Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.237
Filtrar
1.
Zhongguo Zhong Yao Za Zhi ; 49(12): 3295-3301, 2024 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-39041092

RESUMO

This study aims to reveal the effects of the herb pair Astragali Radix-Salviae Miltiorrhizae Radix et Rhizoma(AR-SMRR) on phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin(PI3K/Akt/mTOR) pathway and autophagy in the lung tissue of the rat model of acute lung injury(ALI). Fifty adult male SD rats were randomized into sham, model, autophagy inhibition(intraperitoneal injection of chloroquine at 10 mg·kg~(-1)), autophagy induction(intraperitoneal injection of rapamycin at 15 mg·kg~(-1)), and AR-SMRR(5 g·kg~(-1), gavage) groups. The rats in the sham group received intratracheal instillation of normal saline, and those in other groups received intratracheal instillation of lipopolysaccharide(LPS, 5 mg·kg~(-1)) for the modeling of ALI. Seven days before the operation, the rats in the sham and model groups were administrated with normal saline, and those in other groups with corresponding drugs. Specimens were collected 24 h after modeling. The pathological changes of the lung tissue were observed under a light microscope. The lung wet/dry weight ratio and the lactate dehydrogenase(LDH) activity and total protein concentration in the bronchoalveolar lavage fluid(BALF) were measured. Western blot was employed to measure the protein levels of microtubule-associated protein 1-light chain 3(LC3), beclin-1, p62, PI3K, Akt, and mTOR. Compared with the sham group, the model group showed increased histopathological score of the lung tissue, lung wet/dry weight ratio, and LDH activity and protein concentration in BALF. Autophagy inhibition further increased these indicators compared with the model group, while autophagy induction and AR-SMRR lowered the levels. In addition, AR-SMRR up-regulated the protein levels of LC3-Ⅱ and beclin-1, down-regulated the expression of p62, and inhibited the expression of p-PI3K, p-Akt, and p-mTOR in the lung tissue of ALI rats. The findings suggest that AR-SMRR can alleviate the lung injury and edema in the rat model of ALI induced by LPS by enhancing autophagy via down-regulating PI3K/Akt/mTOR signaling pathway.


Assuntos
Lesão Pulmonar Aguda , Autofagia , Medicamentos de Ervas Chinesas , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Ratos Sprague-Dawley , Transdução de Sinais , Serina-Treonina Quinases TOR , Animais , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Masculino , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/genética , Ratos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Medicamentos de Ervas Chinesas/administração & dosagem , Medicamentos de Ervas Chinesas/farmacologia , Autofagia/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/genética , Salvia miltiorrhiza/química , Astragalus propinquus/química , Rizoma/química , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Humanos
2.
Zhongguo Zhong Yao Za Zhi ; 49(13): 3493-3504, 2024 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-39041121

RESUMO

Based on the processing and compatibility, this study explored the effects of components in Corni Fructus(CF) and Astragali Radix(AR) on plasma metabolomics in diabetic nephropathy rats. SD rats were randomly divided into four groups and diabetic nephropathy rat model was induced by high-fat diet combined with 30 mg·kg~(-1) streptozotocin(STZ). Histopathological observations of kidney tissue sections of rats in each group were conducted using HE, PAS, and Masson staining. Ultra-high performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry(UHPLC-Q-TOF-MS/MS) metabolomics method was employed to investigate the effects of CF before and after wine-processing combined with AR-related components on plasma metabolites in diabetic nephropathy rats. After drug treatment, kidney tissue damage and interstitial collagen fiber deposition area in diabetic nephropathy rats were improved to varying degrees(P<0.001). The detection results of plasma metabolomics showed that 71 biomarkers related to the pathogenesis of diabetic nephropathy were identified in diseased rats, mainly involving linoleic acid metabolism, caffeine metabolism, glycerophospholipid metabolism, phenylalanine, tyrosine and tryptophan biosynthesis, arachidonic acid metabolism, phenylalanine metabolism, retinol metabolism, and ether lipid metabolism. After drug intervention, 26 of them were significantly downregulated, with better efficacy observed in precision processed herb-pair group(P-CG_5). This study elucidated from the perspective of plasma metabolomics that P-CG_5 could improve metabolic disorders in diabetic nephropathy through pathways such as phenylalanine, tyrosine and tryptophan biosynthesis, phenylalanine metabolism, and caffeine metabolism, providing theoretical support and experimental basis for the clinical application of CF and AR compatibility in traditional Chinese medicine.


Assuntos
Cornus , Nefropatias Diabéticas , Medicamentos de Ervas Chinesas , Metabolômica , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem , Animais , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/metabolismo , Ratos , Masculino , Cromatografia Líquida de Alta Pressão , Medicamentos de Ervas Chinesas/administração & dosagem , Medicamentos de Ervas Chinesas/farmacologia , Cornus/química , Astragalus propinquus/química , Vinho/análise , Humanos , Rim/efeitos dos fármacos , Rim/metabolismo
3.
BMC Plant Biol ; 24(1): 697, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39044138

RESUMO

BACKGROUND: In recent years, global climate change in tandem with increased human activity has resulted in habitat degradation or the migration of rare medicinal plants, potentially impacting the quality of medicinal herbs. Astragalus membranaceus var. mongholicus is a valuable bulk medicinal material in Northwest China. As the demand for this medicinal herb continues to increase in both domestic and international markets, ensuring the sustainable development of high-quality Astragali Radix is important. In this study, the maximum entropy (Maxent) model was applied, thereby incorporating 136 distribution records, along with 39 environmental factors of A. membranaceus var. mongholicus, to assess the quality zonation and potential distribution of this species in China under climate change. RESULTS: The results showed that the elevation, annual mean temperature, precipitation of wettest month, solar radiation in June, and mean temperature of warmest quarter were the critical environmental factors influencing the accumulation of astragaloside IV and Astragalus polysaccharide in A. membranaceus var. mongholicus. Among the twelve main environmental variables, annual mean temperature, elevation, precipitation of the wettest month, and solar radiation in November were the four most important factors influencing the distribution of A. membranaceus var. mongholicus. In addition, ecological niche modelling revealed that highly suitable habitats were mainly located in central and western Gansu, eastern Qinghai, northern Shaanxi, southern Ningxia, central Inner Mongolia, central Shanxi, and northern Hebei. However, the future projections under climate change suggested a contraction of these suitable areas, shifting towards northeastern high-latitude and high-elevation mountains. CONCLUSIONS: The findings provide essential insights for developing adaptive strategies for A. membranaceus var. mongholicus cultivation in response to climate change and can inform future research on this species. By considering the identified environmental factors and the potential impacts of the predicted climate changes, we can visualize the regional distribution of high-quality Radix Astragali and develop conservation strategies to protect and restore its suitable habitats.


Assuntos
Astragalus propinquus , Mudança Climática , Triterpenos , China , Triterpenos/análise , Cromatografia Líquida de Alta Pressão , Saponinas/análise , Plantas Medicinais/química , Meio Ambiente , Temperatura , Polissacarídeos/análise
4.
Medicine (Baltimore) ; 103(27): e38699, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38968529

RESUMO

Investigations into the therapeutic potential of Astragalus Mongholicus (AM, huáng qí) and Largehead Atractylodes (LA, bái zhú) reveal significant efficacy in mitigating the onset and progression of knee osteoarthritis (KOA), albeit with an elusive mechanistic understanding. This study delineates the primary bioactive constituents and their molecular targets within the AM-LA synergy by harnessing the comprehensive Traditional Chinese Medicine (TCM) network databases, including TCMSP, TCMID, and ETCM. Furthermore, an analysis of 3 gene expression datasets, sourced from the gene expression omnibus database, facilitated the identification of differential genes associated with KOA. Integrating these findings with data from 5 predominant databases yielded a refined list of KOA-associated targets, which were subsequently aligned with the gene signatures corresponding to AM and LA treatment. Through this alignment, specific molecular targets pertinent to the AM-LA therapeutic axis were elucidated. The construction of a protein-protein interaction network, leveraging the shared genetic markers between KOA pathology and AM-LA intervention, enabled the identification of pivotal molecular targets via the topological analysis facilitated by CytoNCA plugins. Subsequent GO and KEGG enrichment analyses fostered the development of a holistic herbal-ingredient-target network and a core target-signal pathway network. Molecular docking techniques were employed to validate the interaction between 5 central molecular targets and their corresponding active compounds within the AM-LA complex. Our findings suggest that the AM-LA combination modulates key biological processes, including cellular activity, reactive oxygen species modification, metabolic regulation, and the activation of systemic immunity. By either augmenting or attenuating crucial signaling pathways, such as MAPK, calcium, and PI3K/AKT pathways, the AM-LA dyad orchestrates a comprehensive regulatory effect on immune-inflammatory responses, cellular proliferation, differentiation, apoptosis, and antioxidant defenses, offering a novel therapeutic avenue for KOA management. This study, underpinned by gene expression omnibus gene chip analyses and network pharmacology, advances our understanding of the molecular underpinnings governing the inhibitory effects of AM and LA on KOA progression, laying the groundwork for future explorations into the active components and mechanistic pathways of TCM in KOA treatment.


Assuntos
Atractylodes , Medicamentos de Ervas Chinesas , Simulação de Acoplamento Molecular , Farmacologia em Rede , Osteoartrite do Joelho , Atractylodes/química , Medicamentos de Ervas Chinesas/uso terapêutico , Medicamentos de Ervas Chinesas/farmacologia , Osteoartrite do Joelho/tratamento farmacológico , Osteoartrite do Joelho/genética , Farmacologia em Rede/métodos , Humanos , Mapas de Interação de Proteínas , Astrágalo/química , Medicina Tradicional Chinesa/métodos , Análise de Sequência com Séries de Oligonucleotídeos , Astragalus propinquus
5.
Molecules ; 29(14)2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39064966

RESUMO

Astragalus membranaceus saponins are the main components of A. membranaceus, a plant widely used in traditional Chinese medicine. Recently, research on the anti-cancer effects of A. membranaceus saponins has received increasing attention. Numerous in vitro and in vivo experimental data indicate that A. membranaceus saponins exhibit significant anti-cancer effects through multiple mechanisms, especially in inhibiting tumor cell proliferation, migration, invasion, and induction of apoptosis, etc. This review compiles relevant studies on the anti-cancer properties of A. membranaceus saponins from various databases over the past two decades. It introduces the mechanism of action of astragalosides, highlighting their therapeutic benefits in the management of cancer. Finally, the urgent problems in the research process are highlighted to promote A. membranaceus saponins as an effective drug against cancer.


Assuntos
Apoptose , Astragalus propinquus , Proliferação de Células , Neoplasias , Saponinas , Saponinas/farmacologia , Saponinas/química , Astragalus propinquus/química , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Neoplasias/metabolismo , Apoptose/efeitos dos fármacos , Animais , Proliferação de Células/efeitos dos fármacos , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Movimento Celular/efeitos dos fármacos
6.
Pharm Biol ; 62(1): 634-647, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39066667

RESUMO

CONTEXT: In China, HUANGQI is widely used for the treatment of Alzheimer's disease (AD). However, a comprehensive understanding of its mechanism of anti-AD effects is lacking. OBJECTIVE: To explore the active ingredients of HUANGQI and its potential targets and mechanisms of action in AD. MATERIALS AND METHODS: The active ingredients and targets of HUANGQI were screened from databases (TCSMP, ETCM, and BATMan), and AD-related genes were obtained from DrugBank and GeneCards. The same target genes were screened, and a drug-target disease network was constructed. The PPI network was constructed and GO and KEGG pathway enrichment analyses of the targets. The Cell Counting Kit-8 (CCK-8) assay was used to determine suitable HUANGQI treatment concentrations for HT-22 cells between 0-480 µg/mL. CCK-8, FITC-phalloidin and propidium iodide (PI) assays were used to examine the protective effect of (0, 60, 120, 240 µg/mL) of HUANGQI on 20 µM Aß1-42-induced HT-22 cell cytotoxicity. RESULTS: Twelve active ingredients of HUANGQI were selected, with 679 common targets associated with AD. GO and KEGG analysis revealed that the therapeutic mechanisms of HUANGQI involve TNF, AGE, the NF-κB pathway, and nuclear receptor activity-related processes. The CCK-8 assay indicated that HUANGQI was not cytotoxic to HT-22 cells at concentrations less than 240 µg/mL and was able to attenuate Aß1-42-induced cellular damage (EC50 = 83.46 µg/mL). FITC-phalloidin and PI assays suggested that HUANGQI could alleviate 20 µM Aß1-42-induced neuronal cell cytotoxicity in a dose-dependent manner. CONCLUSION: HUANGQI has a protective effect on Aß1-42-induced nerve cell injury; further mechanism research was needed.


Assuntos
Doença de Alzheimer , Medicamentos de Ervas Chinesas , Simulação de Acoplamento Molecular , Farmacologia em Rede , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Animais , Camundongos , Peptídeos beta-Amiloides/metabolismo , Astragalus propinquus , Relação Dose-Resposta a Droga , Humanos , Linhagem Celular , Astrágalo/química , Fragmentos de Peptídeos , Sobrevivência Celular/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
7.
FASEB J ; 38(13): e23727, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38877845

RESUMO

Oxidative stress is proposed as a regulatory element in various neurological disorders, which is involved in the progress of several neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD). Antioxidant drugs are widely used to alleviate neurodegenerative disorders. Astragalus membranaceus (Huangqi, AM) is a commonly used medicinal herb with a wide range of pharmacological effects. Here, the protective effect and mechanism of AM extract (AME) and its bioactive compounds against neurodegenerative disorders via alleviating oxidative stress were detected using adult Drosophila melanogaster. The drug safety was measured by development analysis; oxidative stress resistance ability was detected by survival rate under H2O2 environment; ROS level was detected by DHE staining and gstD1-GFP fluoresence assay; antioxidative abilitiy was represent by measuring antioxidant enzyme activity, antioxidative-related gene expression, and ATP and MFN2 levels. The neuroprotective effect was evaluated by lifespan and locomotion analysis in Aß42 transgenic and Pink1B9 mutants. AME dramatically increased the survival rates, improved the CAT activity, restored the decreased mRNA expressions of Sod1, Cat, and CncC under H2O2 stimulation, and ameliorated the neurobehavioral defects of the AD and PD. Thirteen small molecules in AM had antioxidant function, in which vanillic acid and daidzein had the most potent antioxidant effect. Vanillic acid and daidzein could increase the activities of SOD and CAT, GSH level, and the expressions of antioxidant genes. Vanillic acid could improve the levels of ATP and MFN2, and mRNA expressions of ND42 and SDHC to rescue mitochondrial dysfunction. Furthermore, vanillic acid ameliorated neurobehavioral defects of PD. Daidzein ameliorated neurobehavioral defect of Aß-induced AD mode. Taken together, AM plays a protective role in oxidative damage, thereby as a potential natural drug to treat neurodegenerative disorders.


Assuntos
Antioxidantes , Astragalus propinquus , Drosophila melanogaster , Doenças Neurodegenerativas , Estresse Oxidativo , Animais , Estresse Oxidativo/efeitos dos fármacos , Astragalus propinquus/química , Drosophila melanogaster/efeitos dos fármacos , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/metabolismo , Antioxidantes/farmacologia , Fármacos Neuroprotetores/farmacologia , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Extratos Vegetais/farmacologia , Animais Geneticamente Modificados , Medicamentos de Ervas Chinesas/farmacologia , Peróxido de Hidrogênio , Peptídeos beta-Amiloides/metabolismo
8.
J Ethnopharmacol ; 333: 118447, 2024 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-38885914

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Ginseng Radix and Astragali Radix are commonly combined to tonify Qi and alleviate fatigue. Previous studies have employed biological networks to investigate the mechanisms of herb pairs in treating different diseases. However, these studies have only elucidated a single network for each herb pair, without emphasizing the superiority of the herb combination over individual herbs. AIM OF THE STUDY: This study proposes an approach of comparing biological networks to highlight the synergistic effect of the pair in treating cancer-related fatigue (CRF). METHODS: The compounds and targets of Ginseng Radix, Astragali Radix, and CRF diseases were collected and predicted using different databases. Subsequently, the overlapping targets between herbs and disease were imported into the STRING and DAVID tools to build protein-protein interaction (PPI) networks and analyze enriched KEGG pathways. The biological networks of Ginseng Radix and Astragali Radix were compared separately or together using the DyNet application. Molecular docking was used to verify the predicted results. Further, in vitro experiments were conducted to validate the synergistic pathways identified in in silico studies. RESULTS: In the PPI network comparison, the combination created 89 new interactions and an increased average degree (11.260) when compared to single herbs (10.296 and 9.394). The new interactions concentrated on HRAS, STAT3, JUN, and IL6. The topological analysis identified 20 core targets of the combination, including three Ginseng Radix-specific targets, three Astragali Radix-specific targets, and 14 shared targets. In KEGG enrichment analysis, the combination regulated additional signaling pathways (152) more than Ginseng Radix (146) and Astragali Radix (134) alone. The targets of the herb pair synergistically regulated cancer pathways, specifically hypoxia-inducible factor 1 (HIF-1) signaling pathway. In vitro experiments including enzyme-linked immunosorbent assay and Western blot demonstrated that two herbs combination could up-regulate HIF-1α signaling pathway at different combined concentrations compared to either single herb alone. CONCLUSION: The herb pair increased protein interactions and adjusted metabolic pathways more than single herbs. This study provides insights into the combination of Ginseng Radix and Astragali Radix in clinical practice.


Assuntos
Astragalus propinquus , Sinergismo Farmacológico , Medicamentos de Ervas Chinesas , Fadiga , Simulação de Acoplamento Molecular , Neoplasias , Panax , Mapas de Interação de Proteínas , Panax/química , Humanos , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Neoplasias/tratamento farmacológico , Fadiga/tratamento farmacológico , Astragalus propinquus/química , Astrágalo/química , Transdução de Sinais/efeitos dos fármacos
9.
Animal Model Exp Med ; 7(3): 234-258, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38863309

RESUMO

BACKGROUND: According to traditional Chinese medicine (TCM), drugs supplementing the vital energy, Qi, can eliminate tumors by restoring host immunity. The objective of this study is to investigate the underlying immune mechanisms of anti-tumor activity associated with Qi-supplementing herbs, specifically the paired use of Huangqi and Danggui. METHODS: Analysis of compatibility regularity was conducted to screen the combination of Qi-supplementing TCMs. Using the MTT assay and a transplanted tumor mice model, the anti-tumor effects of combination TCMs were investigated in vitro and in vivo. High content analysis and flow cytometry were then used to evaluate cellular immunity, followed by network pharmacology and molecular docking to dissect the significant active compounds and potential mechanisms. Finally, the anti-tumor activity and the mechanism of the active ingredients were verified by molecular experiments. RESULTS: There is an optimal combination of Huangqi and Danggui that, administered as an aqueous extract, can activate immunity to suppress tumor and is more effective than each drug on its own in vitro and in vivo. Based on network pharmacology analysis, PIK3R1 is the core target for the anti-tumor immunity activity of combined Huangqi and Danggui. Molecular docking analysis shows 6 components of the combined Danggui and Huangqi extract (quercetin, jaranol, isorhamnetin, kaempferol, calycosin, and suchilactone) that bind to PIK3R1. Jaranol is the most important component against breast cancer. The suchilactone/jaranol combination and, especially, the suchilactone/kaempferol combination are key for immunity enhancement and the anti-tumor effects of the extract. CONCLUSIONS: The combination of Huangqi and Danggui can activate immunity to suppress breast cancer and is more effective than the individual drugs alone.


Assuntos
Neoplasias da Mama , Medicamentos de Ervas Chinesas , Camundongos Endogâmicos BALB C , Simulação de Acoplamento Molecular , Medicamentos de Ervas Chinesas/farmacologia , Animais , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/imunologia , Camundongos , Humanos , Astragalus propinquus , Linhagem Celular Tumoral , Regulação para Cima/efeitos dos fármacos
10.
Bull Exp Biol Med ; 176(6): 827-829, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38890211

RESUMO

The severity of ischemic injury was evaluated by densitometry of brain samples stained with 2,3,5-triphenyltetrazolium chloride (TTC) on a rat model of cerebral ischemia/reperfusion (common carotid artery occlusion) and the neuroprotective activity of an extract of Astragalus membranaceus, Scutellaria baicalensis, and Phlojodicarpus sibiricus was assessed. Occlusion of the common carotid arteries led to a weakening of TTC staining of the brain tissue: densitometric indicators of the staining intensity for the cortex and striatum were lower than the corresponding indicators of sham-operated rats by 18.3 and 10.4%. The mean intensity of staining of brain samples did not differ in rats treated with the extract and sham-operated animals, which attested to its neuroprotective effect. The applied method is convenient for evaluation of the severity of ischemic brain damage at the early stages and screening potential neuroprotective agents.


Assuntos
Isquemia Encefálica , Fármacos Neuroprotetores , Extratos Vegetais , Animais , Ratos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Masculino , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/patologia , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Astragalus propinquus/química , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/prevenção & controle , Sais de Tetrazólio/química , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Ratos Wistar , Modelos Animais de Doenças , Scutellaria baicalensis
11.
Medicine (Baltimore) ; 103(25): e38531, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38905394

RESUMO

The aim of this study was to investigate the key targets and molecular mechanisms of the drug pair Astragalus membranaceus and Poria cocos (HFDP) in the treatment of immunity. We utilized network pharmacology, molecular docking, and immune infiltration techniques in conjunction with data from the GEO database. Previous clinical studies have shown that HFDP has a positive impact on immune function. We first identified the active ingredients and targets of HFDP from the Traditional Chinese Medicine Systems Pharmacology database and the Swiss Target Prediction database, respectively. Next, we retrieved the differentially expressed genes (DEGs) related to immunity from the GEO databases. The intersection targets of the drugs and diseases were then analyzed using the STRING database for protein-protein interaction (PPI) network analysis, and the core targets were determined through topological analysis. Finally, the intersection genes were further analyzed using the DAVID database for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes analyses. Subsequently, by analyzing the expression and prognostic survival of 12 core targets, 5 core target genes were identified, and molecular docking between the hub genes and immunity was performed. Finally, we used the CIBERSORT algorithm to analyze the immune infiltration of immunity genes In this study, 34 effective ingredients of HFDP, 530 target genes, and 568 differential genes were identified. GO and KEGG analysis showed that the intersection genes of HFDP targets and immunity-related genes were mainly related to complement and coagulation cascades, cytokine receptors, and retinol metabolism pathways. The molecular docking results showed that the 5 core genes had obvious affinity for the active ingredients of HFDP, which could be used as potential targets to improve the immunity of HFDP. Our findings suggest that HFDP is characterized by "multiple components, multiple targets, and multiple pathways" in regulating immunity. It may play an essential role in regulating immunity by regulating the expression and polymorphism of the central target genes ESR1, JUN, CYP3A4, CYP2C9, and SERPINE1.


Assuntos
Astragalus propinquus , Medicamentos de Ervas Chinesas , Simulação de Acoplamento Molecular , Farmacologia em Rede , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Mapas de Interação de Proteínas/genética , Humanos , Wolfiporia/química , Medicina Tradicional Chinesa
12.
Transpl Immunol ; 85: 102072, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38857634

RESUMO

OBJECTIVE: Sepsis has a high incidence, morbidity, and mortality rate and is a great threat to human safety. Gut health plays an important role in sepsis development. Qi Huang Fang (QHF) contains astragalus, rhubarb, zhishi, and atractylodes. It is used to treat syndromes of obstructive qi and deficiency of righteousness. This study aimed to investigate whether QHF improves intestinal barrier function and microorganisms in mice through NLRP3 inflammatory vesicle-mediated cellular focal death. METHODS: A mouse model of sepsis was constructed by cecal ligation and puncture (CLP) of specific pathogen-free (SPF)-grade C57BL/6 mice after continuous gavage of low, medium, and high doses of astragalus formula or probiotics for 4 weeks. Twenty-four hours postoperatively, the mechanism of action of QHF in alleviating septic intestinal dysfunction and restoring intestinal microecology, thereby alleviating intestinal injury, was evaluated by pathological observation, immunohistochemistry, western blotting, ELISA, and 16S rDNA high-throughput sequencing. RESULTS: Different doses of QHF and probiotics ameliorated intestinal injury and reduced colonic apoptosis in mice to varying degrees (P < 0.05). Meanwhile, different doses of QHF and probiotics were able to reduce the serum levels of IL-6, IL-1ß, and TNF-α (P < 0.05); down-regulate the protein expression of NLRP3, caspase-1, and caspase-11 (P < 0.05); and up-regulate the protein expression of zonula occluden-1 (ZO-1) and occludin (P < 0.05), which improved the intestinal barrier function in mice. In addition, QHF decreased the relative abundance of harmful bacteria (Firmicutes, Muribaculaceae, Campilobacterota, Helicobacter, and Alistipes) and increased the relative abundance of beneficial bacteria (Bacteroidetes and Actinobacteria) (P < 0.05). CONCLUSION: QHF improves intestinal barrier function and gut microbiology in mice via NLRP3 inflammasome-mediated cellular pyroptosis.


Assuntos
Medicamentos de Ervas Chinesas , Microbioma Gastrointestinal , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Piroptose , Sepse , Animais , Humanos , Masculino , Camundongos , Astragalus propinquus , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Microbioma Gastrointestinal/efeitos dos fármacos , Inflamassomos/metabolismo , Função da Barreira Intestinal , Mucosa Intestinal/patologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/microbiologia , Intestinos/efeitos dos fármacos , Intestinos/patologia , Intestinos/microbiologia , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Piroptose/efeitos dos fármacos , Sepse/tratamento farmacológico , Sepse/imunologia
13.
J Cell Mol Med ; 28(10): e18331, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38780500

RESUMO

Heart failure is a leading cause of death in the elderly. Traditional Chinese medicine, a verified alternative therapeutic regimen, has been used to treat heart failure, which is less expensive and has fewer adverse effects. In this study, a total of 15 active ingredients of Astragalus membranaceus (Huangqi, HQ) were obtained; among them, Isorhamnetin, Quercetin, Calycosin, Formononetin, and Kaempferol were found to be linked to heart failure. Ang II significantly enlarged the cell size of cardiomyocytes, which could be partially reduced by Quercetin, Isorhamnetin, Calycosin, Kaempferol, or Formononetin. Ang II significantly up-regulated ANP, BNP, ß-MHC, and CTGF expressions, whereas Quercetin, Isorhamnetin, Calycosin, Kaempferol or Formononetin treatment partially downregulated ANP, BNP, ß-MHC and CTGF expressions. Five active ingredients of HQ attenuated inflammation in Ang II-induced cardiomyocytes by inhibiting the levels of TNF-α, IL-1ß, IL-18 and IL-6. Molecular docking shows Isorhamnetin, Quercetin, Calycosin, Formononetin and Kaempferol can bind with its target protein ESR1 in a good bond by intermolecular force. Quercetin, Calycosin, Kaempferol or Formononetin treatment promoted the expression levels of ESR1 and phosphorylated ESR1 in Ang II-stimulated cardiomyocytes; however, Isorhamnetin treatment had no effect on ESR1 and phosphorylated ESR1 expression levels. In conclusion, our results comprehensively illustrated the bioactives, potential targets, and molecular mechanism of HQ against heart failure. Isorhamnetin, Quercetin, Calycosin, Formononetin and Kaempferol might be the primary active ingredients of HQ, dominating its cardioprotective effects against heart failure through regulating ESR1 expression, which provided a basis for the clinical application of HQ to regulate cardiac hypertrophy and heart failure.


Assuntos
Astragalus propinquus , Medicamentos de Ervas Chinesas , Insuficiência Cardíaca , Simulação de Acoplamento Molecular , Miócitos Cardíacos , Farmacologia em Rede , Astragalus propinquus/química , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Animais , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Quercetina/farmacologia , Quercetina/química , Quercetina/análogos & derivados , Angiotensina II/metabolismo , Quempferóis/farmacologia , Quempferóis/química , Ratos , Humanos , Isoflavonas/farmacologia , Isoflavonas/química
14.
Molecules ; 29(10)2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38792148

RESUMO

With the escalating demand for Astragalus polysaccharides products developed from Radix Astragali (RA), the necessity for quality control of polysaccharides in RA has become increasingly urgent. In this study, a specific method for the simultaneous determination of seven monosaccharides in polysaccharides extracted from Radix Astragali (RA) has been developed and validated using ultra-performance liquid chromatography equipped with an ultraviolet detector (UHPLC-UV) for the first time. The 1-phenyl-3-methyl-5-pyrazolone (PMP) derivatizations were separated on a C18 column (Waters ACQUITYTM, Milfor, MA, USA, 1.8 µm, 2.1 × 100 mm) using gradient elution with a binary system of 5 mm ammonium formate (0.1% formic acid)-acetonitrile for 24 min. Additionally, seven monosaccharides showed good linear relationships (R2, 0.9971-0.9995), adequate precision (RSD < 4.21%), and high recoveries (RSD < 4.70%). The established method was used to analyze 109 batches of RA. Results showed that the Astragalus polysaccharides (APSs) mainly consist of mannose (Man), rhamnose (Rha), glucose (Glu), galactose (Gal), arabinose (Ara), xylose (Xyl); and fucose (Fuc); however, their composition was different among RA samples from different growth patterns, species, growth years, and origins, and the growth mode of RA and the age of wild-simulated RA can be accurately distinguished by principal component analysis (PCA). In addition, the immunological activity of APSs were also evaluated jointly by measurement of the NO release with RAW264.7, with the results showing that APSs have a promoting effect on the release of NO and exhibit a significant correlation with Man, Glu, Xyl, and Fuc contents. Accordingly, the new established monosaccharides analytical method and APS-immune activity determination in this study can provide a reference for quality evaluation and the establishment of quality standards for RA.


Assuntos
Astragalus propinquus , Medicamentos de Ervas Chinesas , Monossacarídeos , Polissacarídeos , Cromatografia Líquida de Alta Pressão/métodos , Monossacarídeos/análise , Polissacarídeos/química , Polissacarídeos/análise , Astragalus propinquus/química , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/análise , Camundongos , Animais , Células RAW 264.7 , Astrágalo/química , Fatores Imunológicos/análise , Fatores Imunológicos/química
15.
Mol Biol Rep ; 51(1): 618, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38705956

RESUMO

BACKGROUND: Astragalus membranaceus is a plant of the Astragalus genus, which is used as a traditional Chinese herbal medicine with extremely high medicinal and edible value. Astragalus mongholicus, as one of the representative medicinal materials with the same origin of medicine and food, has a rising market demand for its raw materials, but the quality is different in different production areas. Growth-regulating factors (GRF) are transcription factors unique to plants that play important roles in plant growth and development. Up to now, there is no report about GRF in A. mongholicus. METHODS AND RESULTS: This study conducted a genome-wide analysis of the AmGRF gene family, identifying a total of nine AmGRF genes that were classified into subfamily V based on phylogenetic relationships. In the promoter region of the AmGRF gene, we successfully predicted cis-elements that respond to abiotic stress, growth, development, and hormone production in plants. Based on transcriptomic data and real-time quantitative polymerase chain reaction (qPCR) validation, the results showed that AmGRFs were expressed in the roots, stems, and leaves, with overall higher expression in leaves, higher expression of AmGRF1 and AmGRF8 in roots, and high expression levels of AmGRF1 and AmGRF9 in stems. CONCLUSIONS: The results of this study provide a theoretical basis for the further exploration of the functions of AmGRFs in plant growth and development.


Assuntos
Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas , Fatores de Transcrição , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Astragalus propinquus/genética , Astragalus propinquus/metabolismo , Família Multigênica , Genoma de Planta , Perfilação da Expressão Gênica/métodos , Regiões Promotoras Genéticas/genética , Astrágalo/genética , Astrágalo/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Estresse Fisiológico/genética , Transcriptoma/genética , Reguladores de Crescimento de Plantas/metabolismo
16.
BMC Plant Biol ; 24(1): 358, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38698337

RESUMO

BACKGROUND: Astragalus membranaceus var. mongholicus (Astragalus), acknowledged as a pivotal "One Root of Medicine and Food", boasts dual applications in both culinary and medicinal domains. The growth and metabolite accumulation of medicinal roots during the harvest period is intricately regulated by a transcriptional regulatory network. One key challenge is to accurately pinpoint the harvest date during the transition from conventional yield content of medicinal materials to high and to identify the core regulators governing such a critical transition. To solve this problem, we performed a correlation analysis of phenotypic, transcriptome, and metabolome dynamics during the harvesting of Astragalus roots. RESULTS: First, our analysis identified stage-specific expression patterns for a significant proportion of the Astragalus root genes and unraveled the chronology of events that happen at the early and later stages of root harvest. Then, the results showed that different root developmental stages can be depicted by co-expressed genes of Astragalus. Moreover, we identified the key components and transcriptional regulation processes that determine root development during harvest. Furthermore, through correlating phenotypes, transcriptomes, and metabolomes at different harvesting periods, period D (Nov.6) was identified as the critical period of yield and flavonoid content increase, which is consistent with morphological and metabolic changes. In particular, we identified a flavonoid biosynthesis metabolite, isoliquiritigenin, as a core regulator of the synthesis of associated secondary metabolites in Astragalus. Further analyses and experiments showed that HMGCR, 4CL, CHS, and SQLE, along with its associated differentially expressed genes, induced conversion of metabolism processes, including the biosynthesis of isoflavones and triterpenoid saponins substances, thus leading to the transition to higher medicinal materials yield and active ingredient content. CONCLUSIONS: The findings of this work will clarify the differences in the biosynthetic mechanism of astragaloside IV and calycosin 7-O-ß-D-glucopyranoside accumulation between the four harvesting periods, which will guide the harvesting and production of Astragalus.


Assuntos
Astragalus propinquus , Metabolômica , Fenótipo , Raízes de Plantas , Plantas Medicinais , Transcriptoma , Astragalus propinquus/metabolismo , Astragalus propinquus/genética , Astragalus propinquus/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Plantas Medicinais/metabolismo , Plantas Medicinais/genética , Plantas Medicinais/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Metaboloma , Perfilação da Expressão Gênica
17.
Pharmacol Res ; 205: 107229, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38782148

RESUMO

After long-term clinical application, traditional Chinese medicine (TCM) has accumulated rich experience in the stroke treatment. Huang-Qi-Long-Dan Granule (HQLDG) is a TCM formula that has been used in clinical for the treatment of acute ischemic stroke. However, its mechanism against ischemic stroke is still unknown. This study aimed to identify HQLDG's effect against ischemic stroke and explore its underlying mechanism. 16s rRNA sequencing, metabolomics/tryptophan (Trp)-targeted metabolomics analysis and transcriptomic analysis were used to investigate HQLDG underlying therapeutic mechanism. Our results revealed that HQLDG significantly decreased the infarct volume, improved mouse behavior and brain slices pathological staining. In addition, it could ameliorate intestinal barrier damage and regulate tight junction gene expression. 16s rRNA, metabolomics and transcriptomics analysis revealed that HQLDG treatment significantly improved the composition of gut microbiota and Trp metabolism pathway, and further downregulated Th17/IL-17 signaling pathway. HQLDG treatment could significantly decrease serum inflammatory cytokines, IL-17A and IL-22; down-regulate Trp metabolism receptor gene (Ahr), inflammatory cytokines genes (IL-17a, IL-22), and an important coding gene for maintaining the mature Th17 (rorc) in both brain and intestinal tissues. In the contrary, after gut microbiota removal, this effect of HQLDG was impaired. HQLDG treated mouse fecal microbiota transplantation also had positive effect against tMCAO injury. Moreover, AhR inhibitor could decrease IL-17A immunofluorescence. These results suggested that the gut microbiota regulation might be an important intermediate in HQLDG against tMCAO injury. HQLDG might exert anti-ischemic stroke effects through the gut microbiota-Trp metabolism-Th17/IL-17 signaling, which provides new insights into HQLDG-mediated prevention in ischemic stroke.


Assuntos
Medicamentos de Ervas Chinesas , Microbioma Gastrointestinal , AVC Isquêmico , Metabolômica , Camundongos Endogâmicos C57BL , Animais , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Microbioma Gastrointestinal/efeitos dos fármacos , Masculino , AVC Isquêmico/metabolismo , AVC Isquêmico/tratamento farmacológico , Camundongos , Triptofano/metabolismo , Astragalus propinquus , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Citocinas/metabolismo , Células Th17/efeitos dos fármacos , Células Th17/metabolismo , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/metabolismo , Modelos Animais de Doenças , Multiômica , Receptores de Hidrocarboneto Arílico , Fatores de Transcrição Hélice-Alça-Hélice Básicos
18.
Int J Biol Macromol ; 271(Pt 2): 132584, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38795881

RESUMO

This study evaluated the regulatory effects of Astragalus membranaceus polysaccharides (AMP) on lipid metabolism disorders induced by a high-fat diet (HFD) in spotted sea bass (Lateolabrax maculatus). Compared with the normal diets (10 % lipids), diets containing 15 % lipid levels were used as the high-fat diet (HFD). Three levels of the AMP (0.06 %, 0.08 %, 0.10 %) were added in the HFD and used as experimental diets. A total of 375 spotted sea bass (average weight 3.00 ± 0.01 g) were divided into 15 tanks and deemed as 5 groups, with each tank containing 25 fish. Fish in each group were fed with different diets for 56 days. After feeding, the HFD induced lipid metabolism disorders in fish, as evidenced by elevated serum lipids, malonaldehyde levels, and more severe liver damage. The AMP alleviated the HFD-induced liver damage, as evidenced by the reduced severity of liver histological lesions and malonaldehyde levels. The low-density lipoprotein cholesterol was reduced, and the expression of FAS and PPAR-α were down and up-regulated, respectively. However, the AMP had a limited ability to affect the serum lipids and abdominal fat percentage. These results reveal the potential of the AMP used in aquaculture to regulate lipid metabolism disorders induced by the HFD.


Assuntos
Astragalus propinquus , Bass , Dieta Hiperlipídica , Metabolismo dos Lipídeos , Polissacarídeos , Animais , Dieta Hiperlipídica/efeitos adversos , Polissacarídeos/farmacologia , Astragalus propinquus/química , Metabolismo dos Lipídeos/efeitos dos fármacos , Transtornos do Metabolismo dos Lipídeos/tratamento farmacológico , Transtornos do Metabolismo dos Lipídeos/metabolismo , Transtornos do Metabolismo dos Lipídeos/etiologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , PPAR alfa/metabolismo , Lipídeos/sangue
19.
Zhongguo Zhong Yao Za Zhi ; 49(9): 2326-2335, 2024 May.
Artigo em Chinês | MEDLINE | ID: mdl-38812133

RESUMO

Based on the association network of "drug pair-disease", the effect characteristics of Astragali Radix-Chuanxiong Rhizoma drug pair in the treatment of ischemic stroke(IS) with Qi deficiency and blood stasis and the matching mechanism of the two were explored. Through Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP) and SwissTargetPrediction Database, the effective chemical components of the drug pair were screened, and the candidate targets were predicted. Databa-ses such as GeneCards, DrugBank, Online Mendelian Inheritance in Man(OMIM), and Therapeutic Target Database(TTD) were searched to obtain gene targets related to IS. Through STRING and Cytoscape 3.9.1 software, the protein-protein interaction(PPI) network was constructed by using the interaction information of disease syndrome-related genes and candidate targets of drug pairs, and the core targets were screened according to the network topological feature values. Based on the Metascape platform and DAVID database, the biomolecular interaction information was integrated to analyze the Kyoto Encyclopedia of Genes and Genomes(KEGG) and mine biological functions, so as to further explore the mechanism of action and compatibility characteristics of Astragali Radix-Chuan-xiong Rhizoma. The results showed that the candidate biological process was mainly involved in the regulation of functional modules such as immune, blood circulation, neurotransmitter, and oxidative stress, and it was enriched in lipid and atherosclerosis, calcium signaling pathway, and platelet activation. Astragali Radix and Chuanxiong Rhizoma have their own characteristics. Astragali Radix has a regulatory response to growth factors while maintaining the body's immune balance, while Chuanxiong Rhizoma mainly improves the circulatory system and participates in hormone metabolism, so as to indicate the compatibility mechanism of Astragali Radix-Chuanxiong Rhizoma drug pair for multi-target and multi-pathway synergistic treatment of IS. Through further experimental verification, it was found that the Astragali Radix-Chuanxiong Rhizoma drug pair could significantly down-regulate the expression of key targets including TLR4, NF-κB, IL-1ß, F2R, PLCß1, and MYLK. This study preliminarily reveals that the Astragali Radix-Chuanxiong Rhizoma drug pair may play the three replenishing effects of promoting blood circulation, benefiting Qi, and clearing collaterals by correcting immune di-sorders, blood circulation disorders, and inflammation, which provide support for the clinical research on the subsequent improvement of Qi deficiency and blood stasis in the treatment of IS and provide a new idea for the analysis of modern biological connotation of the compatibility of seven emotions of traditional Chinese medicine.


Assuntos
Astragalus propinquus , Medicamentos de Ervas Chinesas , AVC Isquêmico , Mapas de Interação de Proteínas , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Humanos , Astragalus propinquus/química , AVC Isquêmico/tratamento farmacológico , AVC Isquêmico/genética , AVC Isquêmico/metabolismo , Rizoma/química , Ligusticum/química
20.
Phytomedicine ; 129: 155646, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38733903

RESUMO

BACKGROUND: Astragalus membranaceus (AM) shows potential therapeutic benefits for managing diabetic kidney disease (DKD), a leading cause of kidney failure with no cure. However, its comprehensive effects on renal outcomes and plausible mechanisms remain unclear. PURPOSE: This systematic review and meta-analysis aimed to synthesize the effects and mechanisms of AM on renal outcomes in DKD animal models. METHODS: Seven electronic databases were searched for animal studies until September 2023. Risk of bias was assessed based on SYRCLE's Risk of Bias tool. Standardized mean difference (SMD) or mean difference (MD) were estimated for the effects of AM on serum creatinine (SCr), blood urea nitrogen (BUN), albuminuria, histological changes, oxidative stress, inflammation, fibrosis and glucolipids. Effects were pooled using random-effects models. Heterogeneity was presented as I2. Subgroup analysis investigated treatment- and animal-related factors for renal outcomes. Publication bias was assessed using funnel plots and Egger's test. Sensitivity analysis was performed to assess the results' robustness. RevMan 5.3 and Stata MP 15 software were used for statistical analysis. RESULTS: Forty studies involving 1543 animals were identified for analysis. AM treatment significantly decreased SCr (MD = -19.12 µmol/l, 95 % CI: -25.02 to -13.23), BUN (MD = -6.72 mmol/l, 95 % CI: -9.32 to -4.12), urinary albumin excretion rate (SMD = -2.74, 95 % CI: -3.57, -1.90), histological changes (SMD = -2.25, 95 % CI: -3.19 to -1.32). AM treatment significantly improved anti-oxidative stress expression (SMD = 1.69, 95 % CI: 0.97 to 2.41), and decreased inflammation biomarkers (SMD = -3.58, 95 % CI: -5.21 to -1.95). AM treatment also decreased fibrosis markers (i.e. TGF-ß1, CTGF, collagen IV, Wnt4 and ß-catenin) and increased anti-fibrosis marker BMP-7. Blood glucose, lipids and kidney size were also improved compared with the DM control group. CONCLUSION: AM could improve renal outcomes and alleviate injury through multiple signaling pathways. This indicates AM may be an option to consider for the development of future DKD therapeutics.


Assuntos
Astragalus propinquus , Nefropatias Diabéticas , Modelos Animais de Doenças , Estresse Oxidativo , Animais , Albuminúria/tratamento farmacológico , Astragalus propinquus/química , Nitrogênio da Ureia Sanguínea , Creatinina/sangue , Nefropatias Diabéticas/tratamento farmacológico , Fibrose/tratamento farmacológico , Rim/efeitos dos fármacos , Rim/patologia , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA