Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.452
Filtrar
1.
Exp Neurol ; 376: 114771, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38580154

RESUMO

Parkinson's disease (PD) rodent models provide insight into the relationship between nigrostriatal dopamine (DA) signaling and locomotor function. Although toxin-based rat models produce frank nigrostriatal neuron loss and eventual motor decline characteristic of PD, the rapid nature of neuronal loss may not adequately translate premotor traits, such as cognitive decline. Unfortunately, rodent genetic PD models, like the Pink1 knockout (KO) rat, often fail to replicate the differential severity of striatal DA and tyrosine hydroxylase (TH) loss, and a bradykinetic phenotype, reminiscent of human PD. To elucidate this inconsistency, we evaluated aging as a progression factor in the timing of motor and non-motor cognitive impairments. Male PINK1 KO and age-matched wild type (WT) rats were evaluated in a longitudinal study from 3 to 16 months old in one cohort, and in a cross-sectional study of young adult (6-7 months) and aged (18-19 months) in another cohort. Young adult PINK1 KO rats exhibited hyperkinetic behavior associated with elevated DA and TH in the substantia nigra (SN), which decreased therein, but not striatum, in the aged KO rats. Additionally, norepinephrine levels decreased in aged KO rats in the prefrontal cortex (PFC), paired with a higher DA levels in young and aged KO. Although a younger age of onset characterizes familial forms of PD, our results underscore the critical need to consider age-related factors. Moreover, the results indicate that compensatory mechanisms may exist to preserve locomotor function, evidenced by increased DA in the SN early in the lifespan, in response to deficient PINK1 function, which declines with aging and the onset of motor decline.


Assuntos
Envelhecimento , Corpo Estriado , Dopamina , Proteínas Quinases , Substância Negra , Tirosina 3-Mono-Oxigenase , Animais , Tirosina 3-Mono-Oxigenase/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/deficiência , Proteínas Quinases/metabolismo , Substância Negra/metabolismo , Envelhecimento/genética , Masculino , Ratos , Dopamina/metabolismo , Corpo Estriado/metabolismo , Atividade Motora/fisiologia , Atividade Motora/genética , Ratos Transgênicos
2.
J Neurosci ; 44(19)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38531632

RESUMO

BMAL2 (ARNTL2) is a paralog of BMAL1 that can form heterodimers with the other circadian factors CLOCK and NPAS2 to activate transcription of clock and clock-controlled genes. To assess a possible role of Bmal2 in the circadian regulation of metabolism, we investigated daily variations of energy metabolism, feeding behavior, and locomotor behavior, as well as ability to anticipate restricted food access in male mice knock-out for Bmal2 (B2KO). While their amount of food intake and locomotor activity were normal compared with wild-type mice, B2KO mice displayed increased adiposity (1.5-fold higher) and fasted hyperinsulinemia (fourfold higher) and tended to have lower energy expenditure at night. Impairment of the master clock in the suprachiasmatic nuclei was evidenced by the shorter free-running period (-14 min/cycle) of B2KO mice compared with wild-type controls and by a loss of daily rhythmicity in expression of intracellular metabolic regulators (e.g., Lipoprotein lipase and Uncoupling protein 2). The circadian window of eating was longer in B2KO mice. The circadian patterns of food intake and meal numbers were bimodal in control mice but not in B2KO mice. In response to restricted feeding, food-anticipatory activity was almost prevented in B2KO mice, suggesting altered food clock that controls anticipation of food availability. In the mediobasal hypothalamus of B2KO mice, expression of genes coding orexigenic neuropeptides (including Neuropeptide y and Agouti-Related Peptide) was downregulated, while Lipoprotein lipase expression lost its rhythmicity. Together, these data highlight that BMAL2 has major impacts on brain regulation of metabolic rhythms, sleep-wake cycle, and food anticipation.


Assuntos
Fatores de Transcrição ARNTL , Ritmo Circadiano , Metabolismo Energético , Comportamento Alimentar , Hipotálamo , Camundongos Knockout , Animais , Camundongos , Metabolismo Energético/fisiologia , Metabolismo Energético/genética , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Masculino , Comportamento Alimentar/fisiologia , Ritmo Circadiano/fisiologia , Ritmo Circadiano/genética , Hipotálamo/metabolismo , Camundongos Endogâmicos C57BL , Atividade Motora/fisiologia , Atividade Motora/genética , Ingestão de Alimentos/genética , Ingestão de Alimentos/fisiologia
3.
Dev Psychobiol ; 65(1): e22347, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36567651

RESUMO

Exercise has been shown to be beneficial in reducing symptoms of affective disorders and to increase the expression of brain-derived neurotrophic factor (BDNF). The BDNF Val66Met polymorphism is associated with reduced activity-dependent BDNF release and increased risk for anxiety and depression. Male and female Val66Met rats were given access to running wheels from 3 weeks of age and compared to sedentary controls. Anxiety- and depression-like behaviors were measured in adulthood using the elevated plus maze (EPM), open field (OF), and forced swim test (FST). Expression of BDNF and a number of stress-related genes, the glucocorticoid receptor (Nr3c1), serum/glucocorticoid-regulated kinase 1 (Sgk1), and FK506 binding protein 51 (Fkbp5) in the hippocampus were also measured. Rats given access to running wheels developed high levels of voluntary exercise, decreased open-arm time on the EPM and center-field time in the OF, reduced overall exploratory activity in the open field, and increased immobility time in the FST with no differences between genotypes. Chronic exercise induced a significant increase in Bdnf mRNA and BDNF protein levels in the hippocampus with some of these effects being genotype specific. Exercise decreased the expression of Nr3c1 and Sgk1, but increased the expression of Fkbp5. These results suggest that chronic running-wheel exercise from adolescence increased anxiety and depression-like phenotypes in adulthood, independent of BDNF Val66Met genotype. Further studies are required to confirm that increased indices of anxiety-like behavior are independent from reduced overall locomotor activity.


Assuntos
Ansiedade , Fator Neurotrófico Derivado do Encéfalo , Depressão , Atividade Motora , Animais , Feminino , Masculino , Ratos , Ansiedade/genética , Ansiedade/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Depressão/genética , Depressão/metabolismo , Genótipo , Glucocorticoides , Hipocampo/metabolismo , Atividade Motora/genética , Atividade Motora/fisiologia , Fenótipo , Estresse Fisiológico/genética , Estresse Fisiológico/fisiologia , Estresse Psicológico/genética , Estresse Psicológico/metabolismo
4.
Mol Brain ; 15(1): 76, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-36064580

RESUMO

Loss of function mutations in the X-linked gene encoding methyl-CpG binding protein 2 (MECP2) cause Rett syndrome (RTT), a postnatal neurological disorder. The loss of motor function is an important clinical feature of RTT that manifests early during the course of the disease. RTT mouse models with mutations in the murine orthologous Mecp2 gene replicate many human phenotypes, including progressive motor impairments. However, relatively little is known about the changes in circuit function during the progression of motor deficit in this model. As the motor cortex is the key node in the motor system for the control of voluntary movement, we measured firing activity in populations of motor cortical neurons during locomotion on a motorized wheel-treadmill. Different populations of neurons intermingled in the motor cortex signal different aspects of the locomotor state of the animal. The proportion of running selective neurons whose activity positively correlates with locomotion speed gradually decreases with weekly training in wild-type mice, but not in Mecp2-null mice. The fraction of rest-selective neurons whose activity negatively correlates with locomotion speed does not change with training in wild-type mice, but is higher and increases with the progression of locomotion deficit in mutant mice. The synchronization of population activity that occurs in WT mice with training did not occur in Mecp2-null mice, a phenotype most clear during locomotion and observable across all functional cell types. Our results could represent circuit-level biomarkers for motor regression in Rett syndrome.


Assuntos
Locomoção , Proteína 2 de Ligação a Metil-CpG , Córtex Motor , Animais , Modelos Animais de Doenças , Aprendizagem/fisiologia , Locomoção/genética , Proteína 2 de Ligação a Metil-CpG/deficiência , Proteína 2 de Ligação a Metil-CpG/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora/genética , Córtex Motor/metabolismo , Fenótipo , Síndrome de Rett/genética , Síndrome de Rett/metabolismo
5.
Proc Natl Acad Sci U S A ; 119(32): e2113795119, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35917346

RESUMO

KIF1A is a kinesin superfamily motor protein that transports synaptic vesicle precursors in axons. Cargo binding stimulates the dimerization of KIF1A molecules to induce processive movement along microtubules. Mutations in human Kif1a lead to a group of neurodegenerative diseases called KIF1A-associated neuronal disorder (KAND). KAND mutations are mostly de novo and autosomal dominant; however, it is unknown if the function of wild-type KIF1A motors is inhibited by heterodimerization with mutated KIF1A. Here, we have established Caenorhabditis elegans models for KAND using CRISPR-Cas9 technology and analyzed the effects of human KIF1A mutation on axonal transport. In our C. elegans models, both heterozygotes and homozygotes exhibited reduced axonal transport. Suppressor screening using the disease model identified a mutation that recovers the motor activity of mutated human KIF1A. In addition, we developed in vitro assays to analyze the motility of heterodimeric motors composed of wild-type and mutant KIF1A. We find that mutant KIF1A significantly impaired the motility of heterodimeric motors. Our data provide insight into the molecular mechanism underlying the dominant nature of de novo KAND mutations.


Assuntos
Transporte Axonal , Caenorhabditis elegans , Cinesinas , Doenças Neurodegenerativas , Vesículas Sinápticas , Animais , Transporte Axonal/genética , Caenorhabditis elegans/genética , Modelos Animais de Doenças , Genes Dominantes , Humanos , Cinesinas/genética , Atividade Motora/genética , Mutação , Doenças Neurodegenerativas/genética , Vesículas Sinápticas/genética , Vesículas Sinápticas/metabolismo
6.
Genes Brain Behav ; 21(4): e12802, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35285135

RESUMO

Rhythmic locomotor behaviour of flies is controlled by an endogenous time-keeping mechanism, the circadian clock, and is influenced by environmental temperatures. Flies inherently prefer cool temperatures around 25°C, and under such conditions, time their locomotor activity to occur at dawn and dusk. Under relatively warmer conditions such as 30°C, flies shift their activity into the night, advancing their morning activity bout into the early morning, before lights-ON, and delaying their evening activity into early night. The molecular basis for such temperature-dependent behavioural modulation has been associated with core circadian clock genes, but the neuronal basis is not yet clear. Under relatively cool temperatures such as 25°C, the role of the circadian pacemaker ventrolateral neurons (LNvs), along with a major neuropeptide secreted by them, pigment dispersing factor (PDF), has been showed in regulating various aspects of locomotor activity rhythms. However, the role of the LNvs and PDF in warm temperature-mediated behavioural modulation has not been explored. We show here that flies lacking proper PDF signalling or the LNvs altogether, cannot suppress their locomotor activity resulting in loss of sleep during the middle of the night, and thus describe a novel role for PDF signalling and the LNvs in behavioural modulation under warm ambient conditions. In a rapidly warming world, such behavioural plasticity may enable organisms to respond to harsh temperatures in the environment.


Assuntos
Proteínas de Drosophila , Neuropeptídeos , Animais , Ritmo Circadiano/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Atividade Motora/genética , Neuropeptídeos/genética
7.
Proc Natl Acad Sci U S A ; 119(7)2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35145028

RESUMO

The cerebellum, the site where protein kinase C (PKC) was first discovered, contains the highest amount of PKC in the central nervous system, with PKCγ being the major isoform. Systemic PKCγ-knockout (KO) mice showed impaired motor coordination and deficient pruning of surplus climbing fibers (CFs) from developing cerebellar Purkinje cells (PCs). However, the physiological significance of PKCγ in the mature cerebellum and the cause of motor incoordination remain unknown. Using adeno-associated virus vectors targeting PCs, we showed that impaired motor coordination was restored by re-expression of PKCγ in mature PKCγ-KO mouse PCs in a kinase activity-dependent manner, while normal motor coordination in mature Prkcgfl/fl mice was impaired by the Cre-dependent removal of PKCγ from PCs. Notably, the rescue or removal of PKCγ from mature PKCγ-KO or Prkcgfl/fl mice, respectively, did not affect the CF innervation profile of PCs, suggesting the presence of a mechanism distinct from multiple CF innervation of PCs for the motor defects in PKCγ-deficient mice. We found marked potentiation of Ca2+-activated large-conductance K+ (BK) channel currents in PKCγ-deficient mice, as compared to wild-type mice, which decreased the membrane resistance, resulting in attenuation of the electrical signal during the propagation and significant alterations of the complex spike waveform. These changes in PKCγ-deficient mice were restored by the rescue of PKCγ or pharmacological suppression of BK channels. Our results suggest that PKCγ is a critical regulator that negatively modulates BK currents in PCs, which significantly influences PC output from the cerebellar cortex and, eventually, motor coordination.


Assuntos
Terapia Genética , Atividade Motora/genética , Canais de Potássio Cálcio-Ativados/metabolismo , Proteína Quinase C/metabolismo , Células de Purkinje/enzimologia , Animais , Sinalização do Cálcio , Deleção de Genes , Camundongos , Camundongos Knockout , Atividade Motora/fisiologia , Canais de Potássio Cálcio-Ativados/genética , Proteína Quinase C/genética , Potenciais Sinápticos
8.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35165191

RESUMO

FOXP1 syndrome caused by haploinsufficiency of the forkhead box protein P1 (FOXP1) gene is a neurodevelopmental disorder that manifests motor dysfunction, intellectual disability, autism, and language impairment. In this study, we used a Foxp1+/- mouse model to address whether cognitive and motor deficits in FOXP1 syndrome are associated with mitochondrial dysfunction and oxidative stress. Here, we show that genes with a role in mitochondrial biogenesis and dynamics (e.g., Foxo1, Pgc-1α, Tfam, Opa1, and Drp1) were dysregulated in the striatum of Foxp1+/- mice at different postnatal stages. Furthermore, these animals exhibit a reduced mitochondrial membrane potential and complex I activity, as well as decreased expression of the antioxidants superoxide dismutase 2 (Sod2) and glutathione (GSH), resulting in increased oxidative stress and lipid peroxidation. These features can explain the reduced neurite branching, learning and memory, endurance, and motor coordination that we observed in these animals. Taken together, we provide strong evidence of mitochondrial dysfunction in Foxp1+/- mice, suggesting that insufficient energy supply and excessive oxidative stress underlie the cognitive and motor impairment in FOXP1 deficiency.


Assuntos
Fatores de Transcrição Forkhead/genética , Deficiência Intelectual/genética , Transtornos Motores/genética , Proteínas Repressoras/genética , Animais , Transtorno do Espectro Autista/genética , Transtorno Autístico/metabolismo , Cognição/fisiologia , Modelos Animais de Doenças , Fatores de Transcrição Forkhead/deficiência , Fatores de Transcrição Forkhead/metabolismo , Haploinsuficiência/genética , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/genética , Mitocôndrias/metabolismo , Atividade Motora/genética , Transtornos Motores/metabolismo , Transtornos do Neurodesenvolvimento/metabolismo , Neurogênese , Estresse Oxidativo/fisiologia , Proteínas Repressoras/deficiência , Proteínas Repressoras/metabolismo
9.
Nat Commun ; 13(1): 556, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35115521

RESUMO

The vomeronasal system plays an essential role in sensing various environmental chemical cues. Here we show that mice exposed to blood and, consequently, hemoglobin results in the activation of vomeronasal sensory neurons expressing a specific vomeronasal G protein-coupled receptor, Vmn2r88, which is mediated by the interaction site, Gly17, on hemoglobin. The hemoglobin signal reaches the medial amygdala (MeA) in both male and female mice. However, it activates the dorsal part of ventromedial hypothalamus (VMHd) only in lactating female mice. As a result, in lactating mothers, hemoglobin enhances digging and rearing behavior. Manipulation of steroidogenic factor 1 (SF1)-expressing neurons in the VMHd is sufficient to induce the hemoglobin-mediated behaviors. Our results suggest that the oxygen-carrier hemoglobin plays a role as a chemosensory signal, eliciting behavioral responses in mice in a state-dependent fashion.


Assuntos
Tonsila do Cerebelo/metabolismo , Biomarcadores/sangue , Hemoglobinas/metabolismo , Células Receptoras Sensoriais/metabolismo , Núcleo Hipotalâmico Ventromedial/metabolismo , Órgão Vomeronasal/metabolismo , Animais , Feminino , Hemoglobinas/genética , Hibridização In Situ/métodos , Lactação , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora/genética , Atividade Motora/fisiologia , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Fator Esteroidogênico 1/genética , Fator Esteroidogênico 1/metabolismo , Globinas beta/genética , Globinas beta/metabolismo
10.
Brain Behav Immun ; 99: 106-118, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34563619

RESUMO

Cancer patients experience circadian rhythm disruptions in activity cycles and cortisol release that correlate with poor quality of life and decreased long-term survival rates. However, the extent to which chemotherapy contributes to altered circadian rhythms is poorly understood. In the present study, we examined the extent to which paclitaxel, a common chemotherapy drug, altered entrained and free-running circadian rhythms in wheel running behavior, circulating corticosterone, and circadian clock gene expression in the brain and adrenal glands of tumor-free mice. Paclitaxel injections delayed voluntary wheel running activity onset in a light-dark cycle (LD) and lengthened the free-running period of locomotion in constant darkness (DD), indicating an effect on inherent suprachiasmatic nucleus (SCN) pacemaker activity. Paclitaxel attenuated clock gene rhythms in multiple brain regions in LD and DD. Furthermore, paclitaxel disrupted circulating corticosterone rhythms in DD by elevating its levels across a 24-hour cycle, which correlated with blunted amplitudes of Arntl, Nr1d1, Per1, and Star rhythms in the adrenal glands. Paclitaxel also shortened SCN slice rhythms, increased the amplitude of adrenal gland oscillations in PER2::luciferase cultures, and increased the concentration of pro-inflammatory cytokines and chemokines released from the SCN. These findings indicate that paclitaxel disrupts clock genes and behavior driven by the SCN, other brain regions, and adrenal glands, which were associated with chemotherapy-induced inflammation. Together, this preclinical work demonstrates that chemotherapy disrupts both central and peripheral circadian rhythms and supports the possibility that targeted circadian realignment therapies may be a novel and non-invasive way to improve patient outcomes after chemotherapy.


Assuntos
Relógios Circadianos , Animais , Ritmo Circadiano/genética , Humanos , Camundongos , Atividade Motora/genética , Paclitaxel/farmacologia , Proteínas Circadianas Period/genética , Qualidade de Vida
11.
Int J Mol Sci ; 22(22)2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34830120

RESUMO

Retinoic acid (RA), the principal active metabolite of vitamin A, is known to be involved in stress-related disorders. However, its mechanism of action in this regard remains unclear. This study reports that, in mice, endogenous cellular RA binding protein 1 (Crabp1) is highly expressed in the hypothalamus and pituitary glands. Crabp1 knockout (CKO) mice exhibit reduced anxiety-like behaviors accompanied by a lowered stress induced-corticosterone level. Furthermore, CRH/DEX tests show an increased sensitivity (hypersensitivity) of their feedback inhibition in the hypothalamic-pituitary-adrenal (HPA) axis. Gene expression studies show reduced FKBP5 expression in CKO mice; this would decrease the suppression of glucocorticoid receptor (GR) signaling thereby enhancing their feedback inhibition, consistent with their dampened corticosterone level and anxiety-like behaviors upon stress induction. In AtT20, a pituitary gland adenoma cell line elevating or reducing Crabp1 level correspondingly increases or decreases FKBP5 expression, and its endogenous Crabp1 level is elevated by GR agonist dexamethasone or RA treatment. This study shows, for the first time, that Crabp1 regulates feedback inhibition of the the HPA axis by modulating FKBP5 expression. Furthermore, RA and stress can increase Crabp1 level, which would up-regulate FKBP5 thereby de-sensitizing feedback inhibition of HPA axis (by decreasing GR signaling) and increasing the risk of stress-related disorders.


Assuntos
Ansiedade/fisiopatologia , Homeostase/fisiologia , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Receptores do Ácido Retinoico/metabolismo , Proteínas de Ligação a Tacrolimo/metabolismo , Animais , Ansiedade/genética , Linhagem Celular Tumoral , Dexametasona/farmacologia , Retroalimentação Fisiológica/efeitos dos fármacos , Retroalimentação Fisiológica/fisiologia , Regulação da Expressão Gênica/efeitos dos fármacos , Homeostase/genética , Hipotálamo/metabolismo , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora/genética , Atividade Motora/fisiologia , Hipófise/metabolismo , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Receptores do Ácido Retinoico/genética , Proteínas de Ligação a Tacrolimo/genética
12.
Life Sci Alliance ; 4(12)2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34649938

RESUMO

PGC1α is a transcriptional coactivator in peripheral tissues, but its function in the brain remains poorly understood. Various brain-specific Pgc1α isoforms have been reported in mice and humans, including two fusion transcripts (FTs) with non-coding repetitive sequences, but their function is unknown. The FTs initiate at a simple sequence repeat locus ∼570 Kb upstream from the reference promoter; one also includes a portion of a short interspersed nuclear element (SINE). Using publicly available genomics data, here we show that the SINE FT is the predominant form of Pgc1α in neurons. Furthermore, mutation of the SINE in mice leads to altered behavioural phenotypes and significant up-regulation of genes in the female, but not male, cerebellum. Surprisingly, these genes are largely involved in neurotransmission, having poor association with the classical mitochondrial or antioxidant programs. These data expand our knowledge on the role of Pgc1α in neuronal physiology and suggest that different isoforms may have distinct functions. They also highlight the need for further studies before modulating levels of Pgc1α in the brain for therapeutic purposes.


Assuntos
Comportamento Animal , Cerebelo/metabolismo , Expressão Gênica , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Isoformas de Proteínas/genética , Transdução de Sinais/genética , Regulação para Cima/genética , Animais , Teste de Labirinto em Cruz Elevado , Feminino , Locomoção/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Atividade Motora/genética , Mutação , Neurônios/metabolismo , Teste de Campo Aberto , Regiões Promotoras Genéticas/genética , Elementos Nucleotídeos Curtos e Dispersos/genética
13.
Proc Natl Acad Sci U S A ; 118(43)2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34686597

RESUMO

Complex body movements require complex dynamics and coordination among neurons in motor cortex. Conversely, a long-standing theoretical notion supposes that if many neurons in motor cortex become excessively synchronized, they may lack the necessary complexity for healthy motor coding. However, direct experimental support for this idea is rare and underlying mechanisms are unclear. Here we recorded three-dimensional body movements and spiking activity of many single neurons in motor cortex of rats with enhanced synaptic inhibition and a transgenic rat model of Rett syndrome (RTT). For both cases, we found a collapse of complexity in the motor system. Reduced complexity was apparent in lower-dimensional, stereotyped brain-body interactions, neural synchrony, and simpler behavior. Our results demonstrate how imbalanced inhibition can cause excessive synchrony among movement-related neurons and, consequently, a stereotyped motor code. Excessive inhibition and synchrony may underlie abnormal motor function in RTT.


Assuntos
Encéfalo/fisiopatologia , Proteína 2 de Ligação a Metil-CpG/genética , Proteína 2 de Ligação a Metil-CpG/fisiologia , Atividade Motora/genética , Atividade Motora/fisiologia , Síndrome de Rett/genética , Síndrome de Rett/fisiopatologia , Potenciais de Ação/genética , Potenciais de Ação/fisiologia , Animais , Modelos Animais de Doenças , Fenômenos Eletrofisiológicos , Feminino , Técnicas de Silenciamento de Genes , Humanos , Masculino , Proteína 2 de Ligação a Metil-CpG/deficiência , Modelos Neurológicos , Córtex Motor/fisiopatologia , Neurônios Motores/fisiologia , Ratos , Ratos Sprague-Dawley , Ratos Transgênicos , Comportamento Estereotipado/fisiologia
14.
Elife ; 102021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34517941

RESUMO

Microsatellite expansions of CCTG repeats in the cellular nucleic acid-binding protein (CNBP) gene leads to accumulation of toxic RNA and have been associated with myotonic dystrophy type 2 (DM2). However, it is still unclear whether the dystrophic phenotype is also linked to CNBP decrease, a conserved CCHC-type zinc finger RNA-binding protein that regulates translation and is required for mammalian development. Here, we show that depletion of Drosophila CNBP in muscles causes ageing-dependent locomotor defects that are correlated with impaired polyamine metabolism. We demonstrate that the levels of ornithine decarboxylase (ODC) and polyamines are significantly reduced upon dCNBP depletion. Of note, we show a reduction of the CNBP-polyamine axis in muscles from DM2 patients. Mechanistically, we provide evidence that dCNBP controls polyamine metabolism through binding dOdc mRNA and regulating its translation. Remarkably, the locomotor defect of dCNBP-deficient flies is rescued by either polyamine supplementation or dOdc1 overexpression. We suggest that this dCNBP function is evolutionarily conserved in vertebrates with relevant implications for CNBP-related pathophysiological conditions.


Assuntos
Proteínas de Drosophila/metabolismo , Atividade Motora/genética , Atividade Motora/fisiologia , Poliaminas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Animais Geneticamente Modificados , Linhagem Celular , Regulação para Baixo/fisiologia , Proteínas de Drosophila/genética , Drosophila melanogaster , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Músculo Esquelético/metabolismo , Distrofia Miotônica/genética , Distrofia Miotônica/metabolismo , Biossíntese de Proteínas , Putrescina/farmacologia , Interferência de RNA , Proteínas de Ligação a RNA/genética , Espermidina/farmacologia
15.
Int J Mol Sci ; 22(17)2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34502541

RESUMO

Inhibitor of DNA binding (Id) genes comprise a family of four helix-loop-helix (HLH) transcriptional inhibitors. Our earlier studies revealed a role for ID2 within the circadian system, contributing to input, output, and core clock function through its interaction with CLOCK and BMAL1. Here, we explore the contribution of ID4 to the circadian system using a targeted disruption of the Id4 gene. Attributes of the circadian clock were assessed by monitoring the locomotor activity of Id4-/- mice, and they revealed disturbances in its operation. Id4-mutant mice expressed a shorter circadian period length, attenuated phase shifts in responses to continuous and discrete photic cues, and an advanced phase angle of entrainment under a 12:12 light:dark cycle and under short and long photoperiods. To understand the basis for these properties, suprachiasmatic nucleus (SCN) and retinal structures were examined. Anatomical analysis reveals a smaller Id4-/- SCN in the width dimension, which is a finding consistent with its smaller brain. As a result of this feature, anterograde tracing in Id4-/- mice revealed retinal afferents innovate a disproportionally larger SCN area. The Id4-/- photic entrainment responses are unlikely to be due to an impaired function of the retinal pathways since Id4-/- retinal anatomy and function tested by pupillometry were similar to wild-type mice. Furthermore, these circadian characteristics are opposite to those exhibited by the Id2-/- mouse, suggesting an opposing influence of the ID4 protein within the circadian system; or, the absence of ID4 results in changes in the expression or activity of other members of the Id gene family. Expression analysis of the Id genes within the Id4-/- SCN revealed a time-of-day specific elevated Id1. It is plausible that the increased Id1 and/or absence of ID4 result in changes in interactions with bHLH canonical clock components or with targets upstream and/or downstream of the clock, thereby resulting in abnormal properties of the circadian clock and its entrainment.


Assuntos
Relógios Circadianos/genética , Proteínas Inibidoras de Diferenciação/genética , Proteínas Circadianas Period/genética , Fotoperíodo , Retina/metabolismo , Núcleo Supraquiasmático/metabolismo , Animais , Ritmo Circadiano , Expressão Gênica , Proteínas Inibidoras de Diferenciação/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora/genética , Atividade Motora/fisiologia , Proteínas Circadianas Period/metabolismo , Retina/anatomia & histologia , Núcleo Supraquiasmático/anatomia & histologia
16.
JCI Insight ; 6(18)2021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34375312

RESUMO

Dysfunctional dopaminergic neurotransmission is central to movement disorders and mental diseases. The dopamine transporter (DAT) regulates extracellular dopamine levels, but the genetic and mechanistic link between DAT function and dopamine-related pathologies is not clear. Particularly, the pathophysiological significance of monoallelic missense mutations in DAT is unknown. Here, we use clinical information, neuroimaging, and large-scale exome-sequencing data to uncover the occurrence and phenotypic spectrum of a DAT coding variant, DAT-K619N, which localizes to the critical C-terminal PSD-95/Discs-large/ZO-1 homology-binding motif of human DAT (hDAT). We identified the rare but recurrent hDAT-K619N variant in exome-sequenced samples of patients with neuropsychiatric diseases and a patient with early-onset neurodegenerative parkinsonism and comorbid neuropsychiatric disease. In cell cultures, hDAT-K619N displayed reduced uptake capacity, decreased surface expression, and accelerated turnover. Unilateral expression in mouse nigrostriatal neurons revealed differential effects of hDAT-K619N and hDAT-WT on dopamine-directed behaviors, and hDAT-K619N expression in Drosophila led to impairments in dopamine transmission with accompanying hyperlocomotion and age-dependent disturbances of the negative geotactic response. Moreover, cellular studies and viral expression of hDAT-K619N in mice demonstrated a dominant-negative effect of the hDAT-K619N mutant. Summarized, our results suggest that hDAT-K619N can effectuate dopamine dysfunction of pathological relevance in a dominant-negative manner.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Dopamina/metabolismo , Transtornos Mentais/genética , Neurônios/metabolismo , Transtornos Parkinsonianos/genética , Adulto , Animais , Comportamento Animal , Transporte Biológico , Células Cultivadas , Bases de Dados Genéticas , Drosophila , Exoma , Feminino , Humanos , Hipocinesia/diagnóstico por imagem , Hipocinesia/genética , Hipocinesia/metabolismo , Masculino , Transtornos Mentais/metabolismo , Mesencéfalo/metabolismo , Camundongos , Pessoa de Meia-Idade , Atividade Motora/genética , Mutação , Transtornos Parkinsonianos/diagnóstico por imagem , Transtornos Parkinsonianos/metabolismo , Fenótipo , Transmissão Sináptica , Tomografia Computadorizada de Emissão de Fóton Único , Transfecção
17.
Neurotoxicol Teratol ; 87: 107010, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34216730

RESUMO

Paraoxonase 2 (PON2) is an intracellular antioxidant enzyme shown to play an important role in mitigating oxidative stress in the brain. Oxidative stress is a common mechanism of toxicity for neurotoxicants and is increasingly implicated in the etiology of multiple neurological diseases. While PON2 deficiency increases oxidative stress in the brain in-vitro, little is known about its effects on behavior in-vivo and what global transcript changes occur from PON2 deficiency. We sought to characterize the effects of PON2 deficiency on behavior in mice, with an emphasis on locomotion, and evaluate transcriptional changes with RNA-Seq. Behavioral endpoints included home-cage behavior (Noldus PhenoTyper), motor coordination (Rotarod) and various gait metrics (Noldus CatWalk). Home-cage behavior analysis showed PON2 deficient mice had increased activity at night compared to wildtype controls and spent more time in the center of the cage, displaying a possible anxiolytic phenotype. PON2 deficient mice had significantly shorter latency to fall when tested on the rotarod, suggesting impaired motor coordination. Minimal gait alterations were observed, with decreased girdle support posture noted as the only significant change in gait with PON2 deficiency. Beyond one home-cage metric, no significant sex-based behavioral differences were found in this study. Finally, A subset of samples were utilized for RNA-Seq analysis, looking at three discrete brain regions: cerebral cortex, striatum, and cerebellum. Highly regional- and sex-specific changes in RNA expression were found when comparing PON2 deficient and wildtype mice, suggesting PON2 may play distinct regional roles in the brain in a sex-specific manner. Taken together, these findings demonstrates that PON2 deficiency significantly alters the brain on both a biochemical and phenotypic level, with a specific impact on motor function. These data have implications for future gene-environment toxicological studies and warrants further investigation of the role of PON2 in the brain.


Assuntos
Arildialquilfosfatase/deficiência , Comportamento Animal/fisiologia , Encéfalo/metabolismo , Atividade Motora/fisiologia , Animais , Arildialquilfosfatase/genética , Corpo Estriado/metabolismo , Feminino , Masculino , Camundongos , Atividade Motora/genética , Estresse Oxidativo/genética , Estresse Oxidativo/fisiologia , Caracteres Sexuais
18.
Dis Model Mech ; 14(6)2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34125184

RESUMO

Parkinson's disease (PD) provokes bradykinesia, resting tremor, rigidity and postural instability, and also non-motor symptoms such as depression, anxiety, sleep and cognitive impairments. Similar phenotypes can be induced in Drosophila melanogaster through modification of PD-relevant genes or the administration of PD-inducing toxins. Recent studies correlated deregulation of human p21-activated kinase 4 (PAK4) with PD, leaving open the question of a causative relationship of mutations in this gene for manifestation of PD symptoms. To determine whether flies lacking the PAK4 homolog Mushroom bodies tiny (Mbt) show PD-like phenotypes, we tested for a variety of PD criteria. Here, we demonstrate that mbt mutant flies show PD-like phenotypes including age-dependent movement deficits, reduced life expectancy and fragmented sleep. They also react to a stressful situation with higher immobility, indicating an influence of Mbt on emotional behavior. Loss of Mbt function has a negative effect on the number of dopaminergic protocerebral anterior medial (PAM) neurons, most likely caused by a proliferation defect of neural progenitors. The age-dependent movement deficits are not accompanied by a corresponding further loss of PAM neurons. Previous studies highlighted the importance of a small PAM subgroup for age-dependent PD motor impairments. We show that impaired motor skills are caused by a lack of Mbt in this PAM subgroup. In addition, a broader re-expression of Mbt in PAM neurons improves life expectancy. Conversely, selective Mbt knockout in the same cells shortens lifespan. We conclude that mutations in Mbt/PAK4 can play a causative role in the development of PD phenotypes.


Assuntos
Doença de Parkinson/genética , Fenótipo , Quinases Ativadas por p21/genética , Animais , Drosophila/fisiologia , Técnicas de Silenciamento de Genes , Expectativa de Vida , Atividade Motora/genética , Neurônios/fisiologia , Sono/genética
19.
Theranostics ; 11(15): 7294-7307, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34158851

RESUMO

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by death of motor neurons in the brain and spinal cord. However, so far, there is no effective treatment for ALS. Methods: In this study, R13, a prodrug of 7,8-dihydroxyflavone, selectively activating tyrosine kinase receptor B (TrkB) signaling pathway, was administered prophylactically to 40-day old SOD1G93A mice for 90 days. The motor performance was investigated by rotarod test, climbing-pole test, grip strength test and hanging endurance test. Afterwards, the spinal cord and medulla oblongata of 130-day old mice were harvested, and the proteomics revealed the effect of R13 on mouse protein expression profile. Astrocytes and microglial proliferation were assessed by immunohistochemical analysis. The number of motor neurons in the spinal cord is determined by Nissl staining. The effect of R13 on gastrocnemius morphology was assessed by HE staining. The effect of R13 on the survival rate was accomplished with worms stably expressing G93A SOD1. Results: Behavioral tests showed that R13 significantly attenuated abnormal motor performance of SOD1G93A mice. R13 reduced the advance of spinal motor neuron pathology and gastrocnemius muscle atrophy. The proliferation of microglia and astrocytes was reduced by R13 treatment. Mitochondriomics analysis revealed that R13 modified the mitochondrial protein expression profiles in the medulla oblongata and spinal cord of SOD1G93A mice, particularly promoting the expression of proteins related to oxidative phosphorylation (OXPHOS). Further study found that R13 activated AMPK/PGC-1α/Nrf1/Tfam, promoted mitochondrial biogenesis and ameliorated mitochondrial dysfunction. Lastly, R13 prolonged the survival rate of worms stably expressing G93A SOD1. Conclusions: These findings suggest oral R13 treatment slowed the advance of motor system disease in a reliable animal model of ALS, supporting that R13 might be useful for treating ALS.


Assuntos
Esclerose Lateral Amiotrófica , Sistema Nervoso Central/enzimologia , Flavonas/farmacologia , Mitocôndrias , Atividade Motora , Superóxido Dismutase-1 , Superóxido Dismutase , Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/enzimologia , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/fisiopatologia , Animais , Humanos , Camundongos , Camundongos Transgênicos , Mitocôndrias/enzimologia , Mitocôndrias/genética , Atividade Motora/efeitos dos fármacos , Atividade Motora/genética , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo
20.
Genes Brain Behav ; 20(7): e12760, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34173327

RESUMO

In a previous genome-wide association study (GWAS) using outbred Carworth Farms White (CFW) mice, we identified a locus that influenced the stimulant response to methamphetamine and colocalized with an eQTL for Azi2. Based on those findings, we hypothesized that heritable differences in Azi2 expression were causally related to the differential response to methamphetamine. To test that hypothesis, we created a mutant Azi2 allele on an inbred C57BL/6J background. The mutant allele enhanced the locomotor response to methamphetamine. However, the GWAS had suggested that lower Azi2 would decrease the locomotor response to methamphetamine. We also sought to explore the mechanism by which Azi2 influenced methamphetamine sensitivity. A recent publication reported that the 3'UTR of Azi2 mRNA downregulates the expression of Slc6a3, which encodes the dopamine transporter, which is a key target of methamphetamine. We evaluated the relationship between Azi2, Azi2 3'UTR and Slc6a3 expression in the ventral tegmental area of wildtype, mutant Azi2 heterozygotes and mutant Azi2 homozygotes and in a new cohort of outbred CFW mice where both allele mapped in our prior GWAS were segregating. We did not observe any correlation between Azi2 and Slc6a3 in either cohort. However, RNA sequencing confirmed that the Azi2 mutation altered Azi2 expression and also revealed a number of potentially important genes and pathways that were regulated by Azi2, including the metabotropic glutamate receptor group III pathway and nicotinic acetylcholine receptor signaling pathway. Our results support a role for Azi2 in methamphetamine sensitivity; however, the exact mechanism does not appear to involve regulation of Slc6a3.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Estimulantes do Sistema Nervoso Central/farmacologia , Metanfetamina/farmacologia , Atividade Motora/efeitos dos fármacos , Animais , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Proteínas da Membrana Plasmática de Transporte de Dopamina/efeitos dos fármacos , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Estudo de Associação Genômica Ampla/métodos , Camundongos Endogâmicos C57BL , Atividade Motora/genética , Área Tegmentar Ventral/efeitos dos fármacos , Área Tegmentar Ventral/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA