Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
FEMS Microbiol Lett ; 368(19)2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34718530

RESUMO

Essential oils can be a useful alternative to the use of synthetic fungicides because they have biological potential and are relatively safe for food and agricultural products. The objectives of the present study were to evaluate the antifungal and antimycotoxigenic activities of the essential oils from Satureja montana L., Myristica fragrans H. and Cymbopogon flexuosus S. against Aspergillus flavus and Aspergillus ochraceus, as well as their effects on ergosterol synthesis and membrane morphology. The antifungal potential was evaluated by mycelial growth analysis and scanning electron microscopy. Fungicidal effects against A. flavus, with MFC of 0.98, 15.62 and 0.98 µL/mL, respectively, were observed for the essential oils from S. montana, M. fragrans and C. flexuosus. Aspergillus ochraceus did not grow in the presence of concentrations of 3.91, 15.62 and 0.98 µL/mL of the essential oils from S. montana, M. fragrans and C. flexuosus, respectively. The essential oils significantly inhibited the production of ochratoxin A by the fungus A. ochraceus. The essential oils also inhibited the production of aflatoxin B1 and aflatoxin B2. The biosynthesis of ergosterol was inhibited by the applied treatments. Biological activity in the fungal cell membrane was observed in the presence of essential oils, given that deleterious effects on the morphologies of the fungi were detected. The essential oils under study are promising as food preservatives because they significantly inhibit toxigenic fungi that contaminate food. In addition, the essential oils hindered the biosynthesis of mycotoxins.


Assuntos
Aspergillus flavus , Aspergillus ochraceus , Cymbopogon , Myristica , Óleos Voláteis , Satureja , Antifúngicos/farmacologia , Aspergillus flavus/efeitos dos fármacos , Aspergillus ochraceus/efeitos dos fármacos , Cymbopogon/química , Ergosterol/biossíntese , Montana , Micotoxinas , Myristica/química , Óleos Voláteis/farmacologia , Satureja/química
2.
J Sci Food Agric ; 101(12): 4969-4979, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33543481

RESUMO

BACKGROUND: Aspergillus ochraceus causes food spoilage and produces mycotoxin ochratoxin A (OTA) during storage of agricultural commodities. In this study, citral was used to inhibit A. ochraceus growth and OTA accumulation, proteomic analysis was employed to verify the mechanism of citral. RESULTS: Citral was found to significantly inhibit fungal growth and mycotoxin production in A. ochraceus. Specifically, 75, 125, 150 and 200 µL L-1 citral suppressed mycelial growth by 33%, 46%, 50% and 100%, respectively. Additionally, 75 µL L-1 citral inhibited OTA accumulation by 25%. Proteomic analysis was performed to elucidate the inhibitory mechanism of citral on mycelial growth and OTA production at subinhibitory concentrations (75 µL L-1 ). Proteomics analysis identified 2646 proteins in A. ochraceus fc-1, of which 218 were differentially expressed between control and 75 µL L-1 citral treatment samples. Differentially expressed proteins were identified by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses of biological process, cellular component and molecular function terms. Potential factors affecting mycelial growth and OTA production were analysed, and OTA production was revealed to be a complex process involving many associated factors related to various processes including nutrient intake, sterol biosynthesis, ribosome biogenesis, energy metabolism, oxidative stress and amino acid metabolism. In addition, citral at 75 µL L-1 down-regulated OTA biosynthetic genes including pks and nrps, but slightly up-regulated the global regulatory factors veA, velB and laeA. CONCLUSION: The findings further demonstrate the potential of citral for the preservation of grains and other agricultural products, and provide new insight into its antifungal mechanisms at subinhibitory concentrations. © 2021 Society of Chemical Industry.


Assuntos
Monoterpenos Acíclicos/farmacologia , Aspergillus ochraceus/efeitos dos fármacos , Aspergillus ochraceus/genética , Fungicidas Industriais/farmacologia , Micélio/crescimento & desenvolvimento , Ocratoxinas/biossíntese , Aspergillus ochraceus/crescimento & desenvolvimento , Aspergillus ochraceus/metabolismo , Produtos Agrícolas/microbiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Micélio/efeitos dos fármacos , Micélio/genética , Micélio/metabolismo , Proteômica
3.
Acta Pharm ; 71(1): 99-114, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32697747

RESUMO

Eplerenone is a drug that protects the cardiovascular system. 11α-Hydroxycanrenone is a key intermediate in eplerenone synthesis. We found that although the cytochrome P450 (CYP) enzyme system in Aspergillus ochraceus strain MF018 could catalyse the conversion of canrenone to 11α-hydroxycanrenone, its biocatalytic efficiency is low. To improve the efficiency of 11α-hydroxycanrenone production, the CYP monooxygenase-coding gene of MF018 was predicted and cloned based on whole-genome sequencing results. A recombinant A. ochraceus strain MF010 with the high expression of CYP monooxygenase was then obtained through homologous recombination. The biocatalytic rate of this recombinant strain reached 93 % at 60 h without the addition of organic solvents or surfactants and was 17-18 % higher than that of the MF018 strain. Moreover, the biocatalytic time of the MF010 strain was reduced by more than 30 h compared with that of the MF018 strain. These results show that the recombinant A. ochraceus strain MF010 can overcome the limitation of substrate biocatalytic efficiency and thus holds a high poten tial for application in the industrial production of eplerenone.


Assuntos
Aspergillus ochraceus/genética , Aspergillus ochraceus/metabolismo , Canrenona/análogos & derivados , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Aspergillus ochraceus/efeitos dos fármacos , Canrenona/metabolismo , Catálise , Clonagem Molecular , Resistência Microbiana a Medicamentos/genética , Eplerenona/química , Escherichia coli/metabolismo , Cinética , Plasmídeos/genética , Solventes , Tensoativos
4.
Antonie Van Leeuwenhoek ; 113(10): 1479-1488, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32766937

RESUMO

Aspergillus ochraceus is a soil fungus known to produce ochratoxin A, a harmful secondary metabolite. Prevention and control of fungal pathogens mostly rely on chemical fungicides, which is one of the contributing factors in the emergence of the fungal resistance, hence novel methods for fungal eradication have been extensively researched. The cold atmospheric pressure (CAP) plasma generated in ambient air has been recently applied in microbial decontamination. Here we used the diffuse coplanar surface barrier discharge in inactivation of a toxigenic strain A. ochraceus. The plasma-treated conidia and mycelium exhibited morphological changes such as ruptures and desiccation. Mycelium dehydration and changes in the chemical composition of hyphal surface accompanied plasma treatment. The growth of 26 h old mycelia were significantly restricted after 30 s of plasma treatment. The conidial vitality declined 4 logs after 180 s of plasma exposure leading to almost complete decontamination. After shorter plasma treatment of conidia, the ochratoxin A (OTA) production increased at the early stage of cultivation, but the overall level was significantly reduced compared to untreated samples after longer cultivation. Our results indicated that the fungal growth and the OTA production were significantly changed by plasma treatment and underscored CAP plasma as a promising method in the decontamination of A. ochraceus without a risk to generate strains with increased OTA production.


Assuntos
Aspergillus ochraceus/efeitos dos fármacos , Aspergillus ochraceus/metabolismo , Ocratoxinas/biossíntese , Gases em Plasma/farmacologia , Aspergillus ochraceus/crescimento & desenvolvimento , Aspergillus ochraceus/ultraestrutura , Relação Dose-Resposta a Droga , Viabilidade Microbiana/efeitos dos fármacos , Micélio/efeitos dos fármacos , Esporos Fúngicos/efeitos dos fármacos
5.
Mater Sci Eng C Mater Biol Appl ; 115: 111092, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32600696

RESUMO

This study reports on the spectroscopic characterization and antimicrobial potency of polyurethane cyclodextrin co-polymerized phosphorylated multiwalled carbon nanotube-doped Ag-TiO2 nanoparticle (pMWCNT-CD/Ag-TiO2) bionanosponge nanocomposite. The synthesis of pMWCNT-CD/Ag-TiO2 bionanosponge nanocomposite was carried out through the combined processes of amidation and polymerization reactions as well as the sol-gel method. The native nanosponge cyclodextrin and phosphorylated multiwalled carbon nanotube-nanosponge CD (pMWCNT-CD) polyurethanes were also prepared, and their antimicrobial activities carried out for comparison purposes. The synthesized bionanosponge polyurethane materials were characterized using Fourier-transform infrared (FTIR) spectroscopy, Laser Raman spectroscopy, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) to give clear information regarding their structural, and dynamic physicochemical properties. The potency tests of the synthesized compounds were carried out against three bacterial strains Escherichia coli, Bacillus subtilis, Staphylococcus aureus, and two fungal representatives Aspergillus ochraceus and Aspergillus fumigatus, using the disc diffusion method. Micro dilution and agar plating were used to determine the minimum bactericidal concentration (MBC) and minimum fungicidal concentration (MFC), respectively. The results obtained revealed that pMWCNT-CD/Ag-TiO2 exhibits superior antibacterial and antifungal activities when compared to the other bionanosponge polymers tested. Thus, the bionanosponge polyurethane pMWCNT-CD/Ag-TiO2 nanocomposite can be considered as an active antimicrobial compound (AMC).


Assuntos
Anti-Infecciosos/farmacologia , Ciclodextrinas/farmacologia , Poliuretanos/química , Prata/farmacologia , Titânio/farmacologia , Anti-Infecciosos/química , Aspergillus fumigatus/efeitos dos fármacos , Aspergillus ochraceus/efeitos dos fármacos , Bacillus subtilis/efeitos dos fármacos , Ciclodextrinas/química , Escherichia coli/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Nanocompostos/química , Nanotubos de Carbono/química , Prata/química , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman , Staphylococcus aureus/efeitos dos fármacos , Titânio/química , Difração de Raios X
6.
Molecules ; 24(23)2019 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-31771271

RESUMO

Crude, phenolic-rich extracts (CPREs) were isolated from different sources, such as Hibiscus sabdariffa (H. sabdariffa), Brassica oleracea var. capitata f. rubra (B. oleracea) and Beta vulgaris (B. vulgaris) and characterized. These CPREs showed potential antibacterial and antifungal activities. H. sabdariffa CPRE (HCPRE) is the most potent, as it inhibited all tested bacteria and fungi. Total anthocyanins content (TAC), total phenolic content (TPC) and total flavonoid content (TFC) were estimated in all three CPREs. H. sabdariffa contained 4.2 mg/100 g TAC, 2000 mg/100 g of TPC and 430 mg/100 g of TFC in a dry weight sample. GC-MS analysis of HCPRE showed 10 different active compounds that have antimicrobial effects against pathogenic bacteria and fungi, especially alcoholic compounds, triazine derivatives and esters. Scanning and transmission electron microscopy images of Staphylococcus aureus DSM 1104 and Klebsiella pneumonia ATCC 43816 treated with HCPRE (50 µg/mL) exhibited signs of asymmetric, wrinkled exterior surfaces, cell deformations and loss of cell shapes; and adherence of lysed cell content led to cell clumping, malformations, blisters, cell depressions and diminished cell numbers. This indicates death of bacterial cells and loss of cell contents. Aspergillus ochraceus EMCC516 (A. ochraceus, when treated with 100 µg/mL of HCPRE showed irregular cell organelles and cell vacuolation.


Assuntos
Antibacterianos/farmacologia , Antifúngicos/farmacologia , Beta vulgaris/química , Brassica/química , Hibiscus/química , Fenóis/farmacologia , Antocianinas/química , Antocianinas/farmacologia , Antibacterianos/química , Antifúngicos/química , Aspergillus ochraceus/efeitos dos fármacos , Flavonoides/química , Flavonoides/farmacologia , Cromatografia Gasosa-Espectrometria de Massas , Klebsiella pneumoniae/efeitos dos fármacos , Microscopia Eletrônica de Transmissão , Estrutura Molecular , Fenóis/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Staphylococcus aureus/efeitos dos fármacos
7.
J Sci Food Agric ; 99(9): 4338-4343, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30828809

RESUMO

BACKGROUND: Contamination of date fruit with mycotoxigenic fungi is a hazardous threat. The present study investigated the effectiveness of natural derivatives for controlling this. Chitosan (Cts) was produced from Aspergillus niger mycelia and characterized and then nanochitosan (NCt) particles were synthesized from fungal Cts. Edible-coating films were formulated based on Cts, NCt, pomegranate peel extract (PPE) and their composites and these were evaluated as antifungal materials against mycotoxigenic fungi, Aspergillus flavus, Aspergillus ochraceus and Fusarium moniliforme. RESULTS: The Cts produced had 88.7% deacetylation, a molecular weight of 24.5 kDa and 98% solubility in diluted acetic acid, whereas the particle diameters of synthesized NCts ranged from 35 to 65 nm. The inhibition zone assay emphasized the antifungal effectiveness of the entire coating films. The most effective agent for preparing edible film was the blend of NCt + PPE followed by Cts + PPE based films. The practical application of antifungal films for date decontamination with respect to mycotoxigenic fungi demonstrates that the films were very effective for controlling the entire fungal strain and preventing growth on the fruits. CONCLUSION: The NCt + PPE and Cts + PPE based films were found to be the most effective because they could completely eliminate the growth of any fungal spore on date fruit after 48 h from the coating experiment. © 2019 Society of Chemical Industry.


Assuntos
Biopolímeros/química , Embalagem de Alimentos/instrumentação , Frutas/microbiologia , Phoeniceae/microbiologia , Extratos Vegetais/química , Aspergillus flavus/efeitos dos fármacos , Aspergillus flavus/crescimento & desenvolvimento , Aspergillus niger/química , Aspergillus niger/metabolismo , Aspergillus ochraceus/efeitos dos fármacos , Aspergillus ochraceus/crescimento & desenvolvimento , Biopolímeros/metabolismo , Biopolímeros/farmacologia , Quitosana/química , Quitosana/metabolismo , Quitosana/farmacologia , Contaminação de Alimentos/análise , Contaminação de Alimentos/prevenção & controle , Frutas/química , Fusarium/efeitos dos fármacos , Fusarium/crescimento & desenvolvimento , Phoeniceae/química , Extratos Vegetais/farmacologia
8.
J Appl Microbiol ; 126(4): 1161-1174, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30614164

RESUMO

AIMS: As a natural antimicrobial agent, Melaleuca alternifolia oil (MAO) is generally recognized to be safe and effective in the inhibition of phytopathogenic fungi. Due to lack of comprehensive studies on MAO for controlling postharvest Aspergillus, we investigated the preservative mechanism of MAO and its components against Aspergillus ochraceus in postharvest grapes to evaluate their potential effectiveness as fruit preservatives. METHODS AND RESULTS: In our study, the compositions in MAO were analysed by gas chromatography-mass spectrometry. The inhibitory effects of MAO and its main constituents against A. ochraceus were compared by scanning electron microscopy and transmission electron microscopy observation, and metabolic analysis. Two components of MAO, α-terpineol and terpene-4-alcohol, showed higher antifungal effects than MAO, of which α-terpineol caused the worst leakage of cytoplasm and most serious hyphae distortions and spore disruptions. The downregulation of metabolic pathways of A. ochraceus was strongest with α-terpineol. The best inhibitory efficacy against A. ochraceus in grapes also occurred with α-terpineol. 3-Carene showed little inhibitory effect. CONCLUSIONS: These results demonstrate that not all components in MAO possess antimicrobial effects, and α-terpineol is the main contributor of MAO's A. ochraceus inhibition effect. SIGNIFICANCE AND IMPACT OF THE STUDY: α-Terpineol may be used as an alternative natural preservative for the postharvest storage of grapes and other fruits.


Assuntos
Antifúngicos/farmacologia , Aspergillus ochraceus/efeitos dos fármacos , Doenças das Plantas/prevenção & controle , Óleo de Melaleuca/farmacologia , Vitis/microbiologia , Antifúngicos/química , Monoterpenos Cicloexânicos , Cicloexenos/farmacologia , Cromatografia Gasosa-Espectrometria de Massas , Monoterpenos/farmacologia , Doenças das Plantas/microbiologia , Óleo de Melaleuca/química , Terpenos/farmacologia
9.
Chemosphere ; 218: 477-486, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30497030

RESUMO

The cell-free culture filtrate (CFF) of the fungi Fusarium chlamydosporum NG30 and Penicillium chrysogenum NG85 was tested to synthesize silver nanoparticles (AgNPs). The synthesized AgNPs were further characterized by means of transmission electron microscopy (TEM), dynamic light scattering (DLS) and Fourier transform infra-red (FTIR) spectroscopy. TEM revealed their spherical shape, homogeneity and a size range between 6 and 26 nm for F. chlamydosporum AgNPs (FAgNPs) and from 9 to 17.5 nm for P. chrysogenum AgNPs (PAgNPs). DLS showed that the diameter of FAgNPs was narrower than that of PAgNPs. FTIR spectroscopy indicated that the functional groups present in the CFF might be responsible for the reduction of silver ions to form stabilized protein-capped AgNPs. In addition, the AgNPs showed notable antifungal activity and potency in thwarting mycotoxin production. Thus, using Aspergillus flavus as a test microorganism the minimum inhibitory concentration (MIC) was 48, 45 and 50 µg/mL for FAgNPs, PAgNPs and the antifungal compound itraconazole, respectively. Also, when testing Aspergillus ochraceus FAgNPs, PAgNPs and itraconazole led to MIC values of 51, 47 and 49 µg/mL, respectively. The statistical MIC values to inhibit completely the total aflatoxin production by A. flavus were 5.9 and 5.6 µg/mL for FAgNPs and PAgNPs, respectively, and to inhibit the ochratoxin A production by A. ochraceus 6.3 and 6.1 µg/mL for FAgNPs and PAgNPs, respectively. The cytotoxicity assay of the AgNPs on human normal melanocytes (HFB 4) revealed a cell survival of 80% and 75% at a concentration of 6 µg/mL for FAgNPs and PAgNPs, respectively.


Assuntos
Antifúngicos/farmacologia , Fusarium/metabolismo , Nanopartículas Metálicas/química , Penicillium chrysogenum/metabolismo , Prata/farmacologia , Aflatoxinas/metabolismo , Antifúngicos/metabolismo , Aspergillus flavus/efeitos dos fármacos , Aspergillus flavus/metabolismo , Aspergillus ochraceus/efeitos dos fármacos , Aspergillus ochraceus/metabolismo , Sistema Livre de Células , Difusão Dinâmica da Luz , Fusarium/citologia , Humanos , Melanócitos/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Transmissão , Ocratoxinas/metabolismo , Penicillium chrysogenum/citologia , Prata/química , Espectroscopia de Infravermelho com Transformada de Fourier , Testes de Toxicidade
10.
Molecules ; 23(9)2018 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-30131466

RESUMO

The grain contamination by Aspergillus spp. has been a serious issue. This study exhibited the excellent antifungal effects of the essential oil compounds (EOCs) geraniol and citral against common grain pathogens (A. flavus and A. ochraceus) in vitro and in situ. The inhibitory mechanisms were also evaluated from the perspective of cell membrane permeability, reactive oxygen species (ROS) generation, and Aspergillus spp. growth-related gene expression. Meanwhile, the combined effects of EOCs in the vapor phase and modified atmosphere packaging (MAP) were examined to find an alternative preservation method for controlling Aspergillus spp. The results indicated that citral exhibited the antifungal activity mainly by downregulating the sporulation- and growth-related genes for both pathogens. Geraniol displayed inhibitory effectiveness against A. flavus predominantly by inducing the intracellular ROS accumulation and showed toxicity against A. ochraceus principally by changing cell membrane permeability. Furthermore, the synthetic effects of EOCs and MAP (75% CO2 and 25% N2) induced better grain quality than the current commercial fumigant AlP. These findings reveal that EOCs have potential to be a novel grain preservative for further application.


Assuntos
Antifúngicos/química , Antifúngicos/farmacologia , Aspergillus flavus/efeitos dos fármacos , Aspergillus ochraceus/efeitos dos fármacos , Monoterpenos/química , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Terpenos/química , Monoterpenos Acíclicos , Aspergillus flavus/genética , Aspergillus flavus/ultraestrutura , Aspergillus ochraceus/genética , Aspergillus ochraceus/ultraestrutura , Permeabilidade da Membrana Celular/efeitos dos fármacos , Grão Comestível/microbiologia , Perfilação da Expressão Gênica , Testes de Sensibilidade Microbiana , Espécies Reativas de Oxigênio/metabolismo
11.
Toxins (Basel) ; 10(9)2018 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-30135391

RESUMO

Ochratoxin A (OTA) is a potent nephrotoxic, hepatotoxic, and teratogenic compound which is a significant mycotoxin contaminates cereals during storage. Aspergillus ochraceus is the most common producer of OTA in cereals and cereal-derived products. Cinnamaldehyde is a natural substance derived from plant cinnamon playing an important role in the reduction of OTA contamination. In this study, the antifungal and antitoxigenic effect of cinnamaldehyde was investigated with its mechanisms of inhibition of fungal growth at the morphological and ultrastructural levels, and inhibition of OTA biosynthesis at the transcriptional level. Significant A. ochraceus growth was inhibited at 0.4⁻1.6 mmol/L with fumigation. A. ochraceus exposed to 0.4 mmol/L of cinnamaldehyde indicated irreversible harmful morphological and ultrastructural modifications such as the folding of the cell, the loss of integrity of the cell wall, the disruption of plasma membrane, the destruction of the mitochondria, and the absence of intracellular organelles. These alterations may be attributed to its inhibition of enzymatic reactions that regulate cell wall synthesis, thus disturbing the morphogenesis and growth of A. ochraceus. In the presence of cinnamaldehyde, the tested biosynthetic and regulatory genes like pks, nrps, veA, laeA and velB were highly downregulated. Moreover, the downregulation effect of cinnamaldehyde increased proportionally with the concentrations. These results suggest that the decrease of OTA production by cinnamaldehyde is attributed to the downregulation of the transcriptional levels of OTA biosynthetic and regulatory genes besides the inhibition of fungal growth. The study reveals the mechanisms of the antifungal and antitoxigenic activities of cinnamaldehyde against A. ochraceus, and further emphasizes that cinnamaldehyde could be a safe and effective natural agents against OTA contamination during cereals storage.


Assuntos
Acroleína/análogos & derivados , Antifúngicos/farmacologia , Aspergillus ochraceus/efeitos dos fármacos , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Ocratoxinas/biossíntese , Acroleína/farmacologia , Aspergillus ochraceus/genética , Aspergillus ochraceus/crescimento & desenvolvimento , Aspergillus ochraceus/ultraestrutura , Contaminação de Alimentos/prevenção & controle , Genes Fúngicos/efeitos dos fármacos , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão
12.
Food Res Int ; 101: 61-72, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28941698

RESUMO

The aim of this work was the study of the main effects of benzyl isothiocyanate (BITC) on A. ochraceus morphology and on its production metabolism of ochratoxins. This compound was evaluated as active agent of an antimicrobial label in food packaging. Microbiological studies showed a slowdown in mould growth when the active material was applied to A. ochraceus and the presence of three different areas of growth. Scanning electron microscopy was successfully used to demonstrate the mode of action of BITC on this strain. A. ochraceus exhibited modifications in morphology compared to the control samples such as the disappearance of sclerotia or cleistothecia An extraction protocol and an analytical method by UPLC-MS/MS to determine ochratoxins (OTs) was developed. The results showed that all these morphological changes were related to a decrease on OTs production, both ochratoxin A (OTA) and ochratoxin B (OTB). The presence of BITC caused a great decrease on OTA that modified the OTA/OTB ratio, increasing the OTB proportion. Furthermore, the active packaging also modified the production of other secondary metabolites. The morphological and metabolic effects observed, as well as the relationship between them, are of great interest since they have not been reported before for A. ochraceus.


Assuntos
Aspergillus ochraceus/citologia , Aspergillus ochraceus/efeitos dos fármacos , Aspergillus ochraceus/metabolismo , Embalagem de Alimentos , Isotiocianatos/farmacologia , Ocratoxinas/metabolismo , Anti-Infecciosos/farmacologia , Cromatografia Líquida de Alta Pressão , Inocuidade dos Alimentos , Microscopia Eletrônica de Varredura , Ocratoxinas/análise , Metabolismo Secundário/efeitos dos fármacos , Espectrometria de Massas em Tandem
13.
Anal Chem ; 88(9): 4772-9, 2016 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-27032001

RESUMO

Raman imaging spectroscopy is a nondestructive analytical method that can be a useful tool to obtain detailed information about the molecular composition and morphology of biological samples. Its high spatial resolution was used to collect spectra of Aspergillus ochraceus, a mold producer of ochratoxin A (OTA), in order to investigate the cell damage caused on it by the action of the antimicrobial benzyl isothiocyanate (BITC). The study was performed in both direct contact and vapor phase, in order to check the use of BITC as active agent in food packaging material. The results showed that there were morphologic alteration and a characteristic Raman spectrum on spore and hyphae exposed to BITC. BITC was accumulated in the mold cells where it caused an enormous amount of alterations in cellular components (lipids, proteins, saccharides, amino acids...) and cellular functions (cell cycle, respiration, metabolism, transcription of genes, fluidity of the cellular wall). All these structural, composition, and metabolic changes will affect the production of OTA. Pattern recognition with chemometrics using principal component analysis (PCA) demonstrated an excellent separation between control and BITC treated samples, both in spores and hyphae. PCA results also showed two different affection levels when samples were exposed to BITC in the vapor phase.


Assuntos
Antifúngicos/farmacologia , Aspergillus ochraceus/citologia , Aspergillus ochraceus/efeitos dos fármacos , Embalagem de Alimentos , Isotiocianatos/farmacologia , Antifúngicos/química , Isotiocianatos/química , Análise de Componente Principal , Análise Espectral Raman
14.
J Appl Microbiol ; 121(1): 89-100, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27002915

RESUMO

AIMS: The aim of this study was to synthesize silver nanoparticles (AgNPs) by an eco-friendly and low-cost method using the fungi Aspergillus terreus HA1N and Penicillium expansum HA2N as an alternative to chemical procedures mostly requiring drastic experimental conditions emitting toxic chemical byproducts. Also, this study has been extended to evaluate the effect of AgNPs on the growth of some mycotoxigenic fungi and ochratoxin A (OTA) produced by Aspergillus ochraceus. METHODS AND RESULTS: The AgNPs have been characterized by UV-Visible Spectrophotometer, Dynamic Light Scattering (DLS), Fourier Transform Infrared Spectroscopy (FTIR) and Transmission Electron Microscope (TEM). The TEM analysis has revealed that the size of AgNPs ranged between 14 and 25 nm in the case of P. expansum and 10-18 nm in the case of A. terreus. The antifungal activity of AgNP colloids has indicated that the highest inhibition zone was detected with AgNPs synthesized by A. terreus HA1N against all tested fungi. The highest inhibition zone was detected with Aspergillus niger at concentrations 3 and 6 µg of AgNP solution (7·56 ± 0·38 and 11·3 ± 1·8 mm, respectively) while, A. ochraceus showed the maximum inhibition zone (16·33 ± 0·96 mm) at the concentration 9 µg of AgNPs synthesized by A. terreus. The results have also indicated that the AgNPs synthesized by A. terreus and P. expansum at the concentration 220 µg/100 ml media gave the highest reduction of OTA, where the percentages of reduction were 58·87 and 52·18% respectively. CONCLUSIONS: The smallest size AgNPs synthesized by A. terreus HA1N are better in their antifungal activity against all tested mycotoxigenic fungi than the largest one synthesized by P. expansum HA2N. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first study focused on using AgNPs in control of OTA production.


Assuntos
Aspergillus/metabolismo , Nanopartículas Metálicas/química , Penicillium/metabolismo , Antifúngicos/química , Antifúngicos/metabolismo , Antifúngicos/farmacologia , Aspergillus ochraceus/efeitos dos fármacos , Aspergillus ochraceus/metabolismo , Fungos/efeitos dos fármacos , Ocratoxinas/biossíntese , Extratos Vegetais/farmacologia , Prata/química , Prata/metabolismo , Prata/farmacologia
15.
PLoS One ; 9(9): e108285, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25255251

RESUMO

Ochratoxin A (OTA) is a mycotoxin which is a common contaminant in grains during storage. Aspergillus ochraceus is the most common producer of OTA. Essential oils play a crucial role as a biocontrol in the reduction of fungal contamination. Essential oils namely natural cinnamaldehyde, cinnamon oil, synthetic cinnamaldehyde, Litsea citrate oil, citral, eugenol, peppermint, eucalyptus, anise and camphor oils, were tested for their efficacy against A. ochraceus growth and OTA production by fumigation and contact assays. Natural cinnamaldehyde proved to be the most effective against A. ochraceus when compared to other oils. Complete fungal growth inhibition was obtained at 150-250 µL/L with fumigation and 250-500 µL/L with contact assays for cinnamon oil, natural and synthetic cinnamaldehyde, L. citrate oil and citral. Essential oils had an impact on the ergosterol biosynthesis and OTA production. Complete inhibition of ergosterol biosynthesis was observed at ≥ 100 µg/mL of natural cinnamaldehyde and at 200 µg/mL of citral, but total inhibition was not observed at 200 µg/mL of eugenol. But, citral and eugenol could inhibit the OTA production at ≥ 75 µg/mL and ≥ 150 µg/mL respectively, while natural cinnamaldehyde couldn't fully inhibit OTA production at ≤ 200 µg/mL. The inhibition of OTA by natural cinnamaldehyde is mainly due to the reduction in fungal biomass. However, citral and eugenol could significant inhibit the OTA biosynthetic pathway. Also, we observed that cinnamaldehyde was converted to cinnamic alcohol by A. ochraceus, suggesting that the antimicrobial activity of cinnamaldehyde was mainly attributed to its carbonyl aldehyde group. The study concludes that natural cinnamaldehyde, citral and eugenol could be potential biocontrol agents against OTA contamination in storage grains.


Assuntos
Aspergillus ochraceus/efeitos dos fármacos , Aspergillus ochraceus/metabolismo , Ocratoxinas/biossíntese , Óleos Voláteis/farmacologia , Acroleína/análogos & derivados , Acroleína/farmacologia , Antifúngicos/farmacologia , Aspergillus ochraceus/crescimento & desenvolvimento , Aspergillus ochraceus/ultraestrutura , Eugenol/farmacologia , Fumigação , Testes de Sensibilidade Microbiana
16.
Asian Pac J Trop Biomed ; 3(6): 443-8, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23730556

RESUMO

OBJECTIVE: The aim of this study was to evaluate the antifungal activity of the major fraction of fatty acids methyl esters (FAMEs) isolated from Linum usitatissimum L. seeds oil collected from Bechar department (Algeria). METHODS: The assessment of antifungal activity was carried out in terms of percentage of radial growth on solid medium (potatoes dextrose agar PDA) and biomass growth inhibition on liquid medium (potatoes dextrose broth PDB) against two fungi. RESULTS: The FAMEs was found to be effective in inhibiting the radial mycelial growth of Aspergillus flavus more than Aspergillus ochraceus on all tested concentrations. The highest antifungal index was found to be (54.19%) compared to Aspergillus ochraceus (40.48%). The results of the antifungal activity of the FAMEs inhibition of biomass on liquid medium gave no discounted results, but this does not exclude the antifungal activity. CONCLUSIONS: We can assume that the observed antifungal potency may be due to the abundance of linoleic and α-linolenic acids in linseed oil which appears to be promising to treat fungal infections, storage fungi and food spoilage in food industry field.


Assuntos
Antifúngicos/farmacologia , Aspergillus flavus/efeitos dos fármacos , Aspergillus ochraceus/efeitos dos fármacos , Linho/química , Fungicidas Industriais/farmacologia , Óleo de Semente do Linho/farmacologia , Argélia , Ésteres/farmacologia , Ácidos Graxos não Esterificados/farmacologia , Testes de Sensibilidade Microbiana , Sementes/química
17.
Microb Pathog ; 61-62: 51-6, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23684728

RESUMO

The antifungal activities of 5-O-caffeoyl quinic acid (5-CQA) and of methyl, butyl, octyl, and dodecyl esters or 5-CQA, were tested on five toxigenic moulds from the Aspergillus genus (Aspergillus flavus, Aspergillus nomius, Aspergillus ochraceus, Aspergillus parasiticus, Aspergillus westerdijkiae). These mycotoxin producers' moulds may contaminate many types of food crops throughout the food chain posing serious health hazard to animals and humans. The use of chemical methods to decrease mycotoxin producer moulds contamination on food crops in the field, during storage, and/or during processing, has been proved to be efficient. In this work, the antifungal effect of 5-CQA and a homologous series of 5-CQA esters (methyl, butyl, octyl, dodecyl), was investigated using the microdilution method and the minimum inhibitory concentrations (MIC50 and MIC80). All molecules presented antifungal activity, and two esters showed a MIC for all fungi: octyl (MIC50 ≤ 0.5-0.75 mg/mL, MIC80 = 1.0-1.5 mg/mL) and dodecyl (MIC50 = 0.75-1.25 mg/mL) chlorogenates. Dodecyl chlorogenate showed a MIC80 (1.5 mg/mL) only for A. parasiticus. The maximum percent of growth inhibition on aspergillii was observed with octyl (78.4-92.7%) and dodecyl (54.5-83.7%) chlorogenates, being octyl chlorogenate the most potent antifungal agent. It was thus concluded that lipophilization improved the antifungal properties of 5-CQA, which increased with the ester alkyl chain length, exhibiting a cut-off effect at 8 carbons. As far as we know, it is the first report demonstrating that lipophilization may improve the antifungal activity of 5-CQA on five toxigenic moulds from the Aspergillus genus. Lipophilization would be a novel way to synthesize a new kind of antifungal agents with a good therapeutic value or a potential use as preservative in food or cosmetics.


Assuntos
Antifúngicos/farmacologia , Aspergillus/classificação , Aspergillus/efeitos dos fármacos , Ácido Clorogênico/análogos & derivados , Café/química , Ésteres/farmacologia , Ácido Quínico/análogos & derivados , Antifúngicos/química , Aspergillus flavus/efeitos dos fármacos , Aspergillus ochraceus/efeitos dos fármacos , Ácido Clorogênico/química , Ácido Clorogênico/isolamento & purificação , Ácido Clorogênico/farmacologia , Ésteres/química , Testes de Sensibilidade Microbiana/normas , Ácido Quínico/química , Ácido Quínico/isolamento & purificação , Ácido Quínico/farmacologia
18.
Molecules ; 17(9): 10459-69, 2012 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-22945026

RESUMO

Commercial plant essential oils obtained from 11 Myrtaceae plant species were tested for their fumigant antifungal activity against Aspergillus ochraceus, A. flavus, and A. niger. Essential oils extracted from Leptospermum petersonii at air concentrations of 56 × 10(-3) mg/mL and 28 × 10(-3) mg/mL completely inhibited the growth of the three Aspergillus species. However, at an air concentration of 14 × 10(-3) mg/mL, inhibition rates of L. petersonii essential oils were reduced to 20.2% and 18.8% in the case of A. flavus and A. niger, respectively. The other Myrtaceae essential oils (56 × 10(-3) mg/mL) only weakly inhibited the fungi or had no detectable affect. Gas chromatography-mass spectrometry analysis identified 16 compounds in L. petersonii essential oil. The antifungal activity of the identified compounds was tested individually by using standard or synthesized compounds. Of these, neral and geranial inhibited growth by 100%, at an air concentration of 56 × 10(-3) mg/mL, whereas the activity of citronellol was somewhat lover (80%). The other compounds exhibited only moderate or weak antifungal activity. The antifungal activities of blends of constituents identified in L. petersonii oil indicated that neral and geranial were the major contributors to the fumigant and antifungal activities.


Assuntos
Antifúngicos/farmacologia , Aspergillus/efeitos dos fármacos , Leptospermum/química , Myrtaceae/química , Óleos Voláteis/farmacologia , Óleos de Plantas/farmacologia , Aspergillus flavus/efeitos dos fármacos , Aspergillus flavus/crescimento & desenvolvimento , Aspergillus niger/efeitos dos fármacos , Aspergillus niger/crescimento & desenvolvimento , Aspergillus ochraceus/efeitos dos fármacos , Aspergillus ochraceus/crescimento & desenvolvimento , Fumigação , Testes de Sensibilidade Microbiana
19.
Food Microbiol ; 29(2): 229-32, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22202877

RESUMO

Mycotoxigenic moulds can grow on the surface of sausages and reduce the safety of these sausages for consumption. The aim of this study was to prevent the growth of Aspergillus ochraceus and the presence of Ochratoxin A (OTA) on the surface of Milano-type sausages using ozonated air. Spores of A. ochraceus were used to inoculate the casings of the sausages after casing. A portion of the lot (35 samples) was ripened in typical rooms, and another portion (35 samples) was dried and ripened in a separate room that was treated with gaseous ozone. The gas was delivered at night (8 h/day) at a concentration of ∼1 ppm. The temperature and relative humidity during the drying and ripening were the same for both rooms. Our results demonstrate that the gaseous ozone treatment prevented the growth of A. ochraceus and, consequently, the presence of OTA. In contrast, A. ochraceus grew and produced OTA on the untreated sausages. Moreover, the use of ozone did not influence the ripening, physico-chemical parameters, peroxide value or sensorial characteristics of the sausages.


Assuntos
Aspergillus ochraceus/efeitos dos fármacos , Aspergillus ochraceus/crescimento & desenvolvimento , Contaminação de Alimentos/prevenção & controle , Conservação de Alimentos/métodos , Produtos da Carne/microbiologia , Ocratoxinas/metabolismo , Ozônio/farmacologia , Aspergillus ochraceus/metabolismo , Viabilidade Microbiana/efeitos dos fármacos
20.
J Sci Food Agric ; 91(12): 2160-5, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21547917

RESUMO

BACKGROUND: Feed contamination with mycotoxins is a major risk factor for animals and humans as several toxins can exist as residues in meat and milk products, giving rise to carry-over to consumers via ingestion of foods of animal origin. The starting point for prevention, in this chain, is to eliminate the growth of mycotoxigenic fungi in the animal forage. Ten plant extracts, recommended in Islamic medicine, were evaluated as antifungal agents against mycotoxigenic Aspergilli, i.e. Aspergillus flavus and A. ochraceus, growth in organic maize silage. RESULTS: Most extracts had remarkable antifungal activities using both qualitative and quantitative evaluation methods. Cress (Lepidium sativum) seed extract was proven to be the most powerful among the plants examined. Blending of the most effective extracts (garden cress seed, pomegranate peel and olive leaf extracts), individually at their minimal fungicidal concentrations, with maize silage resulted in the reduction of inoculated A. flavus colony counts by 99.9, 99.6 and 98.7%, respectively, whereas silage blending with the combined extracts completely prohibited fungal growth for up to 30 days of incubation under aerobic conditions. CONCLUSION: Besides the health promoting effects, silage blending with the bioactive plant extracts examined could lead to the required protection from pathogenic and mycotoxigenic fungi.


Assuntos
Aspergillus/efeitos dos fármacos , Fungicidas Industriais/farmacologia , Islamismo , Medicina Tradicional , Micotoxicose/prevenção & controle , Extratos Vegetais/farmacologia , Silagem/microbiologia , Mundo Árabe , Aspergillus/crescimento & desenvolvimento , Aspergillus flavus/efeitos dos fármacos , Aspergillus flavus/crescimento & desenvolvimento , Aspergillus ochraceus/efeitos dos fármacos , Aspergillus ochraceus/crescimento & desenvolvimento , Sinergismo Farmacológico , Doenças Transmitidas por Alimentos/prevenção & controle , Frutas/química , Lepidium sativum/química , Lythraceae/química , Testes de Sensibilidade Microbiana , Olea/química , Folhas de Planta , Sementes , Zea mays/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA