Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35.825
Filtrar
1.
Behav Neurosci ; 138(2): 108-124, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38661670

RESUMO

The cannabinoid system is being researched as a potential pharmaceutical target for a multitude of disorders. The present study examined the effect of indirect and direct cannabinoid agonists on mesolimbic dopamine release and related behaviors in C57BL/6J (B6) mice. The indirect cannabinoid agonist N-arachidonoyl serotonin (AA-5-HT) indirectly agonizes the cannabinoid system by preventing the metabolism of endocannabinoids through fatty acid amide hydrolase inhibition while also inhibiting transient receptor potential vanilloid Type 1 channels. Effects of AA-5-HT were compared with the direct cannabinoid receptor Type 1 agonist arachidonoyl-2'-chloroethylamide (ACEA). In Experiment 1, mice were pretreated with seven daily injections of AA-5-HT, ACEA, or vehicle prior to assessments of locomotor activity using open field (OF) testing and phasic dopamine release using in vivo fixed potential amperometry. Chronic exposure to AA-5-HT did not alter locomotor activity or mesolimbic dopamine functioning. Chronic exposure to ACEA decreased rearing and decreased phasic dopamine release while increasing the dopaminergic response to cocaine. In Experiment 2, mice underwent AA-5-HT, ACEA, or vehicle conditioned place preference, then saccharin preference testing, a measure commonly associated with anhedonia. Mice did not develop a conditioned place preference or aversion for AA-5-HT or ACEA, and repeated exposure to AA-5-HT or ACEA did not alter saccharin preference. Altogether, the findings suggest that neither of these drugs induce behaviors that are classically associated with abuse liability in mice; however, direct cannabinoid receptor Type 1 agonism may play more of a role in mediating mesolimbic dopamine functioning than indirect cannabinoid agonism. (PsycInfo Database Record (c) 2024 APA, all rights reserved).


Assuntos
Agonistas de Receptores de Canabinoides , Dopamina , Camundongos Endogâmicos C57BL , Animais , Dopamina/metabolismo , Masculino , Camundongos , Agonistas de Receptores de Canabinoides/farmacologia , Serotonina/metabolismo , Locomoção/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Ácidos Araquidônicos/farmacologia , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Cocaína/farmacologia , Receptor CB1 de Canabinoide/agonistas , Receptor CB1 de Canabinoide/metabolismo , Atividade Motora/efeitos dos fármacos
2.
BMC Neurol ; 24(1): 143, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38678195

RESUMO

BACKGROUND: Spasticity can significantly affect a patient's quality of life, caregiver satisfaction, and the financial burden on the healthcare system. Baclofen is one of only a few options for treating spasticity. The purpose of this study is to investigate the impact of intrathecal baclofen (ITB) therapy on severe40.23 spasticity and motor function in patients with cerebral palsy. METHODS: We conducted a systematic review in PubMed, Scopus, Ovid, and the Cochrane Library in accordance with the PRISMA guidelines. We included studies based on eligibility criteria that included desired participants (cerebral palsy patients with spasticity), interventions (intrathecal baclofen), and outcomes (the Ashworth scales and the Gross Motor Function Measure [GMFM]). The within-group Cohen's d standardized mean differences (SMD) were analyzed using the random effect model. RESULTS: We screened 768 papers and included 19 in the severity of spasticity section and 6 in the motor function section. The pre-intervention average spasticity score (SD) was 3.2 (0.78), and the post-intervention average score (SD) was 1.9 (0.72), showing a 40.25% reduction. The SMD for spasticity reduction was - 1.7000 (95% CI [-2.1546; -1.2454], p-value < 0.0001), involving 343 patients with a weighted average age of 15.78 years and a weighted average baclofen dose of 289 µg/day. The SMD for the MAS and Ashworth Scale subgroups were - 1.7845 (95% CI [-2.8704; -0.6986]) and - 1.4837 (95% CI [-1.8585; -1.1088]), respectively. We found no relationship between the participants' mean age, baclofen dose, measurement time, and the results. The pre-intervention average GMFM (SD) was 40.03 (26.01), and the post-intervention average score (SD) was 43.88 (26.18), showing a 9.62% increase. The SMD for motor function using GMFM was 0.1503 (95% CI [0.0784; 0.2223], p-value = 0.0030), involving 117 patients with a weighted average age of 13.63 and a weighted average baclofen dose of 203 µg/day. In 501 ITB implantations, 203 medical complications were reported, including six new-onset seizures (2.96% of medical complications), seven increased seizure frequency (3.45%), 33 infections (16.26%), eight meningitis (3.94%), and 16 cerebrospinal fluid leaks (7.88%). Delivery system complications, including 75 catheter and pump complications, were also reported. CONCLUSION: Despite the risk of complications, ITB has a significant impact on the reduction of spasticity. A small but statistically significant improvement in motor function was also noted in a group of patients.


Assuntos
Baclofeno , Paralisia Cerebral , Injeções Espinhais , Relaxantes Musculares Centrais , Espasticidade Muscular , Baclofeno/administração & dosagem , Humanos , Espasticidade Muscular/tratamento farmacológico , Espasticidade Muscular/etiologia , Paralisia Cerebral/tratamento farmacológico , Paralisia Cerebral/complicações , Injeções Espinhais/métodos , Relaxantes Musculares Centrais/administração & dosagem , Relaxantes Musculares Centrais/uso terapêutico , Resultado do Tratamento , Índice de Gravidade de Doença , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia
3.
Biomed Pharmacother ; 174: 116526, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38574621

RESUMO

Spinocerebellar ataxia type 1 (SCA1) is a debilitating neurodegenerative disorder of the cerebellum and brainstem. Memantine has been proposed as a potential treatment for SCA1. It blocks N-methyl-D-aspartate (NMDA) receptors on neurons, reduces excitotoxicity and decreases neurodegeneration in Alzheimer models. However, in cerebellar neurodegenerative diseases, the potential value of memantine is still unclear. We investigated the effects of memantine on motor performance and synaptic transmission in the cerebellum in a mouse model where mutant ataxin 1 is specifically targeted to glia. Lentiviral vectors (LVV) were used to express mutant ataxin 1 selectively in Bergmann glia (BG). In mice transduced with the mutant ataxin 1, chronic treatment with memantine improved motor activity during initial tests, presumably due to preserved BG and Purkinje cell (PC) morphology and numbers. However, mice were unable to improve their rota rod scores during next days of training. Memantine also compromised improvement in the rota rod scores in control mice upon repetitive training. These effects may be due to the effects of memantine on plasticity (LTD suppression) and NMDA receptor modulation. Some effects of chronically administered memantine persisted even after its wash-out from brain slices. Chronic memantine reduced morphological signs of neurodegeneration in the cerebellum of SCA1 model mice. This resulted in an apparent initial reduction of ataxic phenotype, but memantine also affected cerebellar plasticity and ultimately compromised motor learning. We speculate that that clinical application of memantine in SCA1 might be hampered by its ability to suppress NMDA-dependent plasticity in cerebellar cortex.


Assuntos
Modelos Animais de Doenças , Memantina , Fenótipo , Ataxias Espinocerebelares , Animais , Memantina/farmacologia , Ataxias Espinocerebelares/tratamento farmacológico , Ataxias Espinocerebelares/patologia , Camundongos , Ataxina-1/metabolismo , Ataxina-1/genética , Atividade Motora/efeitos dos fármacos , Cerebelo/efeitos dos fármacos , Cerebelo/patologia , Cerebelo/metabolismo , Células de Purkinje/efeitos dos fármacos , Células de Purkinje/patologia , Células de Purkinje/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Camundongos Transgênicos , Camundongos Endogâmicos C57BL , Neuroglia/efeitos dos fármacos , Neuroglia/patologia , Neuroglia/metabolismo , Masculino , Plasticidade Neuronal/efeitos dos fármacos
4.
Physiol Behav ; 280: 114548, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38615729

RESUMO

Corn and soybean oils are among the most frequently used vehicles for water-insoluble compounds in toxicological studies. These two vegetable oils are nutrients and may induce some biological effects on animals that might interfere with the experimental results. However, their chronic effects on a developing brain have not been reported. This study aims to evaluate the neurobehavioral and brain biochemical effects of both oils on male and female Swiss albino mice. Pregnant female mice were exposed to 1 µl/g/d of either tap water, corn oil (CO), or soybean oil (SO) from early gestation (GD1) until weaning then offspring mice were exposed to the same treatment regimen until adulthood (PND70). Our results showed that developmental exposure to both oils induced body weight changes in offspring mice. In addition, we detected some behavioral abnormalities where both oil-treated groups showed a significant decrease in locomotor activity and greater levels of anxiety behavior. Moreover, our results suggest that continuous exposure to these oils may alter motor coordination, spatial memory and induce depression-like behavior in adult mice. These alterations were accompanied by increased malondialdehyde, superoxide dismutase, and glutathione peroxidase activities in specific brain regions. Together, these data suggest that exposure to CO and SO as vehicles in developmental studies may interfere with the behavioral response and brain redox homeostasis in offspring mice.


Assuntos
Encéfalo , Óleo de Milho , Estresse Oxidativo , Efeitos Tardios da Exposição Pré-Natal , Óleo de Soja , Animais , Feminino , Óleo de Milho/administração & dosagem , Estresse Oxidativo/efeitos dos fármacos , Camundongos , Gravidez , Masculino , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/crescimento & desenvolvimento , Glutationa Peroxidase/metabolismo , Peso Corporal/efeitos dos fármacos , Malondialdeído/metabolismo , Superóxido Dismutase/metabolismo , Atividade Motora/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Ansiedade/induzido quimicamente , Aprendizagem em Labirinto/efeitos dos fármacos , Veículos Farmacêuticos
5.
ACS Chem Neurosci ; 15(9): 1738-1754, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38613458

RESUMO

Iboga alkaloids, also known as coronaridine congeners, have shown promise in the treatment of alcohol and opioid use disorders. The objective of this study was to evaluate the effects of catharanthine and 18-methoxycoronaridine (18-MC) on dopamine (DA) transmission and cholinergic interneurons in the mesolimbic DA system, nicotine-induced locomotor activity, and nicotine-taking behavior. Utilizing ex vivo fast-scan cyclic voltammetry (FSCV) in the nucleus accumbens core of male mice, we found that catharanthine or 18-MC differentially inhibited evoked DA release. Catharanthine inhibition of evoked DA release was significantly reduced by both α4 and α6 nicotinic acetylcholine receptors (nAChRs) antagonists. Additionally, catharanthine substantially increased DA release more than vehicle during high-frequency stimulation, although less potently than an α4 nAChR antagonist, which confirms previous work with nAChR antagonists. Interestingly, while catharanthine slowed DA reuptake measured via FSCV ex vivo, it also increased extracellular DA in striatal dialysate from anesthetized mice in vivo in a dose-dependent manner. Superfusion of catharanthine or 18-MC inhibited the firing rate of striatal cholinergic interneurons in a concentration dependent manner, which are known to potently modulate presynaptic DA release. Catharanthine or 18-MC suppressed acetylcholine currents in oocytes expressing recombinant rat α6/α3ß2ß3 or α6/α3ß4 nAChRs. In behavioral experiments using male Sprague-Dawley rats, systemic administration of catharanthine or 18-MC blocked nicotine enhancement of locomotor activity. Importantly, catharanthine attenuated nicotine self-administration in a dose-dependent manner while having no effect on food reinforcement. Lastly, administration of catharanthine and nicotine together greatly increased head twitch responses, indicating a potential synergistic hallucinogenic effect. These findings demonstrate that catharanthine and 18-MC have similar, but not identical effects on striatal DA dynamics, striatal cholinergic interneuron activity and nicotine psychomotor effects.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Dopamina , Dopamina , Ibogaína , Ibogaína/análogos & derivados , Nicotina , Receptores Nicotínicos , Animais , Dopamina/metabolismo , Masculino , Receptores Nicotínicos/metabolismo , Receptores Nicotínicos/efeitos dos fármacos , Nicotina/farmacologia , Ibogaína/farmacologia , Camundongos , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/efeitos dos fármacos , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Camundongos Endogâmicos C57BL , Antagonistas Nicotínicos/farmacologia , Oócitos/efeitos dos fármacos , Agonistas Nicotínicos/farmacologia , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia , Autoadministração , Xenopus laevis , Interneurônios/efeitos dos fármacos , Interneurônios/metabolismo , Relação Dose-Resposta a Droga , Atividade Motora/efeitos dos fármacos
6.
CNS Neurosci Ther ; 30(4): e14672, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38644561

RESUMO

AIMS: Motor abnormalities have been identified as one common symptom in patients with generalized tonic-clonic seizures (GTCS) inspiring us to explore the disease in a motor execution condition, which might provide novel insight into the pathomechanism. METHODS: Resting-state and motor-task fMRI data were collected from 50 patients with GTCS, including 18 patients newly diagnosed without antiepileptic drugs (ND_GTCS) and 32 patients receiving antiepileptic drugs (AEDs_GTCS). Motor activation and its association with head motion and cerebral gradients were assessed. Whole-brain network connectivity across resting and motor states was further calculated and compared between groups. RESULTS: All patients showed over-activation in the postcentral gyrus and the ND_GTCS showed decreased activation in putamen. Specifically, activation maps of ND_GTCS showed an abnormal correlation with head motion and cerebral gradient. Moreover, we detected altered functional network connectivity in patients within states and across resting and motor states by using repeated-measures analysis of variance. Patients did not show abnormal connectivity in the resting state, while distributed abnormal connectivity in the motor-task state. Decreased across-state network connectivity was also found in all patients. CONCLUSION: Convergent findings suggested the over-response of activation and connection of the brain to motor execution in GTCS, providing new clues to uncover motor susceptibility underlying the disease.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Descanso , Convulsões , Humanos , Masculino , Feminino , Adulto , Encéfalo/fisiopatologia , Encéfalo/diagnóstico por imagem , Descanso/fisiologia , Adulto Jovem , Convulsões/fisiopatologia , Convulsões/diagnóstico por imagem , Pessoa de Meia-Idade , Mapeamento Encefálico , Vias Neurais/fisiopatologia , Vias Neurais/diagnóstico por imagem , Anticonvulsivantes/uso terapêutico , Anticonvulsivantes/farmacologia , Adolescente , Atividade Motora/fisiologia , Atividade Motora/efeitos dos fármacos
7.
Drug Alcohol Depend ; 259: 111301, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38640863

RESUMO

BACKGROUND: The incidence of combination methamphetamine (METH)-opioid overdose has substantially increased in recent years. While agitation is uncommon after the naloxone (NLX) reversal of opioids, it is a major clinical concern in acute METH intoxication and can be physiologically antagonized by opioid-induced sedation. This study aimed to perform initial preclinical analysis of the safety and efficacy of dexmedetomidine (DEXMED) co-administered with NLX to attenuate METH-induced locomotor activity, as a rat model of agitation, after the reversal of fentanyl (FENT)-induced sedation. METHODS: Male Sprague Dawley rats were administered subcutaneous (SC) 0.1mg/kg FENT ± 1mg/kg METH. Fifteen min later, SC 0.1mg/kg NLX ± an increasing (0, 0.032, 0.056, and 0.1mg/kg) DEXMED dose was administered prior to the measurement of locomotor activity. After a washout period, the FENT ± METH and NLX ± DEXMED administration with the highest dose of DEXMED was administered for measurement of blood oxygen saturation and heart rate. RESULTS: After the NLX reversal of FENT-induced sedation, adjunct DEXMED substantially and significantly reduced METH-induced locomotor activity (p<0.05) at all doses tested. While the addition of DEXMED did not significantly reduce blood oxygenation in METH treated rats, it did so in the absence of METH. Also, DEXMED significantly reduced heart rate compared to non-DEXMED treated groups and resulted in further significant reductions in the animals not exposed to METH (p<0.05). CONCLUSIONS: These data provide preclinical evidence that DEXMED may be a safe and effective chemical restraint for METH-induced agitation after NLX opioid reversal.


Assuntos
Dexmedetomidina , Fentanila , Metanfetamina , Naloxona , Ratos Sprague-Dawley , Animais , Dexmedetomidina/farmacologia , Dexmedetomidina/administração & dosagem , Masculino , Metanfetamina/administração & dosagem , Fentanila/farmacologia , Fentanila/administração & dosagem , Ratos , Naloxona/farmacologia , Naloxona/administração & dosagem , Antagonistas de Entorpecentes/farmacologia , Antagonistas de Entorpecentes/administração & dosagem , Analgésicos Opioides/administração & dosagem , Analgésicos Opioides/farmacologia , Atividade Motora/efeitos dos fármacos , Hipnóticos e Sedativos/farmacologia , Hipnóticos e Sedativos/administração & dosagem , Frequência Cardíaca/efeitos dos fármacos , Relação Dose-Resposta a Droga
8.
Pharmacol Biochem Behav ; 239: 173770, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38636813

RESUMO

The population of most countries in the world is increasing and understanding risk factors that can influence the health of the older population is critical. Older adults consume alcohol often in a risky, binge manner. Previous work has demonstrated that aged rats are more sensitive to many of the effects of acute ethanol. In the current project aged, adult, and adolescent female and male rats were tested on the elevated plus maze and open field following either a 1.0 g/kg alcohol injection or a saline injection. We report sex- and age-dependent effects whereas aged female rats, but not aged male rats, showed an increased anxiolytic effect of alcohol in the elevated plus maze while aged male rats, but not aged female rats, showed increased stimulatory movement in the open field. In addition, significant age effects were found for both female and male rats. It is proposed that the sex- and age-dependent effects reported in the current studies may be due to differential levels of alcohol-induced allopregnanolone for the anxiolytic effects and differential levels of alcohol-induced dopamine for the stimulatory effects. The current work provides insights into factors influencing alcohol consumption in older adults.


Assuntos
Envelhecimento , Ansiolíticos , Etanol , Atividade Motora , Animais , Masculino , Feminino , Ratos , Etanol/administração & dosagem , Etanol/farmacologia , Ansiolíticos/farmacologia , Ansiolíticos/administração & dosagem , Envelhecimento/psicologia , Atividade Motora/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Ansiedade/psicologia , Ansiedade/tratamento farmacológico , Fatores Etários , Caracteres Sexuais , Aprendizagem em Labirinto/efeitos dos fármacos , Fatores Sexuais
9.
Brain Res ; 1834: 148904, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561086

RESUMO

1-(Phenylselanyl)-2-(p-tolyl)indolizine (MeSeI) is a selenoindolizine with an antidepressant-like effect in mice by regulation of the serotonergic system. This study investigated the involvement of dopaminergic and noradrenergic systems in the antidepressant-like action of MeSeI. For this purpose, Swiss male mice were pretreated with different antagonists, after 15 min, the MeSeI was administrated by intragastric (i.g.) via; after 30 min, the mouse behavior was assessed in the forced swimming test (FST). The action of MeSeI on the activity of monoamine oxidase (MAO) was determined. The pretreatment of mice with haloperidol (0.05 mg/kg, intraperitoneally, i.p.; non-selective dopamine receptor antagonist), sulpiride (50 mg/kg, i.p.; D2 receptor antagonist), yohimbine (1 mg/kg, i.p.; α2 receptor antagonist), and propranolol (2 mg/kg, i.p.; non-selective ß receptor antagonist), inhibited the anti-immobility action of MeSeI (50 mg/kg, i.g.) in the FST. This blocking effect was not observed when SCH23390 (0.01 mg/kg, i.p.; D1 receptor antagonist), and prazosin (1 mg/kg, i.p.; α1 receptor antagonist) were administered. The coadministration of subeffective doses of bupropion (3 mg/kg. i.g.; dopamine and noradrenaline reuptake inhibitor) and MeSeI (0.5 mg/kg. i.g.) reduced the immobility time in the FST. Furthermore, MeSeI inhibited MAO-A and B activities in vitro and ex vivo tests. These results suggest that MeSeI exerts its antidepressant-like effect via regulation of the D2, α2, and ß1 receptors and the inhibition of MAO-A and B activities. Molecular docking investigations corroborated these results. This study provides comprehensive insights into the antidepressant-like mechanism of MeSeI in mice, suggesting its potential as a novel antidepressant candidate.


Assuntos
Antidepressivos , Dopamina , Monoaminoxidase , Compostos Organosselênicos , Animais , Masculino , Camundongos , Antidepressivos/farmacologia , Compostos Organosselênicos/farmacologia , Monoaminoxidase/metabolismo , Monoaminoxidase/efeitos dos fármacos , Dopamina/metabolismo , Antagonistas de Dopamina/farmacologia , Natação , Norepinefrina/metabolismo , Receptores Dopaminérgicos/metabolismo , Receptores Dopaminérgicos/efeitos dos fármacos , Depressão/tratamento farmacológico , Depressão/metabolismo , Atividade Motora/efeitos dos fármacos
10.
Behav Pharmacol ; 35(4): 156-160, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38651975

RESUMO

Exposure to chronic caffeine during adolescence has been shown to produce decreased anxiety-like behaviors in rats as well as decreased immobility in the forced swim test (FST) suggesting an antidepressant-like effect. The effects of chronic caffeine on anxiety, however, have been found to be test-dependent and sexually dimorphic. In addition, decreased immobility in the FST has been argued to reflect a shift toward active coping behavior as opposed to an antidepressant-like effect. In order to further characterize the effects of adolescent caffeine exposure, the present experiment assessed the effects of caffeine on marble burying behavior in a two-zone marble burying task. There was no difference in the amount of time rats spent in the two zones failing to support a shift in coping strategy. Caffeine-exposed rats spent less time engaged in marble burying activity and buried slightly fewer marbles, suggesting an anxiolytic effect of caffeine. In addition, caffeine treated rats spent less time engaged in nondirected burying and slightly more time actively engaging with the marbles; however, these effects appeared to be sexually dimorphic as they were driven by larger changes in the females. Overall, these results support an anxiolytic effect of adolescent caffeine, with female behavior appearing to be more affected by caffeine than males.


Assuntos
Ansiedade , Comportamento Animal , Cafeína , Animais , Cafeína/farmacologia , Cafeína/administração & dosagem , Masculino , Ansiedade/tratamento farmacológico , Feminino , Ratos , Comportamento Animal/efeitos dos fármacos , Estimulantes do Sistema Nervoso Central/farmacologia , Ansiolíticos/farmacologia , Ratos Sprague-Dawley , Atividade Motora/efeitos dos fármacos
11.
Neurochem Int ; 176: 105743, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38641026

RESUMO

Neonatal brain inflammation produced by intraperitoneal (i.p.) injection of lipopolysaccharide (LPS) results in long-lasting brain dopaminergic injury and motor disturbances in adult rats. The goal of the present work is to investigate the effect of neonatal systemic LPS exposure (1 or 2 mg/kg, i.p. injection in postnatal day 5, P5, male rats)-induced dopaminergic injury to examine methamphetamine (METH)-induced behavioral sensitization as an indicator of drug addiction. On P70, subjects underwent a treatment schedule of 5 once daily subcutaneous (s.c.) administrations of METH (0.5 mg/kg) (P70-P74) to induce behavioral sensitization. Ninety-six hours following the 5th treatment of METH (P78), the rats received one dose of 0.5 mg/kg METH (s.c.) to reintroduce behavioral sensitization. Hyperlocomotion is a critical index caused by drug abuse, and METH administration has been shown to produce remarkable locomotor-enhancing effects. Therefore, a random forest model was used as the detector to extract the feature interaction patterns among the collected high-dimensional locomotor data. Our approaches identified neonatal systemic LPS exposure dose and METH-treated dates as features significantly associated with METH-induced behavioral sensitization, reinstated behavioral sensitization, and perinatal inflammation in this experimental model of drug addiction. Overall, the analysis suggests that the implementation of machine learning strategies is sensitive enough to detect interaction patterns in locomotor activity. Neonatal LPS exposure also enhanced METH-induced reduction of dopamine transporter expression and [3H]dopamine uptake, reduced mitochondrial complex I activity, and elevated interleukin-1ß and cyclooxygenase-2 concentrations in the P78 rat striatum. These results indicate that neonatal systemic LPS exposure produces a persistent dopaminergic lesion leading to a long-lasting change in the brain reward system as indicated by the enhanced METH-induced behavioral sensitization and reinstated behavioral sensitization later in life. These findings indicate that early-life brain inflammation may enhance susceptibility to drug addiction development later in life, which provides new insights for developing potential therapeutic treatments for drug addiction.


Assuntos
Animais Recém-Nascidos , Lipopolissacarídeos , Aprendizado de Máquina , Metanfetamina , Animais , Metanfetamina/farmacologia , Metanfetamina/toxicidade , Ratos , Masculino , Lipopolissacarídeos/toxicidade , Comportamento Animal/efeitos dos fármacos , Estimulantes do Sistema Nervoso Central/farmacologia , Encefalite/induzido quimicamente , Encefalite/metabolismo , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/induzido quimicamente , Doenças Neuroinflamatórias/metabolismo , Locomoção/efeitos dos fármacos , Locomoção/fisiologia , Feminino , Ratos Sprague-Dawley , Atividade Motora/efeitos dos fármacos
12.
Schizophr Res ; 267: 432-440, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38642484

RESUMO

Maternal immune activation (MIA) during pregnancy is known to increase the risk of development of schizophrenia in the offspring. Sex steroid hormone analogues have been proposed as potential antipsychotic treatments but the mechanisms of action involved remain unclear. Estrogen has been shown to alter N-methyl-d-aspartate (NMDA) receptor binding in the brain. We therefore studied the effect of chronic treatment with 17ß-estradiol, its isomer, 17α-estradiol, and the selective estrogen receptor modulator, raloxifene, on MIA-induced psychosis-like behaviour and the effect of the NMDA receptor antagonist, MK-801. Pregnant rats were treated with saline or the viral mimetic, poly(I:C), on gestational day 15. Adult female offspring were tested for changes in baseline prepulse inhibition (PPI) and the effects of acute treatment with MK-801 on PPI and locomotor activity. Poly(I:C) offspring had significantly lower baseline PPI compared to control offspring, and this effect was prevented by 17ß-estradiol and raloxifene, but not 17α-estradiol. MK-801 reduced PPI in control offspring but had no effect in poly(I:C) offspring treated with vehicle. Chronic treatment with 17ß-estradiol and raloxifene restored the effect of MK-801 on PPI. There were no effects of MIA or estrogenic treatment on MK-801 induced locomotor hyperactivity. These results show that MIA affects baseline PPI as well as NMDA receptor-mediated regulation of PPI in female rats, and strengthen the view that estrogenic treatment may have antipsychotic effects.


Assuntos
Modelos Animais de Doenças , Maleato de Dizocilpina , Estradiol , Poli I-C , Efeitos Tardios da Exposição Pré-Natal , Inibição Pré-Pulso , Cloridrato de Raloxifeno , Receptores de N-Metil-D-Aspartato , Esquizofrenia , Animais , Feminino , Estradiol/farmacologia , Cloridrato de Raloxifeno/farmacologia , Esquizofrenia/tratamento farmacológico , Esquizofrenia/induzido quimicamente , Gravidez , Inibição Pré-Pulso/efeitos dos fármacos , Maleato de Dizocilpina/farmacologia , Poli I-C/farmacologia , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Ratos , Antagonistas de Aminoácidos Excitatórios/farmacologia , Masculino , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Estrogênios/farmacologia , Atividade Motora/efeitos dos fármacos
13.
Neurosci Lett ; 832: 137801, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38685377

RESUMO

The continuous high intake of caffeinated products may harm CNS. Sodium benzoate (SB), broadly used for food preservation, may also have an impact. The current research studied the influence of caffeine and two doses of SB during adolescence period on behavior and brain alterations. Adolescent rats (90-120 gm) were exposed to vehicle, SB 100 and 400 mg/kg, p.o, caffeine (30 mg/kg, i.p), SB 100 or 400 + caffeine for 28 days. Locomotor performances were assessed by the open field, learning and memory were considered with novel object and y-maze, while anxiety was evaluated by light and dark as well as successive allays tests. The results showed that the motor activity of adolescent rats increased with each single treatment. Recognition memory was improved by SB100 and its combination with caffeine while working memory was reduced by SB (100 or 400) combination with caffeine compared with caffeine group. The anxiolytic effect of caffeine was reduced by SB co-treatment in either dose. Concerning biochemical study in the frontal cortex and hippocampus, oxidative biomarkers as well as Cholinesterase content were elevated due to SB400 + caffeine. Dopamine content was almost elevated by all treatments in both regions while GABA content was increased in the frontal cortex only. The obtained results pointed to histopathological changes as a result of brain oxidative stress and undesirable working memory consequences due to caffeine administration with SB, mostly the large dose. The outcomes propose new recommendations to evade the consolidation between processed nourishment and caffeinated beverages during adolescence.


Assuntos
Cafeína , Ratos Wistar , Benzoato de Sódio , Animais , Benzoato de Sódio/farmacologia , Cafeína/farmacologia , Masculino , Ratos , Comportamento Animal/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Aprendizagem em Labirinto/efeitos dos fármacos , Ansiedade/induzido quimicamente , Ansiedade/psicologia , Estimulantes do Sistema Nervoso Central/farmacologia , Atividade Motora/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Dopamina/metabolismo
14.
Eur J Neurosci ; 59(10): 2450-2464, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38480476

RESUMO

Amphetamine (AMPH) exposure induces behavioural and neurochemical sensitization observed in rodents as hyperlocomotion and increased dopamine release in response to a subsequent dose. Brain Angiotensin II modulates dopaminergic neurotransmission through its AT1 receptors (AT1-R), positively regulating striatal dopamine synthesis and release. This work aims to evaluate the AT1-R role in the development and maintenance of AMPH-induced sensitization. Also, the AT1-R involvement in striatal dopamine reuptake was analysed. The sensitization protocol consisted of daily AMPH administration for 5 days and tested 21 days after withdrawal. An AT1-R antagonist, candesartan, was administered before or after AMPH exposure to evaluate the participation of AT1-R in the development and maintenance of sensitization, respectively. Sensitization was evaluated by locomotor activity and c-Fos immunostaining. Changes in dopamine reuptake kinetics were evaluated 1 day after AT1-R blockade withdrawal treatment, with or without the addition of AMPH in vitro. The social interaction test was performed as another behavioural output. Repeated AMPH exposure induced behavioural and neurochemical sensitization, which was prevented and reversed by candesartan. The AT1-R blockade increased the dopamine reuptake kinetics. Neither the AMPH administration nor the AT1-R blockade altered the performance of social interaction. Our results highlight the AT1-R's crucial role in AMPH sensitization. The enhancement of dopamine reuptake kinetics induced by the AT1-R blockade might attenuate the neuroadaptive changes that lead to AMPH sensitization and its self-perpetuation. Therefore, AT1-R is a prominent candidate as a target for pharmacological treatment of pathologies related to dopamine imbalance, including drug addiction and schizophrenia.


Assuntos
Anfetamina , Bloqueadores do Receptor Tipo 1 de Angiotensina II , Angiotensina II , Benzimidazóis , Compostos de Bifenilo , Corpo Estriado , Dopamina , Animais , Anfetamina/farmacologia , Masculino , Dopamina/metabolismo , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Angiotensina II/farmacologia , Compostos de Bifenilo/farmacologia , Benzimidazóis/farmacologia , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Ratos Wistar , Ratos , Receptor Tipo 1 de Angiotensina/metabolismo , Tetrazóis/farmacologia , Estimulantes do Sistema Nervoso Central/farmacologia , Interação Social/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fos/metabolismo
15.
Exp Brain Res ; 242(5): 1175-1190, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38499659

RESUMO

Parkinson's disease is a degenerative, chronic and progressive disease, characterized by motor dysfunctions. Patients also exhibit non-motor symptoms, such as affective and sleep disorders. Sleep disorders can potentiate clinical and neuropathological features and lead to worse prognosis. The goal of this study was to evaluate the effects of sleep deprivation (SD) in mice submitted to a progressive pharmacological model of Parkinsonism (chronic administration with a low dose of reserpine). Male Swiss mice received 20 injections of reserpine (0.1 mg/kg) or vehicle, on alternate days. SD was applied before or during reserpine treatment and was performed by gentle handling for 6 h per day for 10 consecutive days. Animals were submitted to motor and non-motor behavioral assessments and neurochemical evaluations. Locomotion was increased by SD and decreased by reserpine treatment. SD during treatment delayed the onset of catalepsy, but SD prior to treatment potentiated reserpine-induced catalepsy. Thus, although SD induced an apparent beneficial effect on motor parameters, a delayed deleterious effect on alterations induced by reserpine was found. In the object recognition test, both SD and reserpine treatment produced cognitive deficits. In addition, the association between SD and reserpine induced anhedonic-like behavior. Finally, an increase in oxidative stress was found in hippocampus of mice subjected to SD, and tyrosine hydroxylase immunoreactivity was reduced in substantia nigra of reserpine-treated animals. Results point to a possible late effect of SD, aggravating the deficits in mice submitted to the reserpine progressive model of PD.


Assuntos
Modelos Animais de Doenças , Transtornos Parkinsonianos , Reserpina , Privação do Sono , Animais , Masculino , Reserpina/farmacologia , Privação do Sono/complicações , Camundongos , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/fisiopatologia , Catalepsia/induzido quimicamente , Estresse Oxidativo/fisiologia , Estresse Oxidativo/efeitos dos fármacos , Tirosina 3-Mono-Oxigenase/metabolismo , Atividade Motora/fisiologia , Atividade Motora/efeitos dos fármacos , Reconhecimento Psicológico/fisiologia , Reconhecimento Psicológico/efeitos dos fármacos , Anedonia/fisiologia , Anedonia/efeitos dos fármacos
16.
Biomed Pharmacother ; 174: 116438, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38513594

RESUMO

The mitogen-activated protein kinase (MAPK) signaling pathway, particularly the p38 MAPK and ERK1/2, has been implicated in the pathogenesis of Parkinson's disease (PD). Recent studies have shown that MAPK signaling pathway can influence the expression of matrix metalloproteinase 9 (MMP-9), known for its involvement in various physiological and pathological processes, including neurodegenerative diseases. This study explores the modulation of MMP-9 expression via the MAPK/ERK signaling cascade and its potential therapeutic implications in the context of PD-associated motor dysfunction. Here, tolperisone hydrochloride (TL), a muscle relaxant that blocks voltage-gated sodium and calcium channels, was used as a treatment to observe its effect on MAPK signaling and MMP-9 expression. Rotenone (RT) exposure in mice resulted in a significant reduction in substantia nigra and primary motor cortex neurons, which were further evidenced by impairments in motor function. When TL was administered, neuron count was restored (89.0 ± 4.78 vs 117.0 ± 4.46/mm2), and most of the motor dysfunction was alleviated. Mechanistically, TL reduced the protein expression of phospho-p38MAPK (1.06 fold vs 1.00 fold) and phospho-ERK1/2 (1.16 fold vs 1.02 fold), leading to the inhibition of MAPK signaling, as well as reduced MMP-9 concentrations (2.76 ± 0.10 vs 1.94 ± 0.10 ng/mL) in the process of rescuing RT-induced neuronal cell death and motor dysfunction. Computational analysis further revealed TL's potential inhibitory properties against MMP-9 along with N and L-type calcium channels. These findings shed light on TL's neuroprotective effects via MMP-9 inhibition and MAPK signaling downregulation, offering potential therapeutic avenues for PD-associated motor dysfunction.


Assuntos
Inibidores de Metaloproteinases de Matriz , Doença de Parkinson , Tolperisona , Animais , Masculino , Camundongos , Regulação para Baixo/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Metaloproteinase 9 da Matriz/metabolismo , Inibidores de Metaloproteinases de Matriz/farmacologia , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Rotenona/farmacologia , Tolperisona/farmacocinética , Tolperisona/uso terapêutico
17.
Neuropsychopharmacology ; 49(6): 905-914, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38177696

RESUMO

The NMDA receptor (NMDAR) antagonist ketamine has shown great potential as a rapid-acting antidepressant; however, its use is limited by poor oral bioavailability and a side effect profile that necessitates in-clinic dosing. GM-1020 is a novel NMDAR antagonist that was developed to address these limitations of ketamine as a treatment for depression. Here, we present the preclinical characterization of GM-1020 alongside ketamine, for comparison. In vitro, we profiled GM-1020 for binding to NMDAR and functional inhibition using patch-clamp electrophysiology. In vivo, GM-1020 was assessed for antidepressant-like efficacy using the Forced Swim Test (FST) and Chronic Mild Stress (CMS), while motor side effects were assessed in spontaneous locomotor activity and on the rotarod. The pharmacokinetic properties of GM-1020 were profiled across multiple preclinical species. Electroencephalography (EEG) was performed to determine indirect target engagement and provide a potentially translational biomarker. These results demonstrate that GM-1020 is an orally bioavailable NMDAR antagonist with antidepressant-like efficacy at exposures that do not produce unwanted motor effects.


Assuntos
Antidepressivos , Receptores de N-Metil-D-Aspartato , Animais , Antidepressivos/administração & dosagem , Antidepressivos/farmacologia , Antidepressivos/farmacocinética , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Masculino , Ratos , Camundongos , Administração Oral , Ratos Sprague-Dawley , Disponibilidade Biológica , Ketamina/administração & dosagem , Ketamina/farmacologia , Depressão/tratamento farmacológico , Atividade Motora/efeitos dos fármacos , Relação Dose-Resposta a Droga , Camundongos Endogâmicos C57BL , Antagonistas de Aminoácidos Excitatórios/administração & dosagem , Antagonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacocinética , Humanos
18.
Physiol Behav ; 263: 114131, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36796532

RESUMO

Across vertebrates, the midbrain periaqueductal gray (PAG) plays a critical role in social and vocal behavior. Dopaminergic neurotransmission also modulates these behaviors, and dopaminergic innervation of the PAG has been well documented. Nonetheless, the potential role of dopamine in shaping vocal production at the level of the PAG is not well understood. Here, we tested the hypothesis that dopamine modulates vocal production in the PAG, using a well-characterized vertebrate model system for the study of vocal communication, the plainfin midshipman fish, Porichthys notatus. We found that focal dopamine injections to the midshipman PAG rapidly and reversibly inhibited vocal production triggered by stimulation of known vocal-motor structures in the preoptic area / anterior hypothalamus. While dopamine inhibited vocal-motor output, it did not alter behaviorally-relevant parameters of this output, such as vocalization duration and frequency. Dopamine-induced inhibition of vocal production was prevented by the combined blockade of D1- and D2-like receptors but was unaffected by isolated blockade of either D1-receptors or D2-receptors. Our results suggest dopamine neuromodulation in the midshipman PAG may inhibit natural vocal behavior, in courtship and/or agonistic social contexts.


Assuntos
Dopamina , Atividade Motora , Substância Cinzenta Periaquedutal , Vocalização Animal , Dopamina/farmacologia , Animais , Substância Cinzenta Periaquedutal/efeitos dos fármacos , Vocalização Animal/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Batracoidiformes
19.
Pharm Biol ; 60(1): 689-698, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35298359

RESUMO

CONTEXT: The mammalian circadian clock system regulates physiological function. Crude drugs, containing Polygalae Radix, and Kampo, combining multiple crude drugs, have been used to treat various diseases, but few studies have focussed on the circadian clock. OBJECTIVE: We examine effective crude drugs, which cover at least one or two of Kampo, for the shortening effects on period length of clock gene expression rhythm, and reveal the mechanism of shortening effects. MATERIALS AND METHODS: We prepared 40 crude drugs. In the in vitro experiments, we used mouse embryonic fibroblasts from PERIOD2::LUCIFERASE knock-in mice (background; C57BL/6J mice) to evaluate the effect of crude drugs on the period length of core clock gene, Per2, expression rhythm by chronic treatment (six days) with distilled water or crude drugs (100 µg/mL). In the in vivo experiments, we evaluated the free-running period length of C57BL/6J mice fed AIN-93M or AIN-93M supplemented with 1% crude drug (6 weeks) that shortened the period length of the PERIOD2::LUCIFERASE expression rhythm in the in vitro experiments. RESULTS: We found that Polygalae Radix (ED50: 24.01 µg/mL) had the most shortened PERIOD2::LUCIFERASE rhythm period length in 40 crude drugs and that the CaMKII pathway was involved in this effect. Moreover, long-term feeding with AIN-93M+Polygalae Radix slightly shortened the free-running period of the mouse locomotor activity rhythm. DISCUSSION AND CONCLUSIONS: Our results indicate that Polygalae Radix may be regarded as a new therapy for circadian rhythm disorder and that the CaMKII pathway may be regarded as a target pathway for circadian rhythm disorders.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/fisiologia , Relógios Circadianos/efeitos dos fármacos , Extratos Vegetais/farmacologia , Polygala , Animais , Relação Dose-Resposta a Droga , Masculino , Medicina Kampo , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Extratos Vegetais/uso terapêutico , Transdução de Sinais/efeitos dos fármacos
20.
Artigo em Inglês | MEDLINE | ID: mdl-35114395

RESUMO

Cadmium (Cd) exerts detrimental effects on multiple biological processes of the living organisms along with epigenetic transgenerational effect. Drosophila melanogaster offers unique opportunity to evaluate Cd toxicity when studying important life traits in short duration of time by designing distinct behavioural assays. Present study utilized this model organism to assess Cd induced lethality, retarded growth, decreased life span and altered behaviour of the animals either at larval or adult stage. Our investigations revealed reduced locomotion and reproductive fitness of the animals upon Cd exposure. Transgenerational effect on locomotion was found to be behaviour specific as larval crawling was affected, but adult fly negative geotaxis was comparable to the control. Mechanistically, decreased antioxidant enzymes activity, superoxide dismutase (SOD) and catalase (CAT) together with altered homeostasis of essential elements (Fe, Zn and Mg) may be responsible for the observed effects. Altogether our work showed extensive range of Cd altered Drosophila behaviour which warrants need to control environmental Cd toxicity.


Assuntos
Cádmio/toxicidade , Drosophila melanogaster/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Animais , Larva/efeitos dos fármacos , Longevidade/efeitos dos fármacos , Reprodução/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA