MCC and NCC, at optimized concentrations, could be exploited as elicitors to improve the secondary metabolite production and morphological properties.


Assuntos
Antioxidantes , Artemisia absinthium , Ácidos Cumáricos , Antioxidantes/metabolismo , Artemisia absinthium/química , Artemisia absinthium/metabolismo , Celulose/química , Fenóis/metabolismo
3.
J Biomol Struct Dyn ; 42(6): 3267-3285, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37194295

RESUMO

Breast cancer is the world's second most frequent malignancy, with a significant mortality and morbidity rate. Nowadays, natural breast cancer medicine has piqued attention as disease-curing agent with low side effects. Herein, the leaf powder of Artemisia absinthium was extracted with ethanol, and GC-MS and LC-MS methods were employed to identify the phytocompounds. Using commercial software SeeSAR-9.2 and StarDrop, identified phytocompounds were docked with estrogen and progesterone breast cancer receptors as they promote breast cancer growth to find the binding affinity of the ligands, drugability, and toxicity. Hormone-mediated breast cancer accounts for about 80% of all cases of breast cancer. Cancer cells proliferate when estrogen and progesterone hormones are attached to these receptors. The molecular docking results demonstrated that 3',4',5,7-Tetrahydroxyisoflavanone (THIF) has stronger binding efficacy than standard drugs and other phytocompounds with -28.71 (3 hydrogen bonds) and -24.18 kcal/mol (6 hydrogen bonds) binding energies for estrogen and progesterone receptors, respectively. Pharmacokinetics and toxicity analysis were done to predict the drug-likeness of THIF which results in good drugability and less toxicity. The best fit THIF was subjected to a molecular dynamics simulation analysis by using Gromacs to analyze the conformational changes that occurred during protein-ligand interaction and found that, the structural changes were observed. The results from MD simulation and pharmacokinetic studies suggested that THIF can be expected that in vitro and in vivo research on this compound may lead to the development of a potent anti-breast cancer drug in the future.Communicated by Ramaswamy H. Sarma.


Assuntos
Artemisia absinthium , Neoplasias da Mama , Humanos , Feminino , Detecção Precoce de Câncer , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Progesterona , Estrogênios , Neoplasias da Mama/tratamento farmacológico
4.
Toxicol In Vitro ; 95: 105738, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38000518

RESUMO

Medicinal plants are important worldwide, considering their properties for treating diseases; however, few studies have evaluated their toxicological potential. Among them, Artemisia absinthium is frequently used to treat liver diseases, because its essential oil has several popular therapeutic properties. Based on this information, in the present study, we investigated molecular connectors of physiological effects of the Artemisia absinthium essential oil on human hepatic stellate cell line, LX-2, to explore the potential toxicity of the plant on liver cells. LX-2 is a cellular model to investigate mechanisms of liver fibrosis; then, to analyze the essential oil effects LX-2 was cultured under different conditions, treated or not with the essential oil at 0.4 µg/µL for 24 h. Next, fluorescence microscopy analyses, gene expression measurements, and biochemical approaches revealed that the essential oil reduced pro-fibrogenic markers; however, disrupt lipid metabolism, and cause cellular stress, by the activation of cellular detoxification and pro-inflammatory processes. In conclusion, the hepatic stellate cells incubated with the essential oil present an antifibrotic potential, supporting its popular use; however, the combined results suggest that the essential oil of Artemisia absinthium should be used with caution.


Assuntos
Artemisia absinthium , Óleos Voláteis , Humanos , Artemisia absinthium/toxicidade , Artemisia absinthium/química , Óleos Voláteis/toxicidade , Óleos Voláteis/química , Células Estreladas do Fígado
5.
J Complement Integr Med ; 21(1): 46-52, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38109312

RESUMO

OBJECTIVES: In Unani medicine, a comprehensive treatment plan has been delineated to deal with febrile illnesses using herbal drugs along with modified dietetics, which stands as a promising area of research. The present study was aimed at evaluating the antipyretic activity of the HAE of Artemisia absinthium L. whole plant as a standalone and as an adjuvant with barley water in an animal model of pyrexia to validate the age-old Unani principle of the treatment. METHODS: The pyrexia was induced in all the groups except the plain control using Brewer's yeast. Group II did not receive any treatment, while group III received crocin, group IV received HAE of A. absinthium, group V administered Ma al-Sha'ir, and group VI was treated with the HAE of A. absinthium along with Ma al-Sha'ir by oral route. The rectal temperature of each rat was recorded at '0' h, 30 min, 60 min, and 180 min. RESULTS: The mean rectal temperature of group III went down from 101.82±0.20 °F to 100.4±0.57 °F over the period of (0-180) minutes, whereas the mean temperature in group IV went down from 102.45±0.60 °F to 100.14±0.57 °F. The mean rectal temperature of group V decreased from 100.62±0.11 °F to 99.55±0.51 °F, while the mean rectal temperature of group VI went down from 101.95±0.1 °F to 97.7±0.11 °F. CONCLUSIONS: It is concluded that the HAE of A. absinthium L. as a standalone and along with Ma al Sha'ir showed excellent antipyretic activity as compared to the standard drug in an animal model.


Assuntos
Antipiréticos , Artemisia absinthium , Hordeum , Ratos , Animais , Antipiréticos/farmacologia , Antipiréticos/uso terapêutico , Ratos Wistar , Saccharomyces cerevisiae , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Febre/tratamento farmacológico
6.
Int J Mol Sci ; 24(22)2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38003540

RESUMO

To overcome the shortcomings of traditional extraction methods, such as long extraction time and low efficiency, and considering the low content and high complexity of total flavonoids in Artemisia absinthium L., in this experiment, we adopted ultrasound-assisted enzymatic hydrolysis to improve the yield of total flavonoids, and combined this with molecular docking and network pharmacology to predict its core constituent targets, so as to evaluate its antitumor activity. The content of total flavonoids in Artemisia absinthium L. reached 3.80 ± 0.13%, and the main components included Astragalin, Cynaroside, Ononin, Rutin, Kaempferol-3-O-rutinoside, Diosmetin, Isorhamnetin, and Luteolin. Cynaroside and Astragalin exert their cervical cancer inhibitory functions by regulating several signaling proteins (e.g., EGFR, STAT3, CCND1, IGFIR, ESR1). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis showed that the anticancer activity of both compounds was associated with the ErbB signaling pathway and FoxO signaling pathway. MTT results showed that total flavonoids of Artemisia absinthium L. and its active components (Cynaroside and Astragalin) significantly inhibited the growth of HeLa cells in a concentration-dependent manner with IC50 of 396.0 ± 54.2 µg/mL and 449.0 ± 54.8 µg/mL, respectively. Furthermore, its active components can mediate apoptosis by inducing the accumulation of ROS.


Assuntos
Artemisia absinthium , Humanos , Células HeLa , Simulação de Acoplamento Molecular , Flavonoides/farmacologia , Antioxidantes/farmacologia , Proteínas
7.
Molecules ; 28(20)2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37894635

RESUMO

Recently, there has been increased interest in the discovery of new natural herbal remedies for treating diabetes and inflammatory diseases. In this context, this work analyzed the antidiabetic and anti-inflammatory potential of Artemisia absinthium, Artemisia vulgaris and Trigonella foenum-graecum herbs, which have been studied less from this point of view. Therefore, extracts were prepared and processed using membrane technologies, micro- and ultrafiltration, to concentrate the biologically active principles. The polyphenol and flavone contents in the extracts were analyzed. The qualitative analysis of the polyphenolic compounds was performed via HPLC, identifying chlorogenic acid, rosmarinic acid and rutin in A. absinthium; chlorogenic acid, luteolin and rutin in A. vulgaris; and genistin in T. foenum-graecum. The antidiabetic activity of the extracts was analyzed by testing their ability to inhibit α-amylase and α-glucosidase, and the anti-inflammatory activity was analyzed by testing their ability to inhibit hyaluronidase and lipoxygenase. Thus, the concentrated extracts of T. foenum-graecum showed high inhibitory activity on a-amylase-IC50 = 3.22 ± 0.3 µg/mL-(compared with acarbose-IC50 = 3.5 ± 0.18 µg/mL) and high inhibitory activity on LOX-IC50 = 19.69 ± 0.52 µg/mL (compared with all standards used). The concentrated extract of A. vulgaris showed increased α-amylase inhibition activity-IC50 = 8.57 ± 2.31 µg/mL-compared to acarbose IC50 = 3.5 ± 0.18 µg/mL. The concentrated extract of A. absinthium showed pronounced LOX inhibition activity-IC50 = 19.71 ± 0.79 µg/mL-compared to ibuprofen-IC50 = 20.19 ± 1.25 µg/mL.


Assuntos
Artemisia absinthium , Artemisia , Trigonella , Hipoglicemiantes/farmacologia , Extratos Vegetais/farmacologia , Acarbose , Ácido Clorogênico , Anti-Inflamatórios/farmacologia , alfa-Amilases , Rutina
8.
Sci Rep ; 13(1): 18473, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37891400

RESUMO

The continuous search for secondary metabolites in microorganisms isolated from untapped reservoirs is an effective prospective approach to drug discovery. In this study, an in-depth analysis was conducted to investigate the diversity of culturable bacterial endophytes present in the medicinal plant A. absinthium, as well as the antibacterial and anticancer potential of their bioactive secondary metabolites. The endophytic bacteria recovered from A. absinthium, were characterized via the implementation of suitable biochemical and molecular analyses. Agar well diffusion and broth microdilution were used to screen antibacterial activity. SEM was performed to assess the impact of the extracted metabolite on MRSA strain cell morphology. Apoptosis and cytotoxicity assays were used to evaluate anticancer activity against MCF7 and A549. The FTIR, GC-MS were used to detect bioactive compounds in the active solvent fraction. Of the various endophytic bacteria studied, P. aeruginosa SD01 showed discernible activity against both bacterial pathogens and malignancies. The crude ethyl acetate extract of P. aeruginosa SD01 showed MICs of 32 and 128 µg/mL for S. aureus and MRSA, respectively. SEM examination demonstrated MRSA bacterial cell lysis, hole development, and intracellular leaking. This study revealed that the crude bioactive secondary metabolite SD01 has potent anticancer activity. In this study, 2-aminoacetophenone, 1,2-apyrazine-1,4-dione, phenazine and 2-phenyl-4-cyanopyridine were the major bioactive secondary metabolites. In conclusion, our findings indicate that the bacteria recovered from A. absinthium plants and in particular, P. aeruginosa SD01 is a remarkable source of untapped therapeutic, i.e., antimicrobial and anticancer compounds.


Assuntos
Artemisia absinthium , Endófitos , Endófitos/química , Staphylococcus aureus , Antibacterianos/química , Bactérias , Pseudomonas aeruginosa
9.
BMC Complement Med Ther ; 23(1): 310, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37670294

RESUMO

BACKGROUND: This research aimed to evaluate the protective effects of Artemisia Absinthium L. (Abs) against liver damage induced by aluminium oxide nanoparticles (Al2O3 NPs) in rats, including both structural and functional changes associated with hepatotoxicity. METHODS: Thirty-six rats were randomly divided into six groups (n = 6). The first group received no treatment. The second group was orally administered Abs at a dose of 200 mg/kg/b.w. The third and fifth groups were injected intraperitoneally with γ-Al2O3 NPs and α-Al2O3 NPs, respectively, at a dose of 30 mg/kg/b.w. The fourth and sixth groups were pre-treated with oral Abs at a dose of 200 mg/kg/b.w. along with intraperitoneal injection of γ-Al2O3 NPs and α-Al2O3 NPs, respectively, at a dose of 30 mg/kg/b.w. RESULTS: Treatment with γ-Al2O3 NPs resulted in a significant decrease (P < 0.05) in total body weight gain, relative liver weight to body weight, and liver weight in rats. However, co-administration of γ-Al2O3 NPs with Abs significantly increased body weight gain (P < 0.05). Rats treated with Al2O3 NPs (γ and α) exhibited elevated levels of malondialdehyde (MDA), inducible nitric oxide synthase (iNOS), alanine transaminase (ALT), and aspartate aminotransferase (AST). Conversely, treatment significantly reduced glutathione peroxidase (GPx), catalase (CAT), total superoxide dismutase (T-SOD), and total antioxidant capacity (TAC) levels compared to the control group. Furthermore, the expression of heme oxygenase-1 (HO-1) and metallothionein-1 (MT-1) mRNAs, cytochrome P450 (CYP P450) protein, and histopathological changes were significantly up-regulated in rats injected with Al2O3 NPs. Pre-treatment with Abs significantly reduced MDA, AST, HO-1, and CYP P450 levels in the liver, while increasing GPx and T-SOD levels compared to rats treated with Al2O3 NPs. CONCLUSION: The results indicate that Abs has potential protective effects against oxidative stress, up-regulation of oxidative-related genes and proteins, and histopathological alterations induced by Al2O3 NPs. Notably, γ-Al2O3 NPs exhibited greater hepatotoxicity than α-Al2O3 NPs.


Assuntos
Artemisia absinthium , Doença Hepática Induzida por Substâncias e Drogas , Animais , Ratos , Heme Oxigenase-1 , Transdução de Sinais , Estresse Oxidativo , Sistema Enzimático do Citocromo P-450 , Modelos Animais , Óxido de Alumínio , Peso Corporal
10.
Int J Mol Sci ; 24(15)2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37569422

RESUMO

Artemisia absinthium, an important herb of the Artemisia genus, was evaluated in this study for its potential as an alternative to classical antibiotics. The antimicrobial activity of methanol extracts of A. absinthium (MEAA) was evaluated using the broth microdilution method, revealing that A. absinthium exhibited broad-spectrum antibacterial and antifungal activity. Ultra-performance liquid chromatography-quadrupole-time of flight mass spectrometry (UPLC-Q-TOF-MS) was used to analyze the chemical profile of the MEAA, with a focus on flavonoids, quinic acids, and glucaric acids. A total of 90 compounds were identified, 69 of which were described for the first time in A. absinthium. Additionally, a new class of caffeoyl methyl glucaric acids was identified. The main active compounds were quantified and screened for antimicrobial activity. A. absinthium was found to be rich in quinic acids and flavonoids. The screening for antimicrobial activity also revealed that salicylic acid, caffeic acid, casticin, and 3,4-dicaffeoylquinic acid had varying degrees of antimicrobial activity. The acute toxicity of MEAA was examined following OECD guidelines. The administration of 5000 mg/kg bw of MEAA did not result in mortality in male and female mice. Furthermore, there were no observed effects on the visceral organs or general behavior of the mice, demonstrating the good safety of MEAA. This study provides new evidence for the use of A. absinthium as an alternative to classical antibiotics in addressing the problem of bacterial resistance.


Assuntos
Artemisia absinthium , Artemisia , Masculino , Feminino , Animais , Camundongos , Artemisia absinthium/química , Antibacterianos/farmacologia , Cromatografia Gasosa-Espectrometria de Massas , Artemisia/química , Fenóis/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Flavonoides
11.
J Ethnopharmacol ; 312: 116488, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37059247

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Wormwood (Artemisia absinthium L.) is traditionally used for stomach pain and gastric relief. However, its possible gastroprotective effect has not yet been experimentally evaluated. AIM OF THE STUDY: This study evaluated the gastroprotective effect of aqueous extracts obtained through hot and room temperature maceration of A. absinthium aerial parts in rats. MATERIALS AND METHODS: The gastroprotective effect of hot aqueous extract (HAE) and room temperature aqueous extract (RTAE) from A. absinthium aerial parts were evaluated in rats using a model of acute gastric ulcer induced by ethanol p.a. The stomachs were collected to measure the gastric lesion area and histological and biochemical analysis. UHPLC-HRMS/MS analysis was used to determine the chemical profile of the extracts. RESULTS: Eight main peaks in the UHPLC chromatogram were identified in both HAE and RTAE extracts: tuberonic acid glycoside (1), rupicolin (2), 2-hydroxyeupatolide (3), yangabin (4), sesartemin (5), artemetin (6), isoalantodiene (7), and dehydroartemorin (8). For RTAE, a higher diversity of sesquiterpene lactones was observed. The groups treated with RTAE at 3%, 10%, and 30% presented a gastroprotective effect, reducing the lesion area by 64.68%, 53.71%, and 90.04%, respectively, when compared with the vehicle (VEH)-treated group. On the other hand, the groups treated with HAE at 3%, 10%, and 30% presented values of lesion areas higher than those of the VEH group. Changes in the submucosa layer, inflammatory process with edema, cellular infiltration, and mucin depletion were detected in the gastric mucosa exposed to ethanol, which was fully prevented by RTAE treatment. Neither HAE nor RTAE could increase the reduced glutathione levels in the injured gastric tissue, but RTAE (30%) reduced the formation of lipid hydroperoxides. When the rats were pre-treated with NEM (a chelator of non-protein thiols) or L-NAME (non-selective nitric oxide synthase inhibitor), the RTAE lost the ability to protect the gastric mucosa. CONCLUSIONS: This study corroborates the ethnopharmacological use of this specie to treat gastric disorders revealing the gastroprotective effect of the room-temperature aqueous extract of A. absinthium aerial parts. Its mode of action may involve the ability of the infusion to maintain the gastric mucosal barrier integrity.


Assuntos
Antiulcerosos , Artemisia absinthium , Plantas Medicinais , Úlcera Gástrica , Ratos , Animais , Extratos Vegetais/efeitos adversos , Ratos Wistar , Antiulcerosos/farmacologia , Antiulcerosos/uso terapêutico , Mucosa Gástrica , Úlcera Gástrica/induzido quimicamente , Úlcera Gástrica/tratamento farmacológico , Úlcera Gástrica/prevenção & controle , Etanol/farmacologia , Fitoterapia
12.
PLoS One ; 18(4): e0284244, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37053209

RESUMO

Plant derived compounds have always been an important source of medicines and have received significant attention in recent years due to their diverse pharmacological properties. Millions of plant-based herbal or traditional medicines are used to cure various types of cancers especially due to activation of proliferative genes. The aim of the present study was to characterize the altered and attenuated gene expression of the selected growth factor namely Transforming growth factor Beta -1 (TGFß1) and MYC in human hepatoma-derived (Huh7) liver cancer cell lines in response to extracts of Artemisia absinthium dissolved in selected organic solvents. Ethanolic, methanolic and acetone extract of different plant parts (leaf, stem and flowers) was used to access the antiproliferative activity by MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide) assay. Quantitative Real-Time RT-PCR revealed that the transcript levels of TGFß1 are induced in the samples treated with methanolic extract of Artemisia absinthium. Furthermore, reduced expression levels of MYC gene was noticed in cancerous cells suggesting antiproliferative properties of the plant. This study further highlights the resistance profile of various microbes by antimicrobial susceptibility test with plant extracts. In addition, antidiabetic effect of Artemisia absinthium have also shown positive results. Our study elucidates the potentials of Artemisia absinthium as a medicinal plant, and highlights the differential expression of genes involved in its mitogenic and anti-proliferative activity with a brief account of its pharmacological action.


Assuntos
Artemisia absinthium , Artemisia , Neoplasias Hepáticas , Plantas Medicinais , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Extratos Vegetais/farmacologia , Solventes , Genes myc , Fator de Crescimento Transformador beta1/metabolismo
13.
Curr Drug Discov Technol ; 20(4): e300323215213, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36998142

RESUMO

OBJECTIVE: Increased quinolinic acid (QA) accumulation has been found in many neurodegenerative diseases. Artemisia absinthium (A. absinthium) has been reported to have neuroprotective and antioxidant activities. This study was designed to evaluate the effect of A. absinthium in QAinduced neurotoxicity in OLN-93 Cells. METHODS: OLN-93 cells were cultured in a DMEM medium containing 10% (v/v) fetal bovine serum, 100 units/ml penicillin, and 100 µg/ml streptomycin. The cells were pretreated with concentrations of A. absinthium extract for two h and then exposed to QA for 24 h. After 24 h cell viability, the level of malondialdehyde (MDA), reactive oxygen species (ROS), and apoptotic cells were quantitated in OLN-93 Cells. RESULTS: Pretreatment with A. absinthium extract prevented the loss of cell viability in OLN-93 cells. ROS generation, lipid peroxidation, and apoptosis in QA-injured OLN-93 cells were reduced following A. absinthium extract pretreatment. CONCLUSION: A. absinthium extract exerts its neuroprotective effect against QA-induced neurotoxicity via oxidative stress and apoptosis modulation.


Assuntos
Artemisia absinthium , Ácido Quinolínico , Espécies Reativas de Oxigênio , Ácido Quinolínico/toxicidade , Extratos Vegetais/farmacologia , Antioxidantes/farmacologia
14.
Braz J Biol ; 84: e264869, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36417615

RESUMO

The study aimed to determine the bioactive components and antibacterial activities of cold methanolic extract leaves (CMMEL) of Artemisia absinthium L. CMMEL was tested for phytochemicals, GC-MS analyses was performed to identify the bioactive components, and anti-bacterial properties. The phytochemical analysis of CMMEL revealed the presence of carbohydrates, steroids, saponins, and amino acids. GC-MS analysis of CMMEL of A. absinthium L. revealed several unique bioactive compounds, including margaspidin, stigmasterol, octadecanoic acid, hexadecanoic, corymbolone, and bicyclo [2.2.1] heptan-2. The antibacterial spectrum of CMMEL can be sequenced as Streptococcus pyogenes (8.83 ± 1.8 mm) > Escherichia coli (7.6 ± 0.6 mm) > Bacillus subtilis (6.6 ± 1.6 mm) > Klebsiella pneumoniae (6.5 ± 0.3 mm) > Pseudomonas aeruginosa (6.1 ± 1.1 mm) > Staphylococcus aureus (5.23 ± 0.8 mm). Although the CMMEL of A. absinthium L. showed the presence of many bioactive compounds but did not substantially inhibit the growth of Gram-positive or Gram-negative bacteria, according to the findings.


Assuntos
Artemisia absinthium , Metanol , Testes de Sensibilidade Microbiana , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Antibacterianos/farmacologia , Antibacterianos/química , Compostos Fitoquímicos/farmacologia
15.
Arch Razi Inst ; 77(2): 907-913, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36284952

RESUMO

Prostate dysfunction is the most common condition among aged men, which causes adverse complications and may result in serious diseases. Artemisia has been studied since time immemorial in several studies all showing its ability in preventing and treating different diseases. However, so far there have been no studies focusing on the possible role of Artemisia in the protection of prostate histoarchitecture toxicity. Therefore, this study aimed to investigate the protective role of Artemisia in the amelioration of histological and hormonal depression affected by sodium fluoride (NaF). A total of 28 male adult Wistar rats were equally divided into four groups (n=7). Animals in the control group received normal saline. The second group received NaF by oral gavage at a dose of 12 mg/kg body weight (B.W.) three times a week. The third group received concurrent treatment with NaF at a dose of 12 mg/kg B.W. three times a week, as well as extraction of Artemisia absinthium at a dose of 100 mg/kg B.W. The fourth group was treated only with extraction of Artemisia absinthium at a dose of 100 mg/k B.W. After 60 days, B.W. and the absolute weight of the prostate were measured. Blood samples and tissues were collected for measuring testosterone, follicle-stimulating hormone, as well as luteinizing hormone concentration, conducting paraffin-embedded sections with hematoxylin, and eosin routine staining. The findings revealed that Artemisia supplement significantly increased body and absolute weight of prostate gland in the group treated by NaF. In addition, mitigating the histological changes throughout the restoration of all prostate components appeared nearly as normal structural tissue. Moreover, the height of glandular epithelium decreased, follicular lumen enlarged, dark secretion materials with homogeneity disappeared of invagination intraluminal, and normal stroma appeared in regular shape. All in all, the results of this study pointed out that Artemisia had a protective effect against NaF-influenced prostate toxicity via stabilizing male hormones, re-composing histoarchitecture, and returning abnormal biomorphic parameters to a nearly normal state.


Assuntos
Artemisia absinthium , Fluoreto de Sódio , Animais , Ratos , Masculino , Fluoreto de Sódio/toxicidade , Ratos Wistar , Próstata , Hematoxilina , Solução Salina , Amarelo de Eosina-(YS) , Hormônio Luteinizante , Hormônio Foliculoestimulante , Testosterona
16.
Ann Parasitol ; 68(3): 543-551, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36587611

RESUMO

Echinococcus granulosus is the etiologic agent of cystic echinococcosis. Numerous research studies have been conducted on natural scolicidal agents to inactivate protoscolices during surgery. This study was undertaken to compare the in vitro scolicidal effects of hydroalcoholic extracts of Calendula officinalis, Artemisia dracunculus, Artemisia absinthium and Ferula assafoetida. The scolicidal activities of the extracts were tested at different concentrations following incubation periods of 10, 30 and 60 min. The chemical composition of the hydroalcoholic extracts were analyzed using Gas Chromatography-Mass Spectrometry (GC-MS). The major chemical components of C. officinalis, A. dracunculus, A. absinthium and F. assafoetida were identified as n-Docosane (14.17%), 2H-1-benzopyran-2-one, 7-methoxy (54.96%), n-Docosane (9.72%) and 2-methoxy-3-methyl-butyric acid, methyl ester (13.9%), respectively. The results showed that the hydroalcoholic extracts of A. absinthium and F. assafoetida at a concentration of 250 mg/ml resulted in killing 100% of the protoscolices at 60 minutes, while the concentration of 250 mg/ml of hydroalcoholic extract of C. officinalis and A. dracunculus resulted in killing 42.33% and 65.67%, respectively. The findings of the present study showed that A. absinthium and F. assafoetida have potent scolicidal effects. However, additional in vivo studies are required to confirm the efficacy of these plant-derived extracts against hydatid cyst for their clinical use.


Assuntos
Artemisia absinthium , Artemisia , Calendula , Equinococose , Echinococcus granulosus , Echinococcus , Ferula , Animais , Equinococose/tratamento farmacológico , Extratos Vegetais/farmacologia
17.
Environ Geochem Health ; 44(4): 1203-1215, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34750677

RESUMO

Phytoremediation is a promising method for the removal of toxic trace elements, specifically of copper, from the contaminated soil in the mining regions of Armenia. Thereby, the objectives of our study were the assessment of copper accumulation capacity and phytoremediation suitability of wormwood (Artemisia absinthium L.), a potential metal hyperaccumulator, as well as the identification of the influence of some chelating agents and their combinations on copper phytoremediation effectiveness. The results of studies have shown that A. absinthium is a relatively well-adapted plant species with the ability to grow in copper-contaminated soils collected from the surroundings of Zangezur Copper and Molybdenum Combine (south-east of Armenia). The observed decrease in plant growth in contaminated soil was possible to restore by the use of ammonium nitrate. It was revealed that for the remediation of copper-contaminated soils by phytostabilisation method, A. absinthium could be grown without the application of chelating agents, as being a perennial herb, it is able to accumulate relatively high contents of copper in its root and do not transfer this metal to the above-ground part at the same time. As opposed to the phytostabilisation method, for the cleaning of copper-contaminated soils through phytoextraction method by A. absinthium, the application of chemical amendments is needed for the enhancement of copper bioavailability and for its intensive transportation to the above-ground part of the plant. Collating the effects of various chemical agents on the plant, we concluded that the growth scheme, when the application of NH4NO3, a promoter of plant growth, is combined with the joint use of citric and malic acids, can be applied as the most expedient approach for remediation of copper-contaminated soils by phytoextraction method.


Assuntos
Artemisia absinthium , Poluentes do Solo , Biodegradação Ambiental , Quelantes/química , Cobre/análise , Solo/química , Poluentes do Solo/análise
18.
Braz. j. biol ; 82: e237214, 2022. tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1249258

RESUMO

Artemisia absinthium L. is an important herb that is widely cultivated in different parts of the world for its medicinal properties. The present study evaluated the effects of four concentrations of nanoparticles treatment (0, 10, 20 and 30 mg L-1) and NaCl salinity stress (0, 50, 100 and 150 mM NaCl) and their interactions with respect to the expression of two key genes, i.e. DBR2 and ADS, in the biosynthesis pathway of artemisinin in A. absinthium. Total RNA was extracted and a relative gene expression analysis was carried out using Real-Time PCR. The amount of artemisinin was also determined by HPLC. All the experiments were performed as factorial in a completely randomized design in three replications. The results revealed that salinity stress and nanoparticles treatment and their interaction affected the expressions of these genes significantly. The highest levels of ADS gene expression were observed in the 30 mg L-1 nanoparticles­treated plants in the presence of 150 mM salinity stress and the lowest levels in the 10 mg L-1 nanoparticles­treated plants under 50 mM salinity stress. The maximum DBR2 gene expression was recorded in the 10 mg L-1 nanoparticles­treated plants in the absence of salinity stress and the minimum expression in the 100 mM salinity-stressed plants in the absence of nanoparticles treatment. Moreover, the smallest amounts of artemisinin were observed in the 150 mM salinity-stressed plants in the absence of nanoparticles and the highest amounts in the 30 mg L-1 nanoparticles­treated plants. The maximum amounts of artemisinin and ADS gene expression were reported from the plants in the same nanoparticles treatment and salinity stress conditions. In this regard, the amount of artemisinin was decreased by half in the plants containing the highest DBR2 gene expression. Meanwhile, no significant correlation was observed between these gene expressions and the artemisinin amount in the other nanoparticles­treated plants under different levels of salinity stress. The biosynthetic pathway of secondary metabolites appears to be very complex and dose not directly dependent on these gene expressions.


Artemisia absinthium L. é uma erva importante que é amplamente cultivada em diferentes partes do mundo por suas propriedades medicinais. O presente estudo avaliou os efeitos de quatro concentrações de tratamento com nanopartículas (0, 10, 20 e 30 mg L-1) e estresse de salinidade com NaCl (0, 50, 100 e 150 mM NaCl) e suas interações com relação à expressão de dois genes-chave, isto é, DBR2 e ADS, na via de biossíntese da artemisinina em A. absinthium. O RNA total foi extraído, e uma análise de expressão gênica relativa foi realizada usando PCR em tempo real. A quantidade de artemisinina também foi determinada por HPLC. Todos os experimentos foram realizados como fatorial, em delineamento inteiramente casualizado, em três repetições. Os resultados revelaram que o estresse por salinidade e o tratamento com nanopartículas e sua interação afetaram significativamente as expressões desses genes. Os níveis mais altos de expressão do gene ADS foram observados nas plantas tratadas com nanopartículas de 30 mg L-1 na presença de estresse de salinidade de 150 mM, e os níveis mais baixos, nas plantas tratadas com nanopartículas de 10 mg L-1 com estresse de salinidade de 50 mM. A expressão máxima do gene DBR2 foi registrada nas plantas tratadas com nanopartículas de 10 mg L-1 na ausência de estresse de salinidade, e a expressão mínima, nas plantas estressadas com salinidade de 100 mM na ausência de tratamento com nanopartículas. Além disso, as menores quantidades de artemisinina foram observadas nas plantas com estresse de salinidade de 150 mM na ausência de nanopartículas, e as maiores quantidades, nas plantas tratadas com nanopartículas de 30 mg L-1. As quantidades máximas de expressão de genes de artemisinina e ADS foram relatadas a partir das plantas no mesmo tratamento com nanopartículas e condições de estresse de salinidade. A esse respeito, a quantidade de artemisinina diminuiu pela metade nas plantas que contêm a expressão gênica DBR2 mais alta. Enquanto isso, nenhuma correlação significativa foi observada entre essas expressões gênicas e a quantidade de artemisinina nas outras plantas tratadas com nanopartículas sob diferentes níveis de estresse de salinidade. A via biossintética dos metabólitos secundários parece ser muito complexa e não depende diretamente dessas expressões gênicas.


Assuntos
Artemisia absinthium/genética , Artemisia annua , Artemisininas , Nanopartículas , Proteínas de Plantas , Titânio , Estresse Salino
19.
Mol Biol Rep ; 48(12): 7703-7710, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34755263

RESUMO

BACKGROUND: Numerous reports show that herbal medicines can be utilized in the treatment of different liver disorders. In this study, antioxidant, antibacterial, and anticancer activities of individual as well as combined 80% ethanolic extracts of Artemisia absinthium leaves and Citrus paradisi peels were investigated. METHODS AND RESULTS: Values of total phenolic contents (TPC), total flavonoid contents (TFC), DPPH-radical scavenging activity, and ferric reducing antioxidant power (FRAP) were measured to explore the antioxidant capacity. To assess antibacterial activity, four bacterial strains (Escherichia coli, Staphylococcus aureus, Salmonella enterica, and Klebsiella pneumoniae) were used. Anticancer activity was assessed on Huh-7 (liver cancer) and Vero (non-cancerous) cell lines. FRAP activity of combined plants extract was higher as compared to their individual effect; the trend did not hold in the case of DPPH-radical scavenging activity. Antibacterial activity of combined extracts by disk diffusion method was observed only against E.coli. MTT results indicated that both plants had a cytotoxic effect on Huh-7 cell line but did not show any effect on Vero cell line. Our data showed a strong negative correlation between the amount of TPC, TFC, & DPPH radicals-scavenging activity and viability of Huh-7 cell line.However, no effect was shown on the non-cancerous cell line. CONCLUSION: The ethanolic extracts of Artemisia absinthium leaves and Citrus paradisi peels can be used against liver cancer because of their antioxidant, antibacterial, and anticancer activities.


Assuntos
Artemisia absinthium/enzimologia , Citrus paradisi/enzimologia , Neoplasias Hepáticas/tratamento farmacológico , Antibacterianos/farmacologia , Antioxidantes/farmacologia , Artemisia absinthium/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Citrus paradisi/metabolismo , Flavonoides/farmacologia , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Fenóis/análise , Extratos Vegetais/farmacologia , Folhas de Planta/química
20.
Ecotoxicol Environ Saf ; 226: 112856, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34619470

RESUMO

The chemical profile and the phytotoxicity of Artemisia absinthium essential oil (EO) were investigated to evaluate its potential value as a biopesticide for food safety purposes. A total of 54 compounds were identified in A. absinthium EO, with the most abundant constituents being eucalyptol (25.59%), linalool (11.99%), and ß-myrcene (10.05%). The EO, linalool, and a mixture of three major components exhibited potent suppressive activity against four receiver species; however, eucalyptol and ß-myrcene showed a much weaker effect. Bioassay-guided fractionation led to the isolation of linalool as the major active compound responsible for the EO's phytotoxicity. Subsequent scanning electron microscopy (SEM) analysis revealed that linalool significantly inhibited root-hair formation and metaxylem development. This is the first report on the determination of linalool as the major active phytotoxic compound in A. absinthium EO, as well as the elucidation of its mechanism of phytotoxicity from the perspective of root structure changes in the receiver species. Our results suggest that both the EO and its major constituents have potential value as environmentally friendly herbicides.


Assuntos
Artemisia absinthium , Herbicidas , Óleos Voláteis , Herbicidas/toxicidade , Óleos Voláteis/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA