Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 432
Filtrar
1.
Planta ; 259(6): 152, 2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38735012

RESUMO

MAIN CONCLUSION: Overexpression of Artemisia annua jasmonic acid carboxyl methyltransferase (AaJMT) leads to enhanced artemisinin content in Artemisia annua. Artemisinin-based combination therapies remain the sole deterrent against deadly disease malaria and Artemisia annua remains the only natural producer of artemisinin. In this study, the 1101 bp gene S-adenosyl-L-methionine (SAM): Artemisia annua jasmonic acid carboxyl methyltransferase (AaJMT), was characterised from A. annua, which converts jasmonic acid (JA) to methyl jasmonate (MeJA). From phylogenetic analysis, we confirmed that AaJMT shares a common ancestor with Arabidopsis thaliana, Eutrema japonica and has a close homology with JMT of Camellia sinensis. Further, the Clustal Omega depicted that the conserved motif I, motif III and motif SSSS (serine) required to bind SAM and JA, respectively, are present in AaJMT. The relative expression of AaJMT was induced by wounding, MeJA and salicylic acid (SA) treatments. Additionally, we found that the recombinant AaJMT protein catalyses the synthesis of MeJA from JA with a Km value of 37.16 µM. Moreover, site-directed mutagenesis of serine-151 in motif SSSS to tyrosine, asparagine-10 to threonine and glutamine-25 to histidine abolished the enzyme activity of AaJMT, thus indicating their determining role in JA substrate binding. The GC-MS analysis validated that mutant proteins of AaJMT were unable to convert JA into MeJA. Finally, the artemisinin biosynthetic and trichome developmental genes were upregulated in AaJMT overexpression transgenic lines, which in turn increased the artemisinin content.


Assuntos
Acetatos , Artemisia annua , Artemisininas , Ciclopentanos , Metiltransferases , Oxilipinas , Filogenia , Artemisia annua/genética , Artemisia annua/enzimologia , Artemisia annua/metabolismo , Ciclopentanos/metabolismo , Ciclopentanos/farmacologia , Artemisininas/metabolismo , Oxilipinas/metabolismo , Oxilipinas/farmacologia , Metiltransferases/metabolismo , Metiltransferases/genética , Acetatos/farmacologia , Acetatos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Regulação da Expressão Gênica de Plantas , Ácido Salicílico/metabolismo
2.
J Nat Med ; 78(2): 439-454, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38351420

RESUMO

Dihydroartemisinin (DHA), a derivative of artemisinin which is primarily used to treat malaria in clinic, also confers protective effect on lipopolysaccharide-induced nephrotoxicity. While, the activities of DHA in cisplatin (CDDP)-caused nephrotoxicity are elusive. To investigate the role and underlying mechanism of DHA in CDDP-induced nephrotoxicity. Mice were randomly separated into four groups: normal, CDDP, and DHA (25 and 50 mg/kg were orally injected 1 h before CDDP for consecutive 10 days). All mice except the normal were single injected intraperitoneally with CDDP (22 mg/kg) for once on the 7th day. Combined with quantitative proteomics and bioinformatics analysis, the impact of DHA on renal cell apoptosis, oxidative stress, biochemical indexes, and inflammation in mice were investigated. Moreover, a human hepatocellular carcinoma cells xenograft model was established to elucidate the impact of DHA on tumor-related effects of CDDP. DHA reduced the levels of creatinine (CREA) (p < 0.01) and blood urea nitrogen (BUN) (p < 0.01), reversed CDDP-induced oxidative, inflammatory, and apoptosis indexes (p < 0.01). Mechanistically, DHA attenuated CDDP-induced inflammation by inhibiting nuclear factor κB p65 (NFκB p65) expression, and suppressed CDDP-induced renal cell apoptosis by inhibiting p63-mediated endogenous and exogenous apoptosis pathways. Additionally, DHA alone significantly decreased the tumor weight and did not destroy the antitumor effect of CDDP, and did not impact AST and ALT. In conclusion, DHA prevents CDDP-triggered nephrotoxicity via reducing inflammation, oxidative stress, and apoptosis. The mechanisms refer to inhibiting NFκB p65-regulated inflammation and alleviating p63-mediated mitochondrial endogenous and Fas death receptor exogenous apoptosis pathway.


Assuntos
Antineoplásicos , Artemisininas , Humanos , Camundongos , Animais , Cisplatino/toxicidade , Artemisininas/farmacologia , Artemisininas/uso terapêutico , Artemisininas/metabolismo , Rim/metabolismo , Rim/patologia , Estresse Oxidativo , Inflamação/metabolismo , Apoptose , Antineoplásicos/toxicidade
3.
Sci Rep ; 14(1): 4791, 2024 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-38413638

RESUMO

Species from genus Artemisia are widely distributed throughout temperate regions of the northern hemisphere and many cultures have a long-standing traditional use of these plants as herbal remedies, liquors, cosmetics, spices, etc. Nowadays, the discovery of new plant-derived products to be used as food supplements or drugs has been pushed by the exploitation of bioprospection approaches. Often driven by the knowledge derived from the ethnobotanical use of plants, bioprospection explores the existing biodiversity through integration of modern omics techniques with targeted bioactivity assays. In this work we set up a bioprospection plan to investigate the phytochemical diversity and the potential bioactivity of five Artemisia species with recognized ethnobotanical tradition (A. absinthium, A. alba, A. annua, A. verlotiorum and A. vulgaris), growing wild in the natural areas of the Verona province. We characterized the specialized metabolomes of the species (including sesquiterpenoids from the artemisinin biosynthesis pathway) through an LC-MS based untargeted approach and, in order to identify potential bioactive metabolites, we correlated their composition with the in vitro antioxidant activity. We propose as potential bioactive compounds several isomers of caffeoyl and feruloyl quinic acid esters (e.g. dicaffeoylquinic acids, feruloylquinic acids and caffeoylferuloylquinic acids), which strongly characterize the most antioxidant species A. verlotiorum and A. annua. Morevoer, in this study we report for the first time the occurrence of sesquiterpenoids from the artemisinin biosynthesis pathway in the species A. alba.


Assuntos
Artemisia , Artemisininas , Sesquiterpenos , Artemisia/química , Bioprospecção , Artemisininas/metabolismo , Sesquiterpenos/metabolismo
4.
Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi ; 35(6): 557-564, 2024 Feb 01.
Artigo em Chinês | MEDLINE | ID: mdl-38413016

RESUMO

OBJECTIVE: To investigate the prevalence of single nucleotide polymorphisms (SNPs) of artemisinin resistance-related Pfubp1 and Pfap2mu genes in Plasmodium falciparum isolates from Bioko Island, Equatorial Guinea, so as to to provide baseline data for the formulation of malaria control strategies in Bioko Island. METHODS: A total of 184 clinical blood samples were collected from patients with P. falciparum malaria in Bioko Island, Equatorial Guinea from 2018 to 2020, and genomic DNA was extracted. The Pfubp1 and Pfap2mu gene SNPs of P. falciparum were determined using a nested PCR assay and Sanger sequencing, and the gene sequences were aligned. RESULTS: There were 159 wild-type P. falciparum isolates (88.83%) from Bioko Island, Equatorial Guinea, and 6 SNPs were identified in 20 Pfubp1-mutant P. falciparum isolates (11.17%), in which 4 non-synonymous mutations were detected, including E1516G, K1520E, D1525E, E1528D. There was only one Pfubp1gene mutation site in 19 Pfubp1-mutant P. falciparum isolates (95.00%), in which non-synonymous mutations accounted for 68.42% (13/19). D1525E and E1528D were identified as major known epidemic mutation sites in the Pfubp1 gene associated with resistance to artemisinin-based combination therapies (ACTs). At amino acid position 1525, there were 178 wild-type P. falciparum isolates (99.44%) and 1 mutant isolate (0.56%), with such a mutation site identified in blood samples in 2018, and at amino acid position 1528, there were 167 wild-type P. falciparum isolates (93.30%) and 12 mutant isolates (6.70%). The proportions of wild-type P. falciparum isolates were 95.72% (134/140), 79.25% (126/159) and 95.83% (161/168) in the target amplification fragments of the three regions in the Pfap2mu gene (Pfap2mu-inner1, Pfap2mu-inner2, Pfap2mu-inner3), respectively. There were 16 different SNPs identified in all successfully sequenced P. falciparum isolates, in which 7 non-synonymous mutations were detected, including S160N, K199T, A475V, S508G, I511M, L595F, and Y603H. There were 7 out of 43 Pfap2mu-mutant P. falciparum isolates (16.28%) that harbored only one gene mutation site, in which non-synonymous mutations accounted for 28.57% (2/7). For the known delayed clearance locus S160N associated with ACTs, there were 143 wild-type (89.94%) and 16 Pfap2mu-mutant P. falciparum isolates (10.06%). CONCLUSIONS: Both Pfubp1 and Pfap2mu gene mutations were detected in P. falciparum isolates from Bioko Island, Equatorial Guinea from 2018 to 2020, with a low prevalence rate of Pfubp1 gene mutation and a high prevalence rate of Pfap2mu gene mutation. In addition, new mutation sites were identified in the Pfubp1 (E1504E and K1520E) and Pfap2mu genes (A475V and S508G).


Assuntos
Antimaláricos , Artemisininas , Malária Falciparum , Humanos , Polimorfismo de Nucleotídeo Único , Guiné Equatorial/epidemiologia , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Artemisininas/farmacologia , Artemisininas/uso terapêutico , Artemisininas/metabolismo , Malária Falciparum/epidemiologia , Plasmodium falciparum/genética , Mutação , Resistência a Medicamentos/genética , Aminoácidos/genética , Aminoácidos/metabolismo , Aminoácidos/uso terapêutico , Nucleotídeos/metabolismo , Nucleotídeos/uso terapêutico , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico
5.
J Med Chem ; 67(2): 838-863, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38198596

RESUMO

Approximately 619,000 malaria deaths were reported in 2021, and resistance to recommended drugs, including artemisinin-combination therapies (ACTs), threatens malaria control. Treatment failure with ACTs has been found to be as high as 93% in northeastern Thailand, and parasite mutations responsible for artemisinin resistance have already been reported in some African countries. Therefore, there is an urgent need to identify alternative treatments with novel targets. In this Perspective, we discuss some promising antimalarial drug targets, including enzymes involved in proteolysis, DNA and RNA metabolism, protein synthesis, and isoprenoid metabolism. Other targets discussed are transporters, Plasmodium falciparum acetyl-coenzyme A synthetase, N-myristoyltransferase, and the cyclic guanosine monophosphate-dependent protein kinase G. We have outlined mechanistic details, where these are understood, underpinning the biological roles and hence druggability of such targets. We believe that having a clear understanding of the underlying chemical interactions is valuable to medicinal chemists in their quest to design appropriate inhibitors.


Assuntos
Antimaláricos , Artemisininas , Antagonistas do Ácido Fólico , Malária Falciparum , Malária , Humanos , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Antimaláricos/metabolismo , Malária/tratamento farmacológico , Plasmodium falciparum , Descoberta de Drogas , Antagonistas do Ácido Fólico/farmacologia , Artemisininas/metabolismo , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Resistência a Medicamentos
6.
J Med Chem ; 67(3): 2083-2094, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38287228

RESUMO

Colorectal cancer remains the second leading cause of cancer-related mortalities worldwide. While artemisinin (ART), a key active compound from the traditional Chinese medicinal herb Artemisia annua, has been recognized for its antiproliferative activity against colon cancer cells, its underlying molecular underpinnings remain elusive. Whereas promiscuity of heme-dependent alkylating of macromolecules, mainly proteins, has been seen pivotal as a universal and primary mode of action of ART in cancer cells, accumulating evidence suggests the existence of unique targets and mechanisms of actions contingent on cell or tissue specificities. Here, we employed photoaffinity probes to identify the specific targets responsible for ART's anti-colon cancer actions. Upon validation, microsomal prostaglandins synthase-2 emerged as a specific and reversible target of ART in HCT116 colorectal cancer cells, whose inhibition resulted in reduced cellular prostaglandin E2 biosynthesis and cell growth. Our discovery opens new opportunities for pharmacological treatment of colon cancer.


Assuntos
Artemisininas , Neoplasias do Colo , Neoplasias Colorretais , Humanos , Artemisininas/metabolismo , Ciclo-Oxigenase 2 , Neoplasias Colorretais/tratamento farmacológico , Prostaglandinas
7.
Plant Commun ; 5(3): 100742, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-37919898

RESUMO

We investigated the effects of graphene on the model herb Artemisia annua, which is renowned for producing artemisinin, a widely used pharmacological compound. Seedling growth and biomass were promoted when A. annua was cultivated with low concentrations of graphene, an effect which was attributed to a 1.4-fold increase in nitrogen uptake, a 15%-22% increase in chlorophyll fluorescence, and greater abundance of carbon cycling-related bacteria. Exposure to 10 or 20 mg/L graphene resulted in a âˆ¼60% increase in H2O2, and graphene could act as a catalyst accelerator, leading to a 9-fold increase in catalase (CAT) activity in vitro and thereby maintaining reactive oxygen species (ROS) homeostasis. Importantly, graphene exposure led to an 80% increase in the density of glandular secreting trichomes (GSTs), in which artemisinin is biosynthesized and stored. This contributed to a 5% increase in artemisinin content in mature leaves. Interestingly, expression of miR828 was reduced by both graphene and H2O2 treatments, resulting in induction of its target gene AaMYB17, a positive regulator of GST initiation. Subsequent molecular and genetic assays showed that graphene-induced H2O2 inhibits micro-RNA (miRNA) biogenesis through Dicers and regulates the miR828-AaMYB17 module, thus affecting GST density. Our results suggest that graphene may contribute to yield improvement in A. annua via dynamic physiological processes together with miRNA regulation, and it may thus represent a new cultivation strategy for increasing yield capacity through nanobiotechnology.


Assuntos
Artemisia annua , Artemisininas , Grafite , MicroRNAs , Fenômenos Fisiológicos , Plantas Medicinais , Artemisia annua/genética , Artemisia annua/metabolismo , Grafite/metabolismo , Grafite/farmacologia , Peróxido de Hidrogênio/metabolismo , Plantas Medicinais/genética , Artemisininas/metabolismo , Artemisininas/farmacologia
9.
Plant Sci ; 339: 111959, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38101619

RESUMO

Glandular trichomes are specialized structures found on the surface of plants to produce specific compounds, including terpenes, alkaloids, and other organic substances. Artemisia annua, commonly known as sweet wormwood, synthesizes and stores the antimalarial drug artemisinin in glandular trichomes. Previous research indicated that increasing the glandular trichome density could enhance artemisinin production, and the cuticle synthesis affected the initiation and development of glandular trichomes in A. annua. In this study, AaABCG12 and AaABCG20 were isolated from A. annua that exhibited similar expression patterns to artemisinin biosynthetic genes. Of the two, AaABCG20 acted as a specific transporter in glandular trichomes. Downregulating the expression of AaABCG20 resulted in a notable reduction in the density of glandular trichome, while overexpressing AaABCG20 resulted in an increase in glandular trichome density. GC-MS analysis demonstrated that AaABCG20 was responsible for the transport of cutin and wax in A. annua. These findings indicated that AaABCG20 influenced the initiation and development of glandular trichomes through transporting cutin and wax in A. annua. This glandular trichome specific half-size ABCG-type transporter is crucial in facilitating the transportation of cutin and wax components, ultimately contributing to the successful initiation and development of glandular trichomes.


Assuntos
Artemisia annua , Artemisininas , Lipídeos de Membrana , Tricomas , Artemisia annua/genética , Artemisia annua/metabolismo , Proteínas de Plantas/metabolismo , Artemisininas/metabolismo
10.
mSystems ; 9(1): e0085123, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38112429

RESUMO

Artemisinin (ARS) displayed bactericidal activity against Vibrio cholerae. To assess the mechanistic details of its antibacterial action, we have isolated V. cholerae mutants with enhanced ARS resistance and identified a gene (VCA0767) whose loss-of-function resulted in the ARS resistance phenotypes. This gene (atrR) encodes a TetR family transcriptional regulator, and its deletion mutant displayed the reduction in ARS-induced ROS formation and DNA damage. Transcriptomic analysis revealed that the genes encoding a resistance-nodulation-cell division (RND) efflux pump operon (vexRAB) and the outer membrane component (tolC) were highly upregulated in the artR mutant, suggesting that AtrR might act as a negative regulator of this operon and tolC. Gene deletion of vexR, vexB, or tolC abrogated the ARS resistance of the atrR mutant, and more importantly, the ectopic expression of VexAB-TolC was sufficient for the ARS resistance, indicating that the increased expression of the VexAB-TolC efflux system is necessary and sufficient for the ARS resistance of the atrR mutant. The cytoplasmic accumulation of ARS was compromised in the vexBtolC mutant, suggesting that the VexAB-TolC might be the primary efflux system exporting ARS to reduce its toxicity inside of the bacterial cells. The atrR mutant displayed resistance to erythromycin as well in a VexR-dependent manner. This result suggests that AtrR may act as a global regulator responsible for preventing intracellular accumulation of toxic chemicals by enhancing the RND efflux system.IMPORTANCEDrug efflux protein complexes or efflux pumps are considered as the major determinants of multiple antimicrobial resistance by exporting a wide range of structurally diverse antibiotics in bacterial pathogens. Despite the clinical significance of the increased expression of the efflux pumps, their substrate specificity and regulation mechanisms are poorly understood. Here, we demonstrated that VexAB-TolC, a resistance-nodulation-cell division (RND) efflux pump of V. cholerae, is responsible for the resistance to artemisinin (ARS), an antimalarial drug with bactericidal activity. Furthermore, we newly identified AtrR, a TetR family repressor, as a global regulator for VexRAB and the common outer membrane channel, TolC, where VexR functions as the pathway-specific regulator of the vexAB operon. Our findings will help improve our insight into a broad range of substrate specificity of the VexAB-TolC system and highlight the complex regulatory networks of the multiple RND efflux systems during V. cholerae pathogenesis.


Assuntos
Artemisininas , Vibrio cholerae , Vibrio cholerae/genética , Proteínas de Bactérias/genética , Antibacterianos/farmacologia , Transporte Biológico , Artemisininas/metabolismo
11.
Curr Microbiol ; 81(1): 4, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37947887

RESUMO

The growing demand for Artemisia annua plants in healthcare, food, and pharmaceutical industries has led to increased cultivation efforts to extract a vital compound, Artemisinin. The efficacy of Artemisinin as a potent drug against malaria disease is well established but its limited natural abundance. However, the common practice of using chemical fertilizers for maximum yield has adverse effects on plant growth, development, and the quality of phytochemicals. To address these issues, the review discusses the alternative approach of harnessing beneficial rhizosphere microbiota, particularly plant growth-promoting rhizobacteria (PGPR). Microbes hold substantial biotechnological potential for augmenting medicinal plant production, offering an environmentally friendly and cost-effective means to enhance medicinal plant production. This review article aims to identify a suitable endophytic population capable of enabling Artemisia sp. to thrive amidst abiotic stress while simultaneously enhancing Artemisinin production, thereby broadening its availability to a larger population. Furthermore, by subjecting endophytes to diverse combinations of harsh conditions, this review sheds light on the modulation of essential artemisinin biosynthesis pathway genes, both up regulated and down regulated. The collective findings suggest that through the in vitro engineering of endophytic communities and their in vivo application to Artemisia plants cultivated in tribal population fields, artemisinin production can be significantly augmented. The overall aim of this review to explore the potential of harnessing microbial communities, their functions, and services to enhance the cultivation of medicinal plants. It outlines a promising path toward bolstering artemisinin production, which holds immense promise in the fight against malaria.


Assuntos
Artemisia annua , Artemisininas , Malária , Plantas Medicinais , Endófitos/genética , Endófitos/metabolismo , Artemisininas/metabolismo , Artemisia annua/genética , Artemisia annua/metabolismo , Fatores Socioeconômicos
12.
BMC Genomics ; 24(1): 692, 2023 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-37980503

RESUMO

BACKGROUND: Artemisia annua is the major source for artemisinin production. The artemisinin content in A. annua is affected by different types of light especially the UV light. UVR8, a member of RCC1 gene family was found to be the UV-B receptor in plants. The gene structures, evolutionary history and expression profile of UVR8 or RCC1 genes remain undiscovered in A. annua. RESULTS: Twenty-two RCC1 genes (AaRCC1) were identified in each haplotype genome of two diploid strains of A. annua, LQ-9 and HAN1. Varied gene structures and sequences among paralogs were observed. The divergence of most RCC1 genes occurred at 46.7 - 51 MYA which overlapped with species divergence of core Asteraceae during the Eocene, while no recent novel RCC1 members were found in A. annua genome. The number of RCC1 genes remained stable among eudicots and RCC1 genes underwent purifying selection. The expression profile of AaRCC1 is analogous to that of Arabidopsis thaliana (AtRCC1) when responding to environmental stress. CONCLUSIONS: This study provided a comprehensive characterization of the AaRCC1 gene family and suggested that RCC1 genes were conserved in gene number, structures, constitution of amino acids and expression profiles among eudicots.


Assuntos
Arabidopsis , Artemisia annua , Artemisininas , Artemisia annua/genética , Artemisia annua/metabolismo , Artemisininas/metabolismo , Genes de Plantas , Arabidopsis/genética , Arabidopsis/metabolismo , Cromossomos/metabolismo
13.
Int J Biol Macromol ; 253(Pt 6): 127345, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37820909

RESUMO

Artemisia annua, a member of the Asteraceae family, remains the primary source of artemisinin. However, the artemisinin content in the existing varieties of this plant is very low. In this study, we found that the environmental factors light and phytohormone abscisic acid (ABA) could synergistically promote the expression of artemisinin biosynthetic genes. Notably, the increased expression levels of those genes regulated by ABA depended on light. Gene expression analysis found that AaABI5, a transcription factor belonging to the basic leucine zipper (bZIP) family, was inducible by the light and ABA treatment. Analysis of AaABI5-overexpressing and -suppressing lines suggested that AaABI5 could enhance artemisinin biosynthesis and activate the expression of four core biosynthetic genes. In addition, the key regulator of light-induced artemisinin biosynthesis, AaHY5, could bind to the promoter of AaABI5 and activate its expression. In conclusion, our results demonstrated that AaABI5 acts as an important molecular junction for the synergistic promotion of artemisinin biosynthesis by light and ABA signals, which provides a candidate gene for developing new germplasms of high-quality A. annua.


Assuntos
Antimaláricos , Artemisia annua , Artemisininas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Antimaláricos/farmacologia , Artemisia annua/genética , Artemisia annua/metabolismo , Ácido Abscísico/metabolismo , Artemisininas/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
14.
Molecules ; 28(14)2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37513399

RESUMO

Parkinson's disease (PD) is an age-related, progressive neurodegenerative disease characterized by the gradual and massive loss of dopaminergic neurons in the substantia nigra pars compacta (SNc). We have recently reported that artemisinin, an FDA-approved first-line antimalarial drug, possesses a neuroprotective effect. However, the effects and underlying mechanisms of artemisinin on Parkinson's disease remain to be elucidated. In this study, we investigated the neuroprotective effects of artemisinin on 6-OHDA and MPP+ in neuronal cells and animal models, as well as the underlying mechanisms. Our results showed that artemisinin significantly attenuated the loss of cell viability, LDH release, elevated levels of reactive oxygen species (ROS), the collapse of the mitochondria trans-membrane potential and cell apoptosis in PC12 cells. Western blot results showed that artemisinin stimulated the phosphorylation of ERK1/2, its upstream signaling proteins c-Raf and MEK and its downstream target CREB in PC12 cells in a time- and concentration-dependent manner. In addition, the protective effect of artemisinin was significantly reduced when the ERK pathway was blocked using the ERK pathway inhibitor PD98059 or when the expression of ERK was knocked down using sgRNA. These results indicate the essential role of ERK in the protective effect of artemisinin. Similar results were obtained in SH-SY5Y cells and primary cultured neurons treated with 6-OHDA, as well as in cellular models of MPP+ injury. More interestingly, artemisinin attenuated PD-like behavior deficit in mice injected with 6-OHDA evaluated by behavioral tests including swimming test, pole-test, open field exploration and rotarod tests. Moreover, artemisinin also stimulated the phosphorylation of ERK1/2, inhibited apoptosis, and rescued dopaminergic neurons in SNc of these animals. Application of ERK pathway inhibitor PD98059 blocked the protective effect of artemisinin in mice during testing. Taking these results together, it was indicated that artemisinin preserves neuroprotective effects against 6-OHDA and MPP+ induced injury both in vitro and in vivo by the stimulation of the ERK1/2 signaling pathway. Our findings support the potential therapeutic effect of artemisinin in the prevention and treatment of Parkinson's disease.


Assuntos
Artemisininas , Neuroblastoma , Doenças Neurodegenerativas , Fármacos Neuroprotetores , Doença de Parkinson , Ratos , Humanos , Camundongos , Animais , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Sistema de Sinalização das MAP Quinases , Oxidopamina/efeitos adversos , Fármacos Neuroprotetores/uso terapêutico , Neuroproteção , Doenças Neurodegenerativas/tratamento farmacológico , RNA Guia de Sistemas CRISPR-Cas , Neuroblastoma/tratamento farmacológico , Apoptose , Artemisininas/metabolismo , Neurônios Dopaminérgicos
15.
Biotechnol Appl Biochem ; 70(6): 1870-1880, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37424116

RESUMO

Artemisinin is the most practical medication for the treatment of malaria, but is only very minimally synthesized in Artemisia annua, significantly less than the market needs. In this study, indole-3-acetic acid (IAA) was used to investigate its effects on trichomes, artemisinin accumulation, and biosynthetic gene expression in A. anuua. The results showed that exogenous IAA could contribute to the growth and development of A. annua and increase the density of trichomes. Analysis using liquid chromatography-tandem mass spectrometry (LC-MS/MS) indicated that artemisinin and dihydroartemisinic acid (DHAA) contents were increased by 1.9-fold (1.1 mg/g) and 2.1-fold (0.51 mg/g) after IAA treatment in comparison with control lines (CK), respectively. Furthermore, quantitative real-time PCR results showed that AaADS, AaCYP71AV1, AaALDH1, and AaDBR2, four critical enzyme genes for the biosynthesis of artemisinin, had relatively high transcription levels in leaves of A. annua treated with IAA. In summary, this study indicated that exogenous IAA treatment was a feasible strategy to enhance artemisinin production, which paves the way for further metabolic engineering of artemisinin biosynthesis.


Assuntos
Artemisia annua , Artemisininas , Artemisia annua/metabolismo , Tricomas/genética , Tricomas/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem , Artemisininas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
16.
Plant Sci ; 335: 111789, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37421981

RESUMO

Artemisinin, which is extracted from the plant Artemisia annua L., is a crucial drug for curing malaria and has potential applications for treating cancer, diabetes, pulmonary tuberculosis, and other conditions. Demand for artemisinin is therefore high, and enhancing its yield is important. Artemisinin dynamics change during the growth cycle of A. annua; however, the regulatory networks underlying these changes are poorly understood. Here, we collected A. annua leaves at different growth stages and identified target genes from transcriptome data. We determined that WRKY6 binds to the promoters of the artemisinin biosynthesis gene artemisinic aldehyde Δ11(13) reductase (DBR2). In agreement, overexpression of WRKY6 in A. annua resulted in higher expression levels of genes in the artemisinin biosynthesis pathway and greater artemisinin contents than in the wild type. When expression of WRKY6 was down-regulated, artemisinin biosynthesis pathway genes were also down-regulated and the content of artemisinin was lower. WRKY6 mediates the transcriptional activation of artemisinin biosynthesis by binding to the promoter of DBR2, making it a key regulator for modulating the dynamics of artemisinin changes during the A. annua growth cycle.


Assuntos
Artemisia annua , Artemisininas , Artemisia annua/genética , Artemisia annua/metabolismo , Artemisininas/metabolismo , Regiões Promotoras Genéticas/genética
17.
Plant Physiol Biochem ; 201: 107795, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37301186

RESUMO

Although mainly known for producing artemisinin, Artemisia annua is enriched in phenylpropanoid glucosides (PGs) with significant bioactivities. However, the biosynthesis of A. annua PGs is insufficiently investigated. Different A. annua ecotypes from distinct growing environments accumulate varying amounts of metabolites, including artemisinin and PGs such as scopolin. UDP-glucose:phenylpropanoid glucosyltransferases (UGTs) transfers glucose from UDP-glucose in PG biosynthesis. Here, we found that the low-artemisinin ecotype GS produces a higher amount of scopolin, compared to the high-artemisinin ecotype HN. By combining transcriptome and proteome analyses, we selected 28 candidate AaUGTs from 177 annotated AaUGTs. Using AlphaFold structural prediction and molecular docking, we determined the binding affinities of 16 AaUGTs. Seven of the AaUGTs enzymatically glycosylated phenylpropanoids. AaUGT25 converted scopoletin to scopolin and esculetin to esculin. The lack of accumulation of esculin in the leaf and the high catalytic efficiency of AaUGT25 on esculetin suggest that esculetin is methylated to scopoletin, the precursor of scopolin. We also discovered that AaOMT1, a previously uncharacterized O-methyltransferase, converts esculetin to scopoletin, suggesting an alternative route for producing scopoletin, which contributes to the high-level accumulation of scopolin in A. annua leaves. AaUGT1 and AaUGT25 responded to induction of stress-related phytohormones, implying the involvement of PGs in stress responses.


Assuntos
Artemisia annua , Artemisininas , Artemisia annua/metabolismo , Escopoletina/química , Escopoletina/metabolismo , Escopoletina/farmacologia , Esculina/metabolismo , Multiômica , Simulação de Acoplamento Molecular , Artemisininas/metabolismo , Glucosídeos/metabolismo , Glucose/metabolismo , Difosfato de Uridina/metabolismo
18.
Invest Ophthalmol Vis Sci ; 64(7): 28, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37326592

RESUMO

Purpose: Thyroid eye disease (TED) causes cosmetic defect and even threatens eyesight due to tissue remodeling in which orbital fibroblast (OF) plays a central role mainly by differentiating into adipocytes. Repurposing old drugs to novel applications is of particular interest. Here, we aimed to evaluate the effects of the antimalarials artemisinin (ARS) and the derivatives on the OFs isolated from patients with TED and their counterparts. Methods: OFs isolated from patients with TED or their counterparts were cultured and passaged in proliferation medium (PM) and stimulated by differentiation medium (DM) for adipogenesis. OFs were treated with or without ARS, dihydroartemisinin (DHA), and artesunate (ART) at different concentrations, before being examined in vitro. CCK-8 were used to assess cellular viability. Cell proliferation was determined by EdU incorporation and flow cytometry. Lipid accumulation within the cells was evaluated by Oil Red O staining. Hyaluronan production was determined by ELISA. RNAseq, qPCR, and Western blot analysis were performed to illustrate the underlying mechanisms. Results: ARSs dose-dependently interfered with lipid accumulation of TED-OFs, rather than non-TED-OFs. Meanwhile, the expression of key adipogenic markers, such as PLIN1, PPARG, FABP4, and CEBPA, was suppressed. During adipogenesis as being cultivated in DM, instead of PM, ARSs also inhibited cell cycle, hyaluronan production and the expression of hyaluronan synthase 2 (HAS2) in a concentration-dependent manner. Mechanically, the favorable effects were potentially mediated by the repression of IGF1R-PI3K-AKT signaling by dampening IGF1R expression. Conclusions: Collectedly, our data evidenced that the conventional antimalarials ARSs were potentially therapeutic for TED.


Assuntos
Antimaláricos , Artemisininas , Oftalmopatia de Graves , Humanos , Oftalmopatia de Graves/tratamento farmacológico , Oftalmopatia de Graves/metabolismo , Adipogenia , Ácido Hialurônico/farmacologia , Antimaláricos/metabolismo , Antimaláricos/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Fibroblastos/metabolismo , Artemisininas/farmacologia , Artemisininas/metabolismo , Lipídeos , Células Cultivadas
19.
Curr Opin Microbiol ; 73: 102322, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37130502

RESUMO

Fever is a part of the human innate immune response that contributes to limiting microbial growth and development in many infectious diseases. For the parasite Plasmodium falciparum, survival of febrile temperatures is crucial for its successful propagation in human populations as well as a fundamental aspect of malaria pathogenesis. This review discusses recent insights into the biological complexity of the malaria parasite's heat-shock response, which involves many cellular compartments and essential metabolic processes to alleviate oxidative stress and accumulation of damaged and unfolded proteins. We highlight the overlap between heat-shock and artemisinin resistance responses, while also explaining how the malaria parasite adapts its fever response to fight artemisinin treatment. Additionally, we discuss how this systemic and essential fight for survival can also contribute to parasite transmission to mosquitoes.


Assuntos
Artemisininas , Malária Falciparum , Malária , Parasitos , Animais , Humanos , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Artemisininas/farmacologia , Artemisininas/metabolismo , Malária/tratamento farmacológico , Resposta ao Choque Térmico , Malária Falciparum/parasitologia , Proteínas de Protozoários/metabolismo
20.
mBio ; 14(3): e0070523, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37097173

RESUMO

Mounting evidence demonstrates that nutritional environment can alter pathogen drug sensitivity. While the rich media used for in vitro culture contains supraphysiological nutrient concentrations, pathogens encounter a relatively restrictive environment in vivo. We assessed the effect of nutrient limitation on the protozoan parasite that causes malaria and demonstrated that short-term growth under physiologically relevant mild nutrient stress (or "metabolic priming") triggers increased tolerance of a potent antimalarial drug. We observed beneficial effects using both short-term survival assays and longer-term proliferation studies, where metabolic priming increases parasite survival to a level previously defined as resistant (>1% survival). We performed these assessments by either decreasing single nutrients that have distinct roles in metabolism or using a media formulation that simulates the human plasma environment. We determined that priming-induced tolerance was restricted to parasites that had newly invaded the host red blood cell, but the effect was not dependent on genetic background. The molecular mechanisms of this intrinsic effect mimic aspects of genetic tolerance, including translational repression and protein export. This finding suggests that regardless of the impact on survival rates, environmental stress could stimulate changes that ultimately directly contribute to drug tolerance. Because metabolic stress is likely to occur more frequently in vivo compared to the stable in vitro environment, priming-induced drug tolerance has ramifications for how in vitro results translate to in vivo studies. Improving our understanding of how pathogens adjust their metabolism to impact survival of current and future drugs is an important avenue of research to slow the evolution of resistance. IMPORTANCE There is a dire need for effective treatments against microbial pathogens. Yet, the continuing emergence of drug resistance necessitates a deeper knowledge of how pathogens respond to treatments. We have long appreciated the contribution of genetic evolution to drug resistance, but transient metabolic changes that arise in response to environmental factors are less recognized. Here, we demonstrate that short-term growth of malaria parasites in a nutrient-limiting environment triggers cellular changes that lead to better survival of drug treatment. We found that these strategies are similar to those employed by drug-tolerant parasites, which suggests that starvation "primes" parasites to survive and potentially evolve resistance. Since the environment of the human host is relatively nutrient restrictive compared to growth conditions in standard laboratory culture, this discovery highlights the important connections among nutrient levels, protective cellular pathways, and resistance evolution.


Assuntos
Antimaláricos , Artemisininas , Malária , Humanos , Plasmodium falciparum/metabolismo , Artemisininas/metabolismo , Malária/tratamento farmacológico , Antimaláricos/farmacologia , Tolerância a Medicamentos , Resistência a Medicamentos , Nutrientes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA