Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.532
Filtrar
1.
J Comp Neurol ; 532(8): e25665, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39235147

RESUMO

Astrocytes intricately weave within the neuropil, giving rise to characteristic bushy morphologies. Pioneering studies suggested that primate astrocytes are more complex due to increased branch numbers and territory size compared to rodent counterparts. However, there has been no comprehensive comparison of astrocyte morphology across species. We employed several techniques to investigate astrocyte morphology and directly compared them between mice and rhesus macaques in cortical and subcortical regions. We assessed astrocyte density, territory size, branching structure, fine morphological complexity, and interactions with neuronal synapses using a combination of techniques, including immunohistochemistry, adeno-associated virus-mediated transduction of astrocytes, diOlistics, confocal imaging, and electron microscopy. We found significant morphological similarities between primate and rodent astrocytes, suggesting that astrocyte structure has scaled with evolution. Our findings show that primate astrocytes are larger and more numerous than those in rodents but contest the view that primate astrocytes are morphologically far more complex.


Assuntos
Astrócitos , Macaca mulatta , Animais , Astrócitos/ultraestrutura , Camundongos , Camundongos Endogâmicos C57BL , Especificidade da Espécie , Masculino , Encéfalo/citologia
2.
Nat Neurosci ; 27(10): 1892-1903, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39210068

RESUMO

The blood-brain barrier (BBB) protects the brain and maintains neuronal homeostasis. BBB properties can vary between brain regions to support regional functions, yet how BBB heterogeneity occurs is poorly understood. Here, we used single-cell and spatial transcriptomics to compare the mouse median eminence, one of the circumventricular organs that has naturally leaky blood vessels, with the cortex. We identified hundreds of molecular differences in endothelial cells (ECs) and perivascular cells, including astrocytes, pericytes and fibroblasts. Using electron microscopy and an aqueous-based tissue-clearing method, we revealed distinct anatomical specializations and interaction patterns of ECs and perivascular cells in these regions. Finally, we identified candidate regionally enriched EC-perivascular cell ligand-receptor pairs. Our results indicate that both molecular specializations in ECs and unique EC-perivascular cell interactions contribute to BBB functional heterogeneity. This platform can be used to investigate BBB heterogeneity in other regions and may facilitate the development of central nervous system region-specific therapeutics.


Assuntos
Barreira Hematoencefálica , Células Endoteliais , Pericitos , Animais , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/ultraestrutura , Células Endoteliais/metabolismo , Camundongos , Pericitos/metabolismo , Pericitos/ultraestrutura , Astrócitos/metabolismo , Astrócitos/ultraestrutura , Encéfalo/irrigação sanguínea , Camundongos Endogâmicos C57BL , Eminência Mediana/citologia , Masculino , Análise de Célula Única , Córtex Cerebral/citologia , Córtex Cerebral/irrigação sanguínea , Fibroblastos/metabolismo , Fibroblastos/ultraestrutura
3.
Brief Bioinform ; 25(5)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39129363

RESUMO

Understanding the intracellular dynamics of brain cells entails performing three-dimensional molecular simulations incorporating ultrastructural models that can capture cellular membrane geometries at nanometer scales. While there is an abundance of neuronal morphologies available online, e.g. from NeuroMorpho.Org, converting those fairly abstract point-and-diameter representations into geometrically realistic and simulation-ready, i.e. watertight, manifolds is challenging. Many neuronal mesh reconstruction methods have been proposed; however, their resulting meshes are either biologically unplausible or non-watertight. We present an effective and unconditionally robust method capable of generating geometrically realistic and watertight surface manifolds of spiny cortical neurons from their morphological descriptions. The robustness of our method is assessed based on a mixed dataset of cortical neurons with a wide variety of morphological classes. The implementation is seamlessly extended and applied to synthetic astrocytic morphologies that are also plausibly biological in detail. Resulting meshes are ultimately used to create volumetric meshes with tetrahedral domains to perform scalable in silico reaction-diffusion simulations for revealing cellular structure-function relationships. Availability and implementation: Our method is implemented in NeuroMorphoVis, a neuroscience-specific open source Blender add-on, making it freely accessible for neuroscience researchers.


Assuntos
Simulação por Computador , Neurônios , Neurônios/ultraestrutura , Neurônios/citologia , Modelos Neurológicos , Humanos , Animais , Astrócitos/citologia , Astrócitos/ultraestrutura
4.
Glia ; 72(10): 1785-1800, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38856149

RESUMO

Most excitatory synapses in the mammalian brain are contacted or ensheathed by astrocyte processes, forming tripartite synapses. Astrocytes are thought to be critical regulators of the structural and functional dynamics of synapses. While the degree of synaptic coverage by astrocytes is known to vary across brain regions and animal species, the reason for and implications of this variability remains unknown. Further, how astrocyte coverage of synapses relates to in vivo functional properties of individual synapses has not been investigated. Here, we characterized astrocyte coverage of synapses of pyramidal neurons in the ferret visual cortex and, using correlative light and electron microscopy, examined their relationship to synaptic strength and sensory-evoked Ca2+ activity. Nearly, all synapses were contacted by astrocytes, and most were contacted along the axon-spine interface. Structurally, we found that the degree of synaptic astrocyte coverage directly scaled with synapse size and postsynaptic density complexity. Functionally, we found that the amount of astrocyte coverage scaled with how selectively a synapse responds to a particular visual stimulus and, at least for the largest synapses, scaled with the reliability of visual stimuli to evoke postsynaptic Ca2+ events. Our study shows astrocyte coverage is highly correlated with structural metrics of synaptic strength of excitatory synapses in the visual cortex and demonstrates a previously unknown relationship between astrocyte coverage and reliable sensory activation.


Assuntos
Astrócitos , Furões , Córtex Visual Primário , Sinapses , Animais , Astrócitos/fisiologia , Astrócitos/ultraestrutura , Sinapses/fisiologia , Sinapses/ultraestrutura , Córtex Visual Primário/fisiologia , Células Piramidais/fisiologia , Células Piramidais/ultraestrutura , Masculino , Feminino , Potenciais Pós-Sinápticos Excitadores/fisiologia , Cálcio/metabolismo , Córtex Visual/fisiologia , Córtex Visual/citologia , Estimulação Luminosa/métodos
5.
Glia ; 72(8): 1374-1391, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587131

RESUMO

Oligodendrocytes and astrocytes are metabolically coupled to neuronal compartments. Pyruvate and lactate can shuttle between glial cells and axons via monocarboxylate transporters. However, lactate can only be synthesized or used in metabolic reactions with the help of lactate dehydrogenase (LDH), a tetramer of LDHA and LDHB subunits in varying compositions. Here we show that mice with a cell type-specific disruption of both Ldha and Ldhb genes in oligodendrocytes lack a pathological phenotype that would be indicative of oligodendroglial dysfunctions or lack of axonal metabolic support. Indeed, when combining immunohistochemical, electron microscopical, and in situ hybridization analyses in adult mice, we found that the vast majority of mature oligodendrocytes lack detectable expression of LDH. Even in neurodegenerative disease models and in mice under metabolic stress LDH was not increased. In contrast, at early development and in the remyelinating brain, LDHA was readily detectable in immature oligodendrocytes. Interestingly, by immunoelectron microscopy LDHA was particularly enriched at gap junctions formed between adjacent astrocytes and at junctions between astrocytes and oligodendrocytes. Our data suggest that oligodendrocytes metabolize lactate during development and remyelination. In contrast, for metabolic support of axons mature oligodendrocytes may export their own glycolysis products as pyruvate rather than lactate. Lacking LDH, these oligodendrocytes can also "funnel" lactate through their "myelinic" channels between gap junction-coupled astrocytes and axons without metabolizing it. We suggest a working model, in which the unequal cellular distribution of LDH in white matter tracts facilitates a rapid and efficient transport of glycolysis products among glial and axonal compartments.


Assuntos
Axônios , Glicólise , L-Lactato Desidrogenase , Oligodendroglia , Animais , Oligodendroglia/metabolismo , Axônios/metabolismo , L-Lactato Desidrogenase/metabolismo , L-Lactato Desidrogenase/genética , Glicólise/fisiologia , Camundongos , Regulação para Baixo/fisiologia , Camundongos Endogâmicos C57BL , Lactato Desidrogenase 5/metabolismo , Astrócitos/metabolismo , Astrócitos/ultraestrutura , Camundongos Transgênicos , Isoenzimas/metabolismo , Isoenzimas/genética , Junções Comunicantes/metabolismo , Junções Comunicantes/ultraestrutura , Camundongos Knockout
6.
J Adv Res ; 56: 125-136, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36940850

RESUMO

INTRODUCTION: The glymphatic system offers a perivascular pathway for the clearance of pathological proteins and metabolites to optimize neurological functions. Glymphatic dysfunction plays a pathogenic role in Parkinson's disease (PD); however, the molecular mechanism of glymphatic dysfunction in PD remains elusive. OBJECTIVE: To explore whether matrix metalloproteinase-9 (MMP-9)-mediated ß-dystroglycan (ß-DG) cleavage is involved in the regulation of aquaporin-4 (AQP4) polarity-mediated glymphatic system in PD. METHODS: 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD and A53T mice were used in this study. The glymphatic function was evaluated using ex vivo imaging. TGN-020, an AQP4 antagonist, was administered to investigate the role of AQP4 in glymphatic dysfunction in PD. GM6001, an MMP-9 antagonist, was administered to investigate the role of the MMP-9/ß-DG pathway in regulating AQP4. The expression and distribution of AQP4, MMP-9, and ß-DG were assessed using western blotting, immunofluorescence, and co-immunoprecipitation. The ultrastructure of basement membrane (BM)-astrocyte endfeet was detected using transmission electron microscopy. Rotarod and open-field tests were performed to evaluate motor behavior. RESULTS: Perivascular influx and efflux of cerebral spinal fluid tracers were reduced in MPTP-induced PD mice with impaired AQP4 polarization. AQP4 inhibition aggravated reactive astrogliosis, glymphatic drainage restriction, and dopaminergic neuronal loss in MPTP-induced PD mice. MMP-9 and cleaved ß-DG were upregulated in both MPTP-induced PD and A53T mice, with reduced polarized localization of ß-DG and AQP4 to astrocyte endfeet. MMP-9 inhibition restored BM-astrocyte endfeet-AQP4 integrity and attenuated MPTP-induced metabolic perturbations and dopaminergic neuronal loss. CONCLUSION: AQP4 depolarization contributes to glymphatic dysfunction and aggravates PD pathologies, and MMP-9-mediated ß-DG cleavage regulates glymphatic function through AQP4 polarization in PD, which may provide novel insights into the pathogenesis of PD.


Assuntos
Aquaporinas , Sistema Glinfático , Doença de Parkinson , Camundongos , Animais , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Astrócitos/metabolismo , Astrócitos/patologia , Astrócitos/ultraestrutura , Metaloproteinase 9 da Matriz/metabolismo , Sistema Glinfático/metabolismo , Dopamina/metabolismo , Aquaporinas/metabolismo
7.
Science ; 378(6619): eadc9020, 2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36378959

RESUMO

Astrocytes, a type of glia, are abundant and morphologically complex cells. Here, we report astrocyte molecular profiles, diversity, and morphology across the mouse central nervous system (CNS). We identified shared and region-specific astrocytic genes and functions and explored the cellular origins of their regional diversity. We identified gene networks correlated with astrocyte morphology, several of which unexpectedly contained Alzheimer's disease (AD) risk genes. CRISPR/Cas9-mediated reduction of candidate genes reduced astrocyte morphological complexity and resulted in cognitive deficits. The same genes were down-regulated in human AD, in an AD mouse model that displayed reduced astrocyte morphology, and in other human brain disorders. We thus provide comprehensive molecular data on astrocyte diversity and mechanisms across the CNS and on the molecular basis of astrocyte morphology in health and disease.


Assuntos
Doença de Alzheimer , Astrócitos , Sistema Nervoso Central , Transcriptoma , Animais , Humanos , Camundongos , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Astrócitos/classificação , Astrócitos/metabolismo , Astrócitos/ultraestrutura , Modelos Animais de Doenças , Sistema Nervoso Central/citologia , Sistema Nervoso Central/metabolismo
8.
Sci Rep ; 12(1): 1685, 2022 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-35102230

RESUMO

Repeat-associated non-AUG (RAN) translation of mRNAs/transcripts responsible for polyglutamine (polyQ) diseases may generate peptides containing different mono amino acid tracts such as polyserine (polyS) and polyleucine (polyL). The propagation of aggregated polyQ from one cell to another is also an intriguing feature of polyQ proteins. However, whether the RAN translation-related polyS and polyL have the ability to propagate remains unclear, and if they do, whether the exogenous polyS and polyL exert toxicity on the recipient cells is also not known yet. In the present study, we found that aggregated polyS and polyL peptides spontaneously enter neuron-like cells and astrocytes in vitro. Aggregated polyS led to the degeneration of the differentiated neuron-like cultured cells. Likewise, the two types of aggregates taken up by astrocytes induced aberrant differentiation and cell death in vitro. Furthermore, injection of each of the two types of aggregates into the ventricles of adult mice resulted in their behavioral changes. The polyS-injected mice showed extensive vacuolar degeneration in the brain. Thus, the RAN translation-related proteins containing polyS and polyL have the potential to propagate and the proteins generated by all polyQ diseases might exert universal toxicity in the recipient cells.


Assuntos
Astrócitos/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Peptídeos/toxicidade , Animais , Astrócitos/metabolismo , Astrócitos/ultraestrutura , Comportamento Animal/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/ultraestrutura , Morte Celular/efeitos dos fármacos , Teste de Labirinto em Cruz Elevado , Locomoção/efeitos dos fármacos , Camundongos Endogâmicos ICR , Neurônios/metabolismo , Neurônios/ultraestrutura , Células PC12 , Peptídeos/metabolismo , Ratos , Natação
9.
Alcohol Clin Exp Res ; 46(1): 29-39, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34839533

RESUMO

BACKGROUND: Chloride intracellular channel 4 (CLIC4) is a multifunctional metamorphic protein for which a growing body of evidence supports a major role in the brain's molecular and behavioral responses to ethanol (EtOH). Although key to understanding the functional biology underlying this role, little is known about the cellular and subcellular expression patterns of CLIC4 in brain and how they are affected by EtOH. METHODS: We used qRT-PCR to assess Clic4 mRNA expression in the medial prefrontal cortex (mPFC) of C57BL/6J mice in the absence and presence of acute EtOH exposure. Two complementary immunohistochemical techniques were employed to assess the subcellular localization of the CLIC4 protein and its pattern of expression across brain cell types in the mPFC in the absence and presence of acute EtOH. RESULTS: Through immunohistochemical and stereological techniques, we show that CLIC4 protein is robustly expressed by oligodendrocytes (most abundant), microglia, and astrocytes, with minimal expression in neurons. Following acute EtOH exposure, we observed a rapid increase in Clic4 mRNA expression in female but not male mice and an overall increase in the number of oligodendrocytes and astrocytes expressing the CLIC4 protein. CONCLUSIONS: These findings suggest that Clic4 functions as an early response gene for acute EtOH in brain, which likely underlies its ability to modulate EtOH behavior. Our results also suggest that the role of CLIC4 in the brain's response to EtOH is mediated through oligodendrocytes.


Assuntos
Canais de Cloreto/genética , Etanol/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas Mitocondriais/genética , Córtex Pré-Frontal/metabolismo , Transcriptoma/efeitos dos fármacos , Animais , Astrócitos/metabolismo , Astrócitos/ultraestrutura , Comportamento Animal/efeitos dos fármacos , Canais de Cloreto/análise , Canais de Cloreto/fisiologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Mitocondriais/análise , Proteínas Mitocondriais/fisiologia , Oligodendroglia/metabolismo , Córtex Pré-Frontal/química , Córtex Pré-Frontal/efeitos dos fármacos , RNA Mensageiro/análise , Caracteres Sexuais
10.
Ultrasonics ; 118: 106580, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34555738

RESUMO

Recently, a method for estimating three-dimensional acoustic impedance profiles in cultured cells and human dermal organs was proposed by interpreting the reflected ultrasonic signal based on a 1-D transmission line model for acoustic impedance microscopy (AIM). However, AIM has a disadvantage that reflected signals from cells overlap with that from a reference substrate. Additionally, the amplitudes of the reflected signals from the specimens are significantly weaker than that from the substrate. In this paper, we proposed a new method for separation of those signals based on a concept of clutter filter, which had been developed for a color Doppler method in medical ultrasonic imaging. The proposed filter using singular value decomposition (SVD) could separate original signals into desired signals such as those from the substrate and cells. Additionally, an effect from a tilt of the substrate was investigated in this study. Separability of the proposed filter was evaluated by two investigations. First one was to evaluate the separability by estimating a correlation coefficient between the filtered signal and signal reflected from a position only with the substrate. Second one was to compare a slope of the substrate estimated from the original signal with that estimated from the filtered signals from the substrate. The experimental results showed that the proposed filter could separate signals from the substrate, and the compensation of the tilt of the substrate could improve the performance of the proposed filter.


Assuntos
Astrócitos/ultraestrutura , Células Cultivadas/ultraestrutura , Microscopia Acústica/instrumentação , Animais , Desenho de Equipamento , Ratos , Processamento de Sinais Assistido por Computador
11.
Biomolecules ; 11(10)2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34680100

RESUMO

Astrocytes are complex glial cells that play many essential roles in the brain, including the fine-tuning of synaptic activity and blood flow. These roles are linked to fluctuations in intracellular Ca2+ within astrocytes. Recent advances in imaging techniques have identified localized Ca2+ transients within the fine processes of the astrocytic structure, which we term microdomain Ca2+ events. These Ca2+ transients are very diverse and occur under different conditions, including in the presence or absence of surrounding circuit activity. This complexity suggests that different signalling mechanisms mediate microdomain events which may then encode specific astrocyte functions from the modulation of synapses up to brain circuits and behaviour. Several recent studies have shown that a subset of astrocyte microdomain Ca2+ events occur rapidly following local neuronal circuit activity. In this review, we consider the physiological relevance of microdomain astrocyte Ca2+ signalling within brain circuits and outline possible pathways of extracellular Ca2+ influx through ionotropic receptors and other Ca2+ ion channels, which may contribute to astrocyte microdomain events with potentially fast dynamics.


Assuntos
Astrócitos/citologia , Sinalização do Cálcio/genética , Cálcio/metabolismo , Sinapses/genética , Astrócitos/fisiologia , Astrócitos/ultraestrutura , Circulação Sanguínea/genética , Encéfalo/metabolismo , Encéfalo/ultraestrutura , Humanos , Neuroglia/metabolismo , Neuroglia/ultraestrutura , Sinapses/ultraestrutura
12.
Elife ; 102021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34590578

RESUMO

Astrocytes are essential cells of the central nervous system, characterized by dynamic relationships with neurons that range from functional metabolic interactions and regulation of neuronal firing activities, to the release of neurotrophic and neuroprotective factors. In Parkinson's disease (PD), dopaminergic neurons are progressively lost during the course of the disease, but the effects of PD on astrocytes and astrocyte-to-neuron communication remain largely unknown. This study focuses on the effects of the PD-related mutation LRRK2 G2019S in astrocytes generated from patient-derived induced pluripotent stem cells. We report the alteration of extracellular vesicle (EV) biogenesis in astrocytes and identify the abnormal accumulation of key PD-related proteins within multivesicular bodies (MVBs). We found that dopaminergic neurons internalize astrocyte-secreted EVs and that LRRK2 G2019S EVs are abnormally enriched in neurites and fail to provide full neurotrophic support to dopaminergic neurons. Thus, dysfunctional astrocyte-to-neuron communication via altered EV biological properties may participate in the progression of PD.


Assuntos
Astrócitos/enzimologia , Comunicação Celular , Neurônios Dopaminérgicos/enzimologia , Exossomos/enzimologia , Células-Tronco Pluripotentes Induzidas/enzimologia , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Células-Tronco Neurais/enzimologia , Doença de Parkinson/enzimologia , Animais , Astrócitos/ultraestrutura , Atrofia , Estudos de Casos e Controles , Linhagem Celular , Neurônios Dopaminérgicos/patologia , Endocitose , Exossomos/genética , Exossomos/ultraestrutura , Humanos , Células-Tronco Pluripotentes Induzidas/ultraestrutura , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação , Células-Tronco Neurais/ultraestrutura , Biogênese de Organelas , Doença de Parkinson/genética , Doença de Parkinson/patologia
13.
Dis Model Mech ; 14(10)2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34524402

RESUMO

Amyloid ß (Aß) peptides generated from the amyloid precursor protein (APP) play a critical role in the development of Alzheimer's disease (AD) pathology. Aß-containing neuronal exosomes, which represent a novel form of intercellular communication, have been shown to influence the function/vulnerability of neurons in AD. Unlike neurons, the significance of exosomes derived from astrocytes remains unclear. In this study, we evaluated the significance of exosomes derived from U18666A-induced cholesterol-accumulated astrocytes in the development of AD pathology. Our results show that cholesterol accumulation decreases exosome secretion, whereas lowering cholesterol increases exosome secretion, from cultured astrocytes. Interestingly, exosomes secreted from U18666A-treated astrocytes contain higher levels of APP, APP-C-terminal fragments, soluble APP, APP secretases and Aß1-40 than exosomes secreted from control astrocytes. Furthermore, we show that exosomes derived from U18666A-treated astrocytes can lead to neurodegeneration, which is attenuated by decreasing Aß production or by neutralizing exosomal Aß peptide with an anti-Aß antibody. These results, taken together, suggest that exosomes derived from cholesterol-accumulated astrocytes can play an important role in trafficking APP/Aß peptides and influencing neuronal viability in the affected regions of the AD brain.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Astrócitos/metabolismo , Colesterol/metabolismo , Exossomos/metabolismo , Peptídeos beta-Amiloides/metabolismo , Androstenos/farmacologia , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/ultraestrutura , Autofagia/efeitos dos fármacos , Catepsina D/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Exossomos/efeitos dos fármacos , Exossomos/ultraestrutura , Feminino , Proteína 1 de Membrana Associada ao Lisossomo , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Lisossomos/ultraestrutura , Camundongos Endogâmicos BALB C , Proteínas Associadas aos Microtúbulos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ratos
14.
J Neurosci ; 41(34): 7171-7181, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34253626

RESUMO

Mediator protein complex subunit 12 (Med12) is a core component of the basal transcriptional apparatus and plays a critical role in the development of many tissues. Mutations in Med12 are associated with X-linked intellectual disability syndromes and hearing loss; however, its role in nervous system function remains undefined. Here, we show that temporal conditional deletion of Med12 in astrocytes in the adult CNS results in region-specific alterations in astrocyte morphology. Surprisingly, behavioral studies revealed rapid hearing loss after adult deletion of Med12 that was confirmed by a complete abrogation of auditory brainstem responses. Cellular analysis of the cochlea revealed degeneration of the stria vascularis, in conjunction with disorganization of basal cells adjacent to the spiral ligament and downregulation of key cell adhesion proteins. Physiologic analysis revealed early changes in endocochlear potential, consistent with strial-specific defects. Together, our studies reveal that Med12 regulates auditory function in the adult by preserving the structural integrity of the stria vascularis.SIGNIFICANCE STATEMENT Mutations in Mediator protein complex subunit 12 (Med12) are associated with X-linked intellectual disability syndromes and hearing loss. Using temporal-conditional genetic approaches in CNS glia, we found that loss of Med12 results in severe hearing loss in adult animals through rapid degeneration of the stria vascularis. Our study describes the first animal model that recapitulates hearing loss identified in Med12-related disorders and provides a new system in which to examine the underlying cellular and molecular mechanisms of Med12 function in the adult nervous system.


Assuntos
Astrócitos/fisiologia , Perda Auditiva Neurossensorial/etiologia , Complexo Mediador/deficiência , Estria Vascular/patologia , Animais , Astrócitos/metabolismo , Astrócitos/ultraestrutura , Moléculas de Adesão Celular/metabolismo , Condicionamento Clássico/fisiologia , Potenciais Evocados Auditivos do Tronco Encefálico , Medo , Feminino , Reação de Congelamento Cataléptica , Técnicas de Inativação de Genes , Perda Auditiva Neurossensorial/patologia , Perda Auditiva Neurossensorial/fisiopatologia , Masculino , Complexo Mediador/fisiologia , Camundongos , Especificidade de Órgãos , Emissões Otoacústicas Espontâneas , Distribuição Aleatória , Reflexo de Sobressalto
15.
Aging (Albany NY) ; 13(12): 15917-15941, 2021 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-34139671

RESUMO

The G-quadruplex (G4-DNA or G4) is a secondary DNA structure formed by DNA sequences containing multiple runs of guanines. While it is now firmly established that stabilized G4s lead to enhanced genomic instability in cancer cells, whether and how G4s contribute to genomic instability in brain cells is still not clear. We previously showed that, in cultured primary neurons, small-molecule G4 stabilizers promote formation of DNA double-strand breaks (DSBs) and downregulate the Brca1 gene. Here, we determined if G4-dependent Brca1 downregulation is unique to neurons or if the effects in neurons also occur in astrocytes and microglia. We show that primary neurons, astrocytes and microglia basally exhibit different G4 landscapes. Stabilizing G4-DNA with the G4 ligand pyridostatin (PDS) differentially modifies chromatin structure in these cell types. Intriguingly, PDS promotes DNA DSBs in neurons, astrocytes and microglial cells, but fails to downregulate Brca1 in astrocytes and microglia, indicating differences in DNA damage and repair pathways between brain cell types. Taken together, our findings suggest that stabilized G4-DNA contribute to genomic instability in the brain and may represent a novel senescence pathway in brain aging.


Assuntos
Astrócitos/metabolismo , Quadruplex G , Microglia/metabolismo , Neurônios/metabolismo , Aminoquinolinas/farmacologia , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/ultraestrutura , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Sequência de Bases , Linhagem Celular , Cromatina/efeitos dos fármacos , Cromatina/metabolismo , Cromatina/ultraestrutura , Dano ao DNA , Camundongos , Microglia/efeitos dos fármacos , Microglia/ultraestrutura , Neurônios/efeitos dos fármacos , Neurônios/ultraestrutura , Ácidos Picolínicos/farmacologia , Regiões Promotoras Genéticas/genética , Ratos
16.
Cell Death Dis ; 12(3): 225, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33649354

RESUMO

Conversion of astrocytes into neurons in vivo offers an alternative therapeutic approach for neuronal loss after injury or disease. However, not only the efficiency of the conversion of astrocytes into functional neurons by single Neurog2, but also the conundrum that whether Neurog2-induced neuronal cells (Neurog2-iNs) are further functionally integrated into existing matured neural circuits remains unknown. Here, we adopted the AAV(2/8) delivery system to overexpress single factor Neurog2 into astrocytes and found that the majority of astrocytes were successfully converted into neuronal cells in multiple brain regions, including the midbrain and spinal cord. In the midbrain, Neurog2-induced neuronal cells (Neurog2-iNs) exhibit neuronal morphology, mature electrophysiological properties, glutamatergic identity (about 60%), and synapse-like configuration local circuits. In the spinal cord, astrocytes from both the intact and lesioned sources could be converted into functional neurons with ectopic expression of Neurog2 alone. Notably, further evidence from our study also proves that Neurog2-iNs in the intact spinal cord are capable of responding to diverse afferent inputs from dorsal root ganglion (DRG). Together, this study does not merely demonstrate the feasibility of Neurog2 for efficient in vivo reprogramming, it gives an indication for the Neurog2-iNs as a functional and potential factor in cell-replacement therapy.


Assuntos
Astrócitos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Transdiferenciação Celular , Mesencéfalo/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurogênese , Neurônios/metabolismo , Medula Espinal/metabolismo , Animais , Astrócitos/ultraestrutura , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Células Cultivadas , Dependovirus/genética , Técnicas de Transferência de Genes , Vetores Genéticos , Glutamato Descarboxilase/genética , Glutamato Descarboxilase/metabolismo , Mesencéfalo/ultraestrutura , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Neurônios/ultraestrutura , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Fenótipo , Medula Espinal/ultraestrutura , Proteína Vesicular 2 de Transporte de Glutamato/genética , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo
17.
J Neurosci Res ; 99(2): 467-480, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33105056

RESUMO

Idiopathic intracranial hypertension (IIH) primarily affects fertile, overweight women, and presents with the symptoms of raised intracranial pressure. The etiology is unknown but has been thought to relate to cerebrospinal fluid disturbance or cerebral venous stenosis. We have previously found evidence that IIH is also a disease of the brain parenchyma, evidenced by alterations at the neurogliovascular interface, including astrogliosis, pathological changes in the basement membrane and pericytes, and alterations of perivascular aquaporin-4. The aim of this present electron microscopic study was to examine whether mitochondria phenotype was changed in IIH, particularly focusing on perivascular astrocytic endfeet and neurons (soma and pre- and postsynaptic terminals). Cortical brain biopsies of nine reference individuals and eight IIH patients were analyzed for subcellular distribution and phenotypical features of mitochondria using transmission electron microscopy. We found significantly increased prevalence of pathological mitochondria and reduced number of normal mitochondria in astrocytic endfeet of IIH patients. The degree of astrogliosis correlated negatively with the number of normal mitochondria in astrocytic endfoot processes. Moreover, we found significantly increased number of pathological mitochondria in pre- and postsynaptic neuronal terminals, as well as significantly shortened distance between mitochondria and endoplasmic reticulum contacts. Finally, the length of postsynaptic density, a marker of synaptic strength, was on average reduced in IIH. The present data provide evidence of pathological mitochondria in perivascular astrocytes endfeet and neurons of IIH patients, highlighting that impaired metabolism at the neurogliovascular interface may be a facet of IIH.


Assuntos
Astrócitos/ultraestrutura , Córtex Cerebral/patologia , Mitocôndrias/patologia , Neurônios/ultraestrutura , Pseudotumor Cerebral/patologia , Adulto , Biópsia , Retículo Endoplasmático/ultraestrutura , Feminino , Gliose/etiologia , Gliose/patologia , Sistema Glinfático/ultraestrutura , Humanos , Masculino , Microscopia Eletrônica , Pessoa de Meia-Idade , Terminações Nervosas/ultraestrutura , Densidade Pós-Sináptica/ultraestrutura , Estudos Prospectivos , Pseudotumor Cerebral/complicações , Método Simples-Cego , Adulto Jovem
18.
J Neurochem ; 156(6): 848-866, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32939791

RESUMO

This study aimed to investigate and compare cell growth manners and functional differences of primary cortical neurons cultured on either poly-d-lysine (PDL) and or Matrigel, to delineate the role of extracellular matrix on providing resemblance to in vivo cellular interactions in nervous tissue. Primary cortical neurons, obtained from embryonic day 15 mice pups, seeded either on PDL- or Matrigel-coated culture ware were investigated by DIC/bright field and fluorescence/confocal microscopy for their morphology, 2D and 3D structure, and distribution patterns. Patch clamp, western blot, and RT-PCR studies were performed to investigate neuronal firing thresholds and sodium channel subtypes Nav1.2 and Nav1.6 expression. Cortical neurons cultured on PDL coating possessed a 2D structure composed of a few numbers of branched and tortuous neurites that contacted with each other in one to one manner, however, neurons on Matrigel coating showed a more complicated dimensional network that depicted tight, linear axonal bundles forming a 3D interacted neuron-astrocyte construction. This difference in growth patterns also showed a significant alteration in neuronal firing threshold which was recorded between 80 < Iinj > 120 pA on PDL and 2 < Iinj > 160 pA on Matrigel. Neurons grown up on Matrigel showed increased levels of sodium channel protein expression of Nav1.2 and Nav1.6 compared to neurons on PDL. These results have demonstrated that a 3D interacted neuron-astrocyte construction on Matrigel enhances the development of Nav1.2 and Nav1.6 in vitro and decreases neuronal firing threshold by 40 times compared to conventional PDL, resembling in vivo neuronal networks and hence would be a better in vitro model of adult neurons.


Assuntos
Astrócitos/fisiologia , Astrócitos/ultraestrutura , Colágeno , Laminina , Neurônios/fisiologia , Neurônios/ultraestrutura , Proteoglicanas , Canais de Sódio Disparados por Voltagem/biossíntese , Animais , Córtex Cerebral/citologia , Combinação de Medicamentos , Fenômenos Eletrofisiológicos , Embrião de Mamíferos/fisiologia , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Microscopia de Fluorescência , Canal de Sódio Disparado por Voltagem NAV1.2/biossíntese , Canal de Sódio Disparado por Voltagem NAV1.2/genética , Canal de Sódio Disparado por Voltagem NAV1.6/biossíntese , Canal de Sódio Disparado por Voltagem NAV1.6/genética , Neuritos/fisiologia , Técnicas de Patch-Clamp , Gravidez , Cultura Primária de Células
19.
Int J Mol Sci ; 21(23)2020 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-33256007

RESUMO

Due to strong antimicrobial properties, silver nanoparticles (AgNPs) are used in a wide range of medical and consumer products, including those dedicated for infants and children. While AgNPs are known to exert neurotoxic effects, current knowledge concerning their impact on the developing brain is scarce. During investigations of mechanisms of neurotoxicity in immature rats, we studied the influence of AgNPs on glutamate transporter systems which are involved in regulation of extracellular concentration of glutamate, an excitotoxic amino acid, and compared it with positive control-Ag citrate. We identified significant deposition of AgNPs in brain tissue of exposed rats over the post-exposure time. Ultrastructural alterations in endoplasmic reticulum (ER) and Golgi complexes were observed in neurons of AgNP-exposed rats, which are characteristics of ER stress. These changes presumably underlie substantial long-lasting downregulation of neuronal glutamate transporter EAAC1, which was noted in AgNP-exposed rats. Conversely, the expression of astroglial glutamate transporters GLT-1 and GLAST was not affected by exposure to AgNPs, but the activity of the transporters was diminished. These results indicate that even low doses of AgNPs administered during an early stage of life create a substantial risk for health of immature organisms. Hence, the safety of AgNP-containing products for infants and children should be carefully considered.


Assuntos
Sistema X-AG de Transporte de Aminoácidos/metabolismo , Encéfalo/metabolismo , Nanopartículas Metálicas/toxicidade , Prata/toxicidade , Animais , Animais Recém-Nascidos , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Astrócitos/ultraestrutura , Encéfalo/efeitos dos fármacos , Transportador 3 de Aminoácido Excitatório/metabolismo , Ácido Glutâmico/metabolismo , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/ultraestrutura , Ratos , Prata/sangue , Sódio/metabolismo , Fatores de Tempo
20.
Cells ; 9(11)2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33167342

RESUMO

Aquaporin-4 (AQP4) is critically involved in brain water and volume homeostasis and has been implicated in a wide range of pathological conditions. Notably, evidence has been accrued to suggest that AQP4 plays a proinflammatory role by promoting release of astrocytic cytokines that activate microglia and other astrocytes. Neuroinflammation is a hallmark of Parkinson's disease (PD), and we have previously shown that astrocytes in substantia nigra (SN) are enriched in AQP4 relative to cortical astrocytes, and that their complement of AQP4 is further increased following treatment with the parkinsonogenic toxin MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine). Here, we investigated the effect of Aqp4 deletion on microglial activation in mice subjected to unilateral intrastriatal injection of 1-methyl-4-phenylpyridinium (MPP+, the toxic metabolite of MPTP). Our results show that MPP+ injections lead to a pronounced increase in the expression level of microglial activating genes in the ventral mesencephalon of wild type (WT) mice, but not Aqp4-/- mice. We also show, in WT mice, that MPP+ injections cause an upregulation of nigral AQP4 and swelling of astrocytic endfeet. These findings are consistent with the idea that AQP4 plays a pro-inflammatory role in Parkinson's disease, secondary to the dysregulation of astrocytic volume homeostasis.


Assuntos
1-Metil-4-fenilpiridínio/administração & dosagem , Aquaporina 4/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Doença de Parkinson/patologia , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Astrócitos/ultraestrutura , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Feminino , Regulação da Expressão Gênica , Proteína Glial Fibrilar Ácida/metabolismo , Injeções , Masculino , Mesencéfalo/patologia , Camundongos Endogâmicos C57BL , Neuroglia/patologia , Doença de Parkinson/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Substância Negra/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA