Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Inf Model ; 64(12): 4759-4772, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38857305

RESUMO

The accurate experimental estimation of protein-ligand systems' residence time (τ) has become very relevant in drug design projects due to its importance in the last stages of refinement of the drug's pharmacodynamics and pharmacokinetics. It is now well-known that it is not sufficient to estimate the affinity of a protein-drug complex in the thermodynamic equilibrium process in in vitro experiments (closed systems), where the concentrations of the drug and protein remain constant. On the contrary, it is mandatory to consider the conformational dynamics of the system in terms of the binding and unbinding processes between protein and drugs in in vivo experiments (open systems), where their concentrations are in constant flux. This last model has been proven to dictate much of several drugs' pharmacological activities in vivo. At the atomistic level, molecular dynamics simulations can explain why some drugs are more effective than others or unveil the molecular aspects that make some drugs work better in one molecular target. Here, the protein kinases Aurora A/B, complexed with its inhibitor Danusertib, were studied using conventional and enhanced molecular dynamics (MD) simulations to estimate the dissociation paths and, therefore, the computational τ values and their comparison with experimental ones. Using classical molecular dynamics (cMD), three differential residues within the Aurora A/B active site, which seems to play an essential role in the observed experimental Danusertib's residence time against these kinases, were characterized. Then, using WT-MetaD, the relative Danusertib's residence times against Aurora A/B kinases were measured in a nanosecond time scale and were compared to those τ values observed experimentally. In addition, the potential dissociation paths of Danusertib in Aurora A and B were characterized, and differences that might be explained by the differential residues in the enzyme's active sites were found. In perspective, it is expected that this computational protocol can be applied to other protein-ligand complexes to understand, at the molecular level, the differences in residence times and amino acids that may contribute to it.


Assuntos
Aurora Quinase A , Aurora Quinase B , Simulação de Dinâmica Molecular , Aurora Quinase B/metabolismo , Aurora Quinase B/química , Aurora Quinase B/antagonistas & inibidores , Aurora Quinase A/metabolismo , Aurora Quinase A/química , Aurora Quinase A/antagonistas & inibidores , Pirazóis/química , Pirazóis/metabolismo , Conformação Proteica , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/metabolismo , Ligação Proteica , Humanos , Benzamidas/química , Benzamidas/metabolismo , Benzamidas/farmacologia , Termodinâmica
2.
Cancer Discov ; 14(6): 903-905, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38826100

RESUMO

SUMMARY: In this issue, a study by Kazansky and colleagues explored resistance mechanisms after EZH2 inhibition in malignant rhabdoid tumors (MRT) and epithelioid sarcomas (ES). The study identified genetic alterations in EZH2 itself, along with alterations that converge on RB1-E2F-mediated cell-cycle control, and demonstrated that inhibition of cell-cycle kinases, such as Aurora Kinase B (AURKB) could bypass EZH2 inhibitor resistance to enhance treatment efficacy. See related article by Kazansky et al., p. 965 (6).


Assuntos
Ciclo Celular , Resistencia a Medicamentos Antineoplásicos , Proteína Potenciadora do Homólogo 2 de Zeste , Humanos , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Resistencia a Medicamentos Antineoplásicos/genética , Terapia de Alvo Molecular , Aurora Quinase B/metabolismo , Aurora Quinase B/antagonistas & inibidores , Aurora Quinase B/genética , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Complexo Repressor Polycomb 2/metabolismo , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/antagonistas & inibidores
3.
Med Oncol ; 41(6): 142, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714583

RESUMO

The development of BCR::ABL1-targeting tyrosine kinase inhibitors (TKIs) has improved the prognosis of patients with chronic myeloid leukemia (CML). However, resistance to ABL TKIs can develop in CML patients due to BCR::ABL1 point mutations and CML leukemia stem cell (LSC). Aurora kinases are essential kinases for cell division and regulate mitosis, especially the process of chromosomal segregation. Aurora kinase members also promote cancer cell survival and proliferation. This study analyzed whether aurora kinases were regulated in the progression of CML. It also evaluated the efficacy of the ABL TKI asciminib and the aurora kinase inhibitor LY3295668. The expressions of AURKA and AURKB were higher in the CML cells compared with normal cells using a public database (GSE100026). Asciminib or LY3295668 alone inhibited CML cells after 72 h, and cellular cytotoxicity was increased. The combined use of Asciminib and LY3295668 increased superior efficacy compared with either drug alone. Colony formation was reduced by cotreatment with asciminib and LY3295668. In the cell-cycle analyses, LY3295668 induced G2/M arrest. Cell populations in the sub-G1 phase were observed when cotreating with asciminib and LY3295668. The combination treatment also changed the mitochondrial membrane potential. In addition, AURKA shRNA transfectant cells had increased asciminib sensitivity. Combining asciminib and aurora kinase inhibition enhanced the efficacy and is proposed as a new therapeutic option for patients with CML. These findings have clinical implications for a potential novel therapeutic strategy for CML patients.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Leucemia Mielogênica Crônica BCR-ABL Positiva , Niacinamida , Humanos , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Apoptose/efeitos dos fármacos , Aurora Quinase A/antagonistas & inibidores , Aurora Quinase B/antagonistas & inibidores , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proteínas de Fusão bcr-abl/antagonistas & inibidores , Proteínas de Fusão bcr-abl/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Niacinamida/análogos & derivados , Pirazóis , /farmacologia
4.
Molecules ; 29(8)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38675528

RESUMO

Glioblastoma (GBM), the most frequent and lethal brain cancer in adults, is characterized by short survival times and high mortality rates. Due to the resistance of GBM cells to conventional therapeutic treatments, scientific interest is focusing on the search for alternative and efficient adjuvant treatments. S-Adenosylmethionine (AdoMet), the well-studied physiological methyl donor, has emerged as a promising anticancer compound and a modulator of multiple cancer-related signaling pathways. We report here for the first time that AdoMet selectively inhibited the viability and proliferation of U87MG, U343MG, and U251MG GBM cells. In these cell lines, AdoMet induced S and G2/M cell cycle arrest and apoptosis and downregulated the expression and activation of proteins involved in homologous recombination DNA repair, including RAD51, BRCA1, and Chk1. Furthermore, AdoMet was able to maintain DNA in a damaged state, as indicated by the increased γH2AX/H2AX ratio. AdoMet promoted mitotic catastrophe through inhibiting Aurora B kinase expression, phosphorylation, and localization causing GBM cells to undergo mitotic catastrophe-induced death. Finally, AdoMet inhibited DNA repair and induced cell cycle arrest, apoptosis, and mitotic catastrophe in patient-derived GBM cells. In light of these results, AdoMet could be considered a potential adjuvant in GBM therapy.


Assuntos
Antineoplásicos , Apoptose , Proliferação de Células , Glioblastoma , S-Adenosilmetionina , Humanos , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Glioblastoma/patologia , S-Adenosilmetionina/farmacologia , Linhagem Celular Tumoral , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Sobrevivência Celular/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Aurora Quinase B/metabolismo , Aurora Quinase B/antagonistas & inibidores , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Rad51 Recombinase/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Mitose/efeitos dos fármacos
5.
Adv Sci (Weinh) ; 11(21): e2309202, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38569218

RESUMO

The pseudo-natural product (pseudo-NP) concept aims to combine NP fragments in arrangements that are not accessible through known biosynthetic pathways. The resulting compounds retain the biological relevance of NPs but are not yet linked to bioactivities and may therefore be best evaluated by unbiased screening methods resulting in the identification of unexpected or unprecedented bioactivities. Herein, various NP fragments are combined with a tricyclic core connectivity via interrupted Fischer indole and indole dearomatization reactions to provide a collection of highly three-dimensional pseudo-NPs. Target hypothesis generation by morphological profiling via the cell painting assay guides the identification of an unprecedented chemotype for Aurora kinase inhibition with both its relatively highly 3D structure and its physicochemical properties being very different from known inhibitors. Biochemical and cell biological characterization indicate that the phenotype identified by the cell painting assay corresponds to the inhibition of Aurora kinase B.


Assuntos
Produtos Biológicos , Inibidores de Proteínas Quinases , Humanos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Produtos Biológicos/farmacologia , Produtos Biológicos/química , Aurora Quinases/antagonistas & inibidores , Aurora Quinases/metabolismo , Descoberta de Drogas/métodos , Aurora Quinase B/antagonistas & inibidores , Aurora Quinase B/metabolismo
6.
Exp Eye Res ; 239: 109753, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38142764

RESUMO

PURPOSE: The detrimental effects of pathological angiogenesis on the visual function are indisputable. Within a prominent role in chromosome segregation and tumor progression, aurora kinase B (AURKB) assumes a prominent role. However, its role in pathological retinal angiogenesis remains unclear. This study explores this latent mechanism. METHODS: To inhibit AURKB expression, we designed specific small interfering RNAs targeting AURKB and transfected them into vascular endothelial cells. Barasertib was selected as the AURKB inhibitor. The anti-angiogenic effects of both AURKB siRNA and barasertib were assessed in vitro by cell proliferation, transwell migration, and tube formation. To evaluate the angiogentic effects of AURKB in vivo, neonatal mice were exposed to 75% oxygen followed by normoxic repositioning to establish an oxygen-induced retinopathy (OIR) model. Subsequently, phosphate-buffered saline and barasertib were administered into OIR mice via intravitreal injection. The effects of AURKB on cell cycle proteins were determined by western blot analysis. RESULTS: We found that AURKB was overexpressed during pathological angiogenesis. AURKB siRNA and barasertib significantly inhibited endothelial cell proliferation, migration, and tube formation in vitro. Furthermore, AURKB inhibition attenuated retinal angiogenesis in the OIR model. A possible mechanism is the disruption of cell cycle by AURKB inhibition. CONCLUSION: In conclusion, AURKB significantly influenced pathological retinal angiogenesis, thereby presenting a promising therapeutic target in ocular neovascular diseases.


Assuntos
Organofosfatos , Quinazolinas , Doenças Retinianas , Neovascularização Retiniana , Animais , Camundongos , Angiogênese , Aurora Quinase B/antagonistas & inibidores , Aurora Quinase B/metabolismo , Divisão Celular , Proliferação de Células , Células Endoteliais/metabolismo , Camundongos Endogâmicos C57BL , Neovascularização Patológica , Oxigênio , Neovascularização Retiniana/metabolismo , RNA Interferente Pequeno/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA