Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Mar Drugs ; 21(3)2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36976186

RESUMO

The mutable collagenous tissue (MCT) of echinoderms has the capacity to undergo changes in its tensile properties within a timescale of seconds under the control of the nervous system. All echinoderm autotomy (defensive self-detachment) mechanisms depend on the extreme destabilisation of mutable collagenous structures at the plane of separation. This review illustrates the role of MCT in autotomy by bringing together previously published and new information on the basal arm autotomy plane of the starfish Asterias rubens L. It focuses on the MCT components of breakage zones in the dorsolateral and ambulacral regions of the body wall, and details data on their structural organisation and physiology. Information is also provided on the extrinsic stomach retractor apparatus whose involvement in autotomy has not been previously recognised. We show that the arm autotomy plane of A. rubens is a tractable model system for addressing outstanding problems in MCT biology. It is amenable to in vitro pharmacological investigations using isolated preparations and provides an opportunity for the application of comparative proteomic analysis and other "-omics" methods which are aimed at the molecular profiling of different mechanical states and characterising effector cell functions.


Assuntos
Asterias , Equinodermos , Animais , Estrelas-do-Mar , Asterias/anatomia & histologia , Proteômica , Modelos Biológicos
2.
Integr Comp Biol ; 61(2): 337-351, 2021 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-34048552

RESUMO

Free-swimming planktonic larvae are a key stage in the development of many marine phyla, and studies of these organisms have contributed to our understanding of major genetic and evolutionary processes. Although transitory, these larvae often attain a remarkable degree of tissue complexity, with well-defined musculature and nervous systems. Among the best studied are larvae belonging to the phylum Echinodermata, but with work largely focused on the pluteus larvae of sea urchins (class Echinoidea). The greatest diversity of larval strategies among echinoderms is found in the class Asteroidea (sea stars), organisms that are rapidly emerging as experimental systems for genetic and developmental studies. However, the bipinnaria larvae of sea stars have only been studied in detail in a small number of species and although they have been relatively well described neuro-anatomically, they are poorly understood neurochemically. Here, we have analyzed embryonic development and bipinnaria larval anatomy in the common North Atlantic sea star Asterias rubens, using a variety of staining methods in combination with confocal microscopy. Importantly, the chemical complexity of the nervous system of bipinnaria larvae was revealed through use of a diverse set of antibodies, with identification of at least three centers of differing neurochemical signature within the previously described nervous system: the anterior apical organ, oral region, and ciliary bands. Furthermore, the anatomy of the musculature and sites of cell division in bipinnaria larvae was analyzed. Comparisons of developmental progression and molecular anatomy across the Echinodermata provided a basis for hypotheses on the shared evolutionary and developmental processes that have shaped this group of animals. We conclude that bipinnaria larvae appear to be remarkably conserved across ∼200 million years of evolutionary time and may represent a strong evolutionary and/or developmental constraint on species utilizing this larval strategy.


Assuntos
Asterias , Larva , Animais , Asterias/anatomia & histologia , Evolução Biológica , Larva/anatomia & histologia
3.
J Anat ; 234(5): 656-667, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30861581

RESUMO

Starfish (order: Asteroidea) possess a complex endoskeleton composed of thousands of calcareous ossicles. These ossicles are embedded in a body wall mostly consisting of a complex collagen fiber array. The combination of soft and hard tissue provides a challenge for detailed morphological and histological studies. As a consequence, very little is known about the general biomechanics of echinoderm endoskeletons and the possible role of ossicle shape in enabling or limiting skeletal movements. In this study, we used high-resolution X-ray microscopy to investigate individual ossicle shape in unprecedented detail. Our results show the variation of ossicle shape within ossicles of marginal, reticular and carinal type. Based on these results we propose an additional classification to categorize ossicles not only by shape but also by function into 'connecting' and 'node' ossicles. We also used soft tissue staining with phosphotungstic acid successfully and were able to visualize the ossicle ultrastructure at 2-µm resolution. We also identified two new joint types in the aboral skeleton (groove-on-groove joint) and between adambulacral ossicles (ball-and-socket joint). To demonstrate the possibilities of micro-computed tomographic methods in analyzing the biomechanics of echinoderm skeletons we exemplarily quantified changes in ossicle orientation for a bent ray for ambulacral ossicles. This study provides a first step for future biomechanical studies focusing on the interaction of ossicles and soft tissues during ray movements.


Assuntos
Asterias/anatomia & histologia , Esqueleto/anatomia & histologia , Animais , Fenômenos Biomecânicos , Movimento/fisiologia , Esqueleto/ultraestrutura , Coloração e Rotulagem/métodos , Estrelas-do-Mar , Microtomografia por Raio-X
4.
J Comp Neurol ; 526(5): 858-876, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29218721

RESUMO

Molluscan pedal peptides (PPs) and arthropod orcokinins (OKs) are prototypes of a family of neuropeptides that have been identified in several phyla. Recently, starfish myorelaxant peptide (SMP) was identified as a PP/OK-type neuropeptide in the starfish Patiria pectinifera (phylum Echinodermata). Furthermore, analysis of transcriptome sequence data from the starfish Asterias rubens revealed two PP/OK-type precursors: an SMP-type precursor (A. rubens PP-like neuropeptide precursor 1; ArPPLNP1) and a second precursor (ArPPLNP2). We reported previously a detailed analysis of ArPPLNP1 expression in A. rubens and here we report the first functional characterization ArPPLNP2-derived neuropeptides. Sequencing of a cDNA encoding ArPPLNP2 revealed that it comprises eleven related neuropeptides (ArPPLN2a-k), the structures of several of which were confirmed using mass spectrometry. Analysis of the expression of ArPPLNP2 and neuropeptides derived from this precursor using mRNA in situ hybridization and immunohistochemistry revealed a widespread distribution, including expression in radial nerve cords, circumoral nerve ring, digestive system, tube feet and innervation of interossicular muscles. In vitro pharmacology revealed that the ArPPLNP2-derived neuropeptide ArPPLN2h has no effect on the contractility of tube feet or the body wall-associated apical muscle, contrasting with the relaxing effect of ArPPLN1b (ArSMP) on these preparations. ArPPLN2h does, however, cause dose-dependent relaxation of cardiac stomach preparations, with greater potency/efficacy than ArPPLN1b and with similar potency/efficacy to the SALMFamide neuropeptide S2. In conclusion, there are similarities in the expression patterns of ArPPLNP1 and ArPPLNP2 but our data also indicate specialization in the roles of neuropeptides derived from these two PP/OK-type precursors in starfish.


Assuntos
Asterias/anatomia & histologia , Asterias/metabolismo , Neuropeptídeos/metabolismo , Transdução de Sinais/fisiologia , Sequência de Aminoácidos , Animais , Clonagem Molecular , Espectrometria de Massas , Neuropeptídeos/genética , Neuropeptídeos/farmacologia , RNA Mensageiro/metabolismo , Nervo Radial/efeitos dos fármacos , Nervo Radial/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transcriptoma
5.
J Comp Neurol ; 525(18): 3890-3917, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-28880392

RESUMO

Pedal peptide (PP) and orcokinin (OK) are related neuropeptides that were discovered in protostomian invertebrates (mollusks, arthropods). However, analysis of genome/transcriptome sequence data has revealed that PP/OK-type neuropeptides also occur in a deuterostomian phylum-the echinoderms. Furthermore, a PP/OK-type neuropeptide (starfish myorelaxant peptide, SMP) was recently identified as a muscle relaxant in the starfish Patiria pectinifera. Here mass spectrometry was used to identify five neuropeptides (ArPPLN1a-e) derived from the SMP precursor (PP-like neuropeptide precursor 1; ArPPLNP1) in the starfish Asterias rubens. Analysis of the expression of ArPPLNP1 and neuropeptides derived from this precursor in A. rubens using mRNA in situ hybridization and immunohistochemistry revealed a widespread pattern of expression, with labeled cells and/or processes present in the radial nerve cords, circumoral nerve ring, digestive system (e.g., cardiac stomach) and body wall-associated muscles (e.g., apical muscle) and appendages (e.g., tube feet and papulae). Furthermore, our data provide the first evidence that neuropeptides are present in the lateral motor nerves and in nerve processes innervating interossicular muscles. In vitro pharmacological tests with SMP (ArPPLN1b) revealed that it causes dose-dependent relaxation of apical muscle, tube foot and cardiac stomach preparations from A. rubens. Collectively, these anatomical and pharmacological data indicate that neuropeptides derived from ArPPLNP1 act as inhibitory neuromuscular transmitters in starfish, which contrasts with the myoexcitatory actions of PP/OK-type neuropeptides in protostomian invertebrates. Thus, the divergence of deuterostomes and protostomes may have been accompanied by an inhibitory-excitatory transition in the roles of PP/OK-type neuropeptides as regulators of muscle activity.


Assuntos
Asterias/anatomia & histologia , Asterias/metabolismo , Fármacos Neuromusculares/farmacologia , Neuropeptídeos/metabolismo , Neuropeptídeos/farmacologia , Órgãos dos Sentidos/anatomia & histologia , Animais , Sistema Digestório/metabolismo , Espectrometria de Massas , Relaxamento Muscular/efeitos dos fármacos , Oligodesoxirribonucleotídeos Antissenso/farmacologia , RNA Mensageiro/metabolismo , Órgãos dos Sentidos/efeitos dos fármacos , Órgãos dos Sentidos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
6.
J Anat ; 231(3): 325-341, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28714118

RESUMO

The body wall of starfish is composed of magnesium calcite ossicles connected by collagenous tissue and muscles and it exhibits remarkable variability in stiffness, which is attributed to the mechanical mutability of the collagenous component. Using the common European starfish Asterias rubens as an experimental animal, here we have employed a variety of techniques to gain new insights into the structure of the starfish body wall. The structure and organisation of muscular and collagenous components of the body wall were analysed using trichrome staining. The muscle system comprises interossicular muscles as well as muscle strands that connect ossicles with the circular muscle layer of the coelomic lining. The collagenous tissue surrounding the ossicle network contains collagen fibres that form loop-shaped straps that wrap around calcite struts near to the surface of ossicles. The 3D architecture of the calcareous endoskeleton was visualised for the first time using X-ray microtomography, revealing the shapes and interactions of different ossicle types. Furthermore, analysis of the anatomical organisation of the ossicles indicates how changes in body shape may be achieved by local contraction/relaxation of interossicular muscles. Scanning synchrotron small-angle X-ray diffraction (SAXD) scans of the starfish aboral body wall and ambulacrum were used to study the collagenous tissue component at the fibrillar level. Collagen fibrils in aboral body wall were found to exhibit variable degrees of alignment, with high levels of alignment probably corresponding to regions where collagenous tissue is under tension. Collagen fibrils in the ambulacrum had a uniformly low degree of orientation, attributed to macrocrimp of the fibrils and the presence of slanted as well as horizontal fibrils connecting antimeric ambulacral ossicles. Body wall collagen fibril D-period lengths were similar to previously reported mammalian D-periods, but were significantly different between the aboral and ambulacral samples. The overlap/D-period length ratio within fibrils was higher than reported for mammalian tissues. Collectively, the data reported here provide new insights into the anatomy of the body wall in A. rubens and a foundation for further studies investigating the structural basis of the mechanical properties of echinoderm body wall tissue composites.


Assuntos
Asterias/anatomia & histologia , Animais , Colágeno/análise , Microtomografia por Raio-X
7.
Anal Bioanal Chem ; 407(29): 8813-24, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26412246

RESUMO

Saponins are secondary metabolites that are abundant and diversified in echinoderms. Mass spectrometry is increasingly used not only to identify saponin congeners within animal extracts but also to decipher the structure/biological activity relationships of these molecules by determining their inter-organ and inter-individual variability. The usual method requires extensive purification procedures to prepare saponin extracts compatible with mass spectrometry analysis. Here, we selected the sea star Asterias rubens as a model animal to prove that direct analysis of saponins can be performed on tissue sections. We also demonstrated that carboxymethyl cellulose can be used as an embedding medium to facilitate the cryosectioning procedure. Matrix-assisted laser desorption/ionization (MALDI) imaging was also revealed to afford interesting data on the distribution of saponin molecules within the tissues. We indeed highlight that saponins are located not only inside the body wall of the animals but also within the mucus layer that probably protects the animal against external aggressions. Graphical Abstract Saponins are the most abundant secondary metabolites in sea stars. They should therefore participate in important biological activities. Here, MALDI imaging is presented as a powerful method to determine the spatial distribution of saponins within the animal tissues. The inhomogeneity of the intra-organ saponin distribution is highlighted, paving the way for future elegant structure/activity relationship investigations.


Assuntos
Asterias/anatomia & histologia , Asterias/química , Saponinas/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais
8.
Biofouling ; 23(5-6): 413-8, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17882628

RESUMO

Qualitative evidence suggests sea stars are free of fouling organisms; however the presence of fouling-resistant surfaces of sea stars has not previously been documented. Field surveys were conducted in northern Queensland, Australia, during the wet and dry seasons and several tropical sea star species were examined for surface-associated micro- and macro-organisms. Mean bacterial abundances on seven sea star species were approximately 10(4) to 10(5) cells cm(-2) during both seasons. There were no consistent trends in bacterial abundances with season, species and aboral positions on sea star arms. No common generalist fouling organisms, such as algae, barnacles, serpulid polychaetes, bryozoans and ascidians, were found on any specimens of 12 sea star species. However, low numbers of parasitic and commensal macro-organisms were found on six sea star species. The gastropods Parvioris fulvescens, Asterolamia hians, Thyca (Granulithyca) nardoafrianti and Thyca crystallina were found exclusively on the sea stars Archaster typicus, Astropecten indicus, Nardoa pauciforis and Linckia laevigata, respectively. The shrimp Periclimenes soror was only found on Acanthaster planci, and the polychaete Ophiodromus sp. on A. typicus. The copepods Stellicola illgi and Paramolgus sp. were only found on L. laevigata and Echinaster luzonicus, respectively. As no common generalist fouling organisms were discovered, sea stars offer an excellent model to investigate the mechanisms driving fouling-resistant surfaces and the selective settlement of specialist invertebrates.


Assuntos
Asterias/fisiologia , Clima Tropical , Animais , Asterias/anatomia & histologia , Asterias/microbiologia , Austrália , Biologia Marinha , Oceanos e Mares , Estações do Ano , Especificidade da Espécie , Propriedades de Superfície
9.
Biochimie ; 88(2): 171-8, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16181722

RESUMO

A previous study (Bergwerff et al., Biochimie 74 (1992) 25-37) reported that sialic acids present in Asterias rubens gonads were essentially composed of 8-methyl-N-glycolylneuraminic acid (Neu5Gc8Me), a large part of it being acetylated in position 9. Using GC/MS of heptafluorobutyrate derivatives (Zanetta et al., Glycobiology 11 (2001) 663-676) on the chloroform/methanol soluble and insoluble fractions, we showed that most sialic acids were found in the latter and demonstrated that all sialic acids were derived from N-glycolylneuraminic acid, most of them being 8-methylated, but that the majority were also acetylated in position 4 or 7 (or both positions). GC/MS analyses of the constituents liberated using acid-catalysed methanolysis verified that major glycoprotein-bound glycans were N-linked and of the gluco-oligomannosidic type. Major fatty acids were poly-unsaturated (especially C20:4) and long-chain bases were C22:1 phytosphingosine and C22:2 6-hydroxysphingenine. Major monosaccharides found in the chloroform/methanol extract (quinovose and fucose) were derived from steroidal saponins.


Assuntos
Asterias , Ácidos Graxos/análise , Gônadas/química , Monossacarídeos/análise , Ácidos Siálicos/análise , Animais , Asterias/anatomia & histologia , Asterias/química , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA