Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Nat Commun ; 15(1): 6830, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39122729

RESUMO

Resistance to radiotherapy is a major barrier during cancer treatment. Here using genome-scale CRISPR/Cas9 screening, we identify CD274 gene, which encodes PD-L1, to confer lung cancer cell resistance to ionizing radiation (IR). Depletion of endogenous PD-L1 delays the repair of IR-induced DNA double-strand breaks (DSBs) and PD-L1 loss downregulates non-homologous end joining (NHEJ) while overexpression of PD-L1 upregulates NHEJ. IR induces translocation of PD-L1 from the membrane into nucleus dependent on deglycosylation of PD-L1 at N219 and CMTM6 and leads to PD-L1 recruitment to DSBs foci. PD-L1 interacts with Ku in the nucleus and enhances Ku binding to DSB DNA. The interaction between the IgC domain of PD-L1 and the core domain of Ku is required for PD-L1 to accelerate NHEJ-mediated DSB repair and produce radioresistance. Thus, PD-L1, in addition to its immune inhibitory activity, acts as mechanistic driver for NHEJ-mediated DSB repair in cancer.


Assuntos
Antígeno B7-H1 , Núcleo Celular , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , Autoantígeno Ku , Humanos , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Antígeno B7-H1/metabolismo , Antígeno B7-H1/genética , Autoantígeno Ku/metabolismo , Autoantígeno Ku/genética , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Animais , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/patologia , Camundongos , Glicosilação , Radiação Ionizante , Sistemas CRISPR-Cas
2.
Biochim Biophys Acta Mol Basis Dis ; 1870(7): 167438, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39059591

RESUMO

Colorectal cancer (CRC) is one of the most common malignancies worldwide. Double-strand break (DSB) is the most severe type of DNA damage. However, few reviews have thoroughly examined the involvement of DSB in CRC. Latest researches demonstrated that DSB repair plays an important role in CRC. For example, DSB-related genes such as BRCA1, Ku-70 and DNA polymerase theta (POLQ) are associated with the occurrence of CRC, and POLQ even showed to affect the prognosis and resistance for radiotherapy in CRC. This review comprehensively summarizes the DSB role in CRC, explores the mechanisms and discusses the association with CRC treatment. Four pathways for DSB have been demonstrated. 1. Nonhomologous end joining (NHEJ) is the major pathway. Its core genes including Ku70 and Ku80 bind to broken ends and recruit repair factors to form a complex that mediates the connection of DNA breaks. 2. Homologous recombination (HR) is another important pathway. Its key genes including BRCA1 and BRCA2 are involved in finding, pairing, and joining broken ends, and ensure the restoration of breaks in a normal double-stranded DNA structure. 3. Single-strand annealing (SSA) pathway, and 4. POLθ-mediated end-joining (alt-EJ) is a backup pathway. This paper elucidates roles of the DSB repair pathways in CRC, which could contribute to the development of potential new treatment approaches and provide new opportunities for CRC treatment and more individualized treatment options based on therapeutic strategies targeting these DNA repair pathways.


Assuntos
Proteína BRCA1 , Neoplasias Colorretais , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , Humanos , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Neoplasias Colorretais/terapia , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , DNA Polimerase teta , Autoantígeno Ku/metabolismo , Autoantígeno Ku/genética , Reparo do DNA , DNA Polimerase Dirigida por DNA/metabolismo , DNA Polimerase Dirigida por DNA/genética , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Animais
3.
Acta Neuropathol ; 148(1): 6, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39012547

RESUMO

Myositis with anti-Ku-autoantibodies is a rare inflammatory myopathy associated with various connective tissue diseases. Histopathological studies have identified inflammatory and necrotizing aspects, but a precise morphological analysis and pathomechanistic disease model are lacking. We therefore aimed to carry out an in-depth morpho-molecular analysis to uncover possible pathomechanisms. Muscle biopsy specimens from 26 patients with anti-Ku-antibodies and unequivocal myositis were analyzed by immunohistochemistry, immunofluorescence, transcriptomics, and proteomics and compared to biopsy specimens of non-disease controls, immune-mediated necrotizing myopathy (IMNM), and inclusion body myositis (IBM). Clinical findings and laboratory parameters were evaluated retrospectively and correlated with morphological and molecular features. Patients were mainly female (92%) with a median age of 56.5 years. Isolated myositis and overlap with systemic sclerosis were reported in 31%, respectively. Isolated myositis presented with higher creatine kinase levels and cardiac involvement (83%), whereas systemic sclerosis-overlap patients often had interstitial lung disease (57%). Histopathology showed a wide spectrum from mild to pronounced myositis with diffuse sarcolemmal MHC-class I (100%) and -II (69%) immunoreactivity, myofiber necrosis (88%), endomysial inflammation (85%), thickened capillaries (84%), and vacuoles (60%). Conspicuous sarcoplasmic protein aggregates were p62, BAG3, myotilin, or immunoproteasomal beta5i-positive. Proteomic and transcriptomic analysis identified prominent up-regulation of autophagy, proteasome, and hnRNP-related cell stress. To conclude, Ku + myositis is morphologically characterized by myofiber necrosis, MHC-class I and II positivity, variable endomysial inflammation, and distinct protein aggregation varying from IBM and IMNM, and it can be placed in the spectrum of scleromyositis and overlap myositis. It features characteristic sarcoplasmic protein aggregation on an acquired basis being functionally associated with altered chaperone, proteasome, and autophagy function indicating that Ku + myositis exhibit aspects of an acquired inflammatory protein-aggregate myopathy.


Assuntos
Autoanticorpos , Autoantígeno Ku , Miosite , Humanos , Feminino , Pessoa de Meia-Idade , Masculino , Miosite/patologia , Miosite/imunologia , Miosite/metabolismo , Idoso , Autoanticorpos/imunologia , Adulto , Autoantígeno Ku/metabolismo , Músculo Esquelético/patologia , Músculo Esquelético/metabolismo , Estudos Retrospectivos , Miosite de Corpos de Inclusão/patologia , Miosite de Corpos de Inclusão/metabolismo
4.
Pathol Res Pract ; 260: 155460, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39032384

RESUMO

BACKGROUND: LINC-PINT was downregulated in nasopharyngeal carcinoma (NPC) and correlated with treatment efficiency of NPC. However, the underlying mechanism of LINC-PINT in NPC has not yet been fully explored. METHOD: We used CellTiter luminescent assay, clone formation assay, Hoechst staining, and SYTO-9/PI staining to examine cell viability and cell apoptosis regulated by LINC-PINT in NPC cells. Xenograft tumor model, HE staining, Ki67 staining, and TUNEL assay were conducted to assess the role of LINC-PINT in vivo. Bioinformatics and RNA immunoprecipitation assay was performed to identify the binding protein of LINC-PINT. Fluorescence in situ hybridization and immunofluorescence were utilized to measure the colocalization of XRCC6 with LINC-PINT and DNA-PKcs. Mito-Tracker red CMXRos staining was used to label mitochondria in cells specifically. RESULT: We found LINC-PINT was downregulated in many tumors (including NPC) and associated with poor prognosis. The cell viability was significantly inhibited and cell apoptosis was remarkably promoted in LINC-PINT overexpressed cells in contrast to control cells. The growth of tumor xenografts was significantly suppressed and the tumor weight was significantly decreased in LINC-PINT overexpression group compared to the control group. Correspondingly, the positive Ki67 foci was decreased while TUNEL foci was increased in LINC-PINT overexpression group. Mechanically, we verified XRCC6 as a new binding protein of LINC-PINT through RNA binding domains prediction, RIP and colocalization of LINC-PINT and XRCC6. By binding to XRCC6, LINC-PINT interfered the formation of DNA-PK complex, regulated mitochondria accumulation status and affected the modification of apoptosis proteins, leading to more cell apoptosis. CONCLUSION: Our study provided the first evidence that LINC-PINT promotes cell apoptosis in NPC by binding to XRCC6 and affecting its function.


Assuntos
Apoptose , Autoantígeno Ku , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , RNA Longo não Codificante , Humanos , Carcinoma Nasofaríngeo/patologia , Carcinoma Nasofaríngeo/metabolismo , Carcinoma Nasofaríngeo/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Animais , Neoplasias Nasofaríngeas/patologia , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/genética , Autoantígeno Ku/metabolismo , Camundongos , Regulação Neoplásica da Expressão Gênica , Proliferação de Células , Camundongos Nus , Linhagem Celular Tumoral
5.
J Exp Clin Cancer Res ; 43(1): 206, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39054531

RESUMO

BACKGROUND: The escalating prevalence of metabolic diseases has led to a rapid increase in non-alcoholic steatohepatitis (NASH)-related hepatocellular carcinoma (NASH-HCC). While oxaliplatin (OXA)-based hepatic arterial infusion chemotherapy (HAIC) has shown promise in advanced-stage HCC patients, its efficacy in NASH-HCC remains uncertain. This study aims to assess the effectiveness of OXA-based HAIC and elucidate the mechanisms underlying OXA resistance in NASH-HCC. METHODS: The key lncRNAs were screened through RNA-seq analysis of NASH/non-NASH and OXA-sensitive/OXA-resistant (OXA-S/R) HCC tissues. The biological functions of the lnc-OXAR (OXA resistance-related lncRNA in NASH-HCC) in NASH-HCC were verified through a series of in vitro and in vivo experiments. The molecular mechanism of lnc-OXAR was elucidated by fluorescence in situ hybridization, immunoprecipitation-mass spectrometry (FISH), Immunoprecipitation-Mass Spectrometry (IP-MS), RNA pulldown, RNA immunoprecipitation (RIP), methylated RNA immunoprecipitation sequencing (MeRIP-Seq) and a dual-luciferase reporter assay. RESULTS: NASH-HCC exhibited reduced responsiveness to OXA-based HAIC compared to non-NASH HCC. We identified and validated a novel transcript namedlnc-OXAR, which played a crucial role in conferring OXA resistance to NASH-HCC. Inhibition of lnc-OXAR suppressed HCC cell growth and restored OXA sensitivity both in NASH-HCC mouse models and in vitro. Mechanistically, lnc-OXAR recruited Ku70 and cystatin A (CSTA), preventing Ku70 degradation and facilitating DNA double-strand break (DSB) repair, thereby promoting OXA resistance in NASH-HCC. Additionally, WTAP-mediated m6A modification enhanced the stability of lnc-OXAR in an IGF2BP2-dependent manner. Notably, silencing lnc-OXAR significantly enhanced the response to OXA in patient-derived xenograft (PDX) models derived from NASH-HCC. CONCLUSIONS: The reduced responsiveness of NASH-HCC to OXA treatment can be attributed to the upregulation of lnc-OXAR. Our findings provide a rationale for stratifying HCC patients undergoing OXA-based HAIC based on etiology. Lnc-OXAR holds promise as a novel target for overcoming OXA resistance in NASH-HCC and improving prognosis.


Assuntos
Carcinoma Hepatocelular , Resistencia a Medicamentos Antineoplásicos , Autoantígeno Ku , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Oxaliplatina , RNA Longo não Codificante , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Oxaliplatina/farmacologia , Oxaliplatina/uso terapêutico , Camundongos , Autoantígeno Ku/metabolismo , Autoantígeno Ku/genética , Animais , RNA Longo não Codificante/genética , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/patologia , Masculino , Feminino , Linhagem Celular Tumoral , Camundongos Nus , Pessoa de Meia-Idade , Ensaios Antitumorais Modelo de Xenoenxerto , Adenosina/análogos & derivados
6.
Sci China Life Sci ; 67(6): 1089-1105, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38842635

RESUMO

Histone H3 Lys36 (H3K36) methylation and its associated modifiers are crucial for DNA double-strand break (DSB) repair, but the mechanism governing whether and how different H3K36 methylation forms impact repair pathways is unclear. Here, we unveil the distinct roles of H3K36 dimethylation (H3K36me2) and H3K36 trimethylation (H3K36me3) in DSB repair via non-homologous end joining (NHEJ) or homologous recombination (HR). Yeast cells lacking H3K36me2 or H3K36me3 exhibit reduced NHEJ or HR efficiency. yKu70 and Rfa1 bind H3K36me2- or H3K36me3-modified peptides and chromatin, respectively. Disrupting these interactions impairs yKu70 and Rfa1 recruitment to damaged H3K36me2- or H3K36me3-rich loci, increasing DNA damage sensitivity and decreasing repair efficiency. Conversely, H3K36me2-enriched intergenic regions and H3K36me3-enriched gene bodies independently recruit yKu70 or Rfa1 under DSB stress. Importantly, human KU70 and RPA1, the homologs of yKu70 and Rfa1, exclusively associate with H3K36me2 and H3K36me3 in a conserved manner. These findings provide valuable insights into how H3K36me2 and H3K36me3 regulate distinct DSB repair pathways, highlighting H3K36 methylation as a critical element in the choice of DSB repair pathway.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , Histonas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Histonas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Humanos , Metilação , Autoantígeno Ku/metabolismo , Autoantígeno Ku/genética , Proteína de Replicação A/metabolismo , Proteína de Replicação A/genética , Recombinação Homóloga , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Reparo do DNA , Cromatina/metabolismo , Cromatina/genética
7.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(3): 875-882, 2024 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-38926983

RESUMO

OBJECTIVE: This study was aimed to provide ideas for identifying the antibodies to high-frequency antigens by analyzing a female case of high-frequency antigen antibody (anti-Ku) using serological and sequencing method. METHODS: The methods for identification of blood group, erythrocyte antigen, screening and identification of antibody were used to detect the blood type and antibody in the proband. The proband's serum and reagent screening cells treated with Sulfhydryl reagent were applied to judge the type and characteristics of this antibodies when reacted with the regaent screening cells or proband's serum respectively. Gene sequencing was used to determine the genotype of the proband's blood group. RESULTS: The proband's red blood cells were determined as O type RhD positive, whose serum showed strong positive reaction to antibody-screening cells and antibody identification cells with the same intensity in saline and IAT medium, however, the self-cells showed negative effect. The Direct Antihuman Globulin of proband's red blood cells also showed weak positive reaction, and the other blood types were CcEe, Jk(a+b-), P1-, Le(a-b -), Lu (a-b +), K-, k-, Kp(a-b-). Serum of the proband treated with 2-ME still react with three groups of screening cells in IAT medium. The reaction intensity of proband's serum was also unchanged with the cells modified with papain and bromelain, but showed negative effect when the cells were treated with sulfhydryl agents including DTT and 2-ME. Gene sequencing revealed that the KEL genotype of the patient was KEL*02N.24 . This patient had a rare K0 phenotype. CONCLUSION: The rare Kell-null blood group (also known as K0) were identified by serological and molecular tests in the proband who produced both IgG and IgM type of antibody to high-frequency antigen (anti-Ku). These two methods are of great significance in the identification of this rare blood group as well as the antibody to high frequency antigen.


Assuntos
Eritrócitos , Humanos , Feminino , Eritrócitos/imunologia , Antígenos de Grupos Sanguíneos/imunologia , Tipagem e Reações Cruzadas Sanguíneas , Genótipo , Autoantígeno Ku/imunologia , Anticorpos
8.
Nucleic Acids Res ; 52(13): 7665-7686, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-38850159

RESUMO

Genomic instability is one of the hallmarks of cancer. While loss of histone demethylase KDM6A increases the risk of tumorigenesis, its specific role in maintaining genomic stability remains poorly understood. Here, we propose a mechanism in which KDM6A maintains genomic stability independently on its demethylase activity. This occurs through its interaction with SND1, resulting in the establishment of a protective chromatin state that prevents replication fork collapse by recruiting of RPA and Ku70 to nascent DNA strand. Notably, KDM6A-SND1 interaction is up-regulated by KDM6A SUMOylation, while KDM6AK90A mutation almost abolish the interaction. Loss of KDM6A or SND1 leads to increased enrichment of H3K9ac and H4K8ac but attenuates the enrichment of Ku70 and H3K4me3 at nascent DNA strand. This subsequently results in enhanced cellular sensitivity to genotoxins and genomic instability. Consistent with these findings, knockdown of KDM6A and SND1 in esophageal squamous cell carcinoma (ESCC) cells increases genotoxin sensitivity. Intriguingly, KDM6A H101D & P110S, N1156T and D1216N mutations identified in ESCC patients promote genotoxin resistance via increased SND1 association. Our finding provides novel insights into the pivotal role of KDM6A-SND1 in genomic stability and chemoresistance, implying that targeting KDM6A and/or its interaction with SND1 may be a promising strategy to overcome the chemoresistance.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Instabilidade Genômica , Histona Desmetilases , Humanos , Instabilidade Genômica/genética , Resistencia a Medicamentos Antineoplásicos/genética , Histona Desmetilases/metabolismo , Histona Desmetilases/genética , Linhagem Celular Tumoral , Mutação , Histonas/metabolismo , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Sumoilação , Endonucleases/metabolismo , Endonucleases/genética , Replicação do DNA , Cromatina/metabolismo , Cromatina/genética , Autoantígeno Ku/metabolismo , Autoantígeno Ku/genética
9.
DNA Repair (Amst) ; 140: 103710, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38901287

RESUMO

The KU heterodimer (KU70/80) is rapidly recruited to DNA double-strand breaks (DSBs) to regulate their processing and repair. Previous work has revealed that the amino-terminal von Willebrand-like (vWA-like) domain in KU80 harbours a conserved hydrophobic pocket that interacts with a short peptide motif known as the Ku-binding motif (KBM). The KBM is present in a variety of DNA repair proteins such as APLF, CYREN, and Werner protein (WRN). Here, to investigate the importance of KBM-mediated protein-protein interactions for KU80 function, we employed KU80-deficient Chinese Hamster Ovary (Xrs-6) cells transfected with RFP-tagged wild-type human KU80 or KU80 harbouring a mutant vWA-like domain (KU80L68R). Surprisingly, while mutant RFP-KU80L68R largely or entirely restored NHEJ efficiency and radiation resistance in KU80-deficient Xrs-6 cells, it failed to restore cellular resistance to DNA replication stress induced by camptothecin (CPT) or hydroxyurea (HU). Moreover, KU80-deficient Xrs-6 cells expressing RFP-KU80L68R accumulated pan-nuclear γH2AX in an S/G2-phase-dependent manner following treatment with CPT or HU, suggesting that the binding of KU80 to one or more KBM-containing proteins is required for the processing and/or repair of DNA ends that arise during DNA replication stress. Consistent with this idea, depletion of WRN helicase/exonuclease recapitulated the CPT-induced γH2AX phenotype, and did so epistatically with mutation of the KU80 vWA-like domain. These data identify a role for the KBM-binding by KU80 in the response and resistance of CHO cells to arrested and/or collapsed DNA replication forks, and implicate the KBM-mediated interaction of KU80 with WRN as a critical effector of this role.


Assuntos
Cricetulus , Replicação do DNA , Autoantígeno Ku , Autoantígeno Ku/metabolismo , Autoantígeno Ku/genética , Animais , Células CHO , Humanos , Cricetinae , Quebras de DNA de Cadeia Dupla , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Helicase da Síndrome de Werner/metabolismo , Helicase da Síndrome de Werner/genética , Reparo do DNA por Junção de Extremidades , Ligação Proteica , Camptotecina/farmacologia , Hidroxiureia/farmacologia
10.
Neuromuscul Disord ; 40: 7-15, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38805897

RESUMO

Anti-Ku autoantibodies are associated with several autoimmune inflammatory diseases. We aimed to review our anti-Ku positive pediatric patients in this study. Four pediatric patients (all female) who had anti-Ku positivity were included (Patients 1-2-3 with idiopathic inflammatory myopathy (IIM); Patient 4 with chronic urticaria). Patient 1 (onset:10.5 years) had proximal muscle weakness, Raynaud phenomenon, sclerodactyly, hyperpigmentation, joint contracture, and tenosynovitis. The disease course was progressive despite treatment with corticosteroids, intravenous immunoglobulin (IVIG), plasma exchange, and 11 different immunosuppressive drugs. Patient 2 (onset:15 years) presented with proximal muscle weakness, fatigue, weight loss. She recovered normal muscle strength after treatment with corticosteroids, IVIG, methotrexate, cyclosporine A, mycophenolate mofetil. Patient 3 (onset:10 years) had juvenile dermatomyositis with proximal muscle weakness, Gottron's papules, and calcinosis. She also had anti-NXP2 positivity. Remission was achieved with corticosteroids, methotrexate, azathioprine, and infliximab. Muscle biopsy findings revealed a variable spectrum of necrosis, regeneration, perifascicular pattern, and inflammation. Patient 4 had only chronic urticaria (onset: 6.5 years). The striking features of this series were heterogeneity in clinical presentations including solely chronic urticaria and IIM; variable response to immunosuppressive treatments; and histopathology revealing a spectrum of necrosis, regeneration and inflammatory infiltration. Expanding the spectrum of anti-Ku positivity will allow better understanding of anti-Ku-associated phenotype clusters.


Assuntos
Autoanticorpos , Autoantígeno Ku , Fenótipo , Humanos , Feminino , Adolescente , Criança , Autoantígeno Ku/imunologia , Autoanticorpos/sangue , Miosite/imunologia , Miosite/tratamento farmacológico , Urticária Crônica/tratamento farmacológico , Urticária Crônica/imunologia
11.
Eur J Pharmacol ; 975: 176647, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38754534

RESUMO

The emergence of chemoresistance poses a significant challenge to the efficacy of DNA-damaging agents in cancer treatment, in part due to the inherent DNA repair capabilities of cancer cells. The Ku70/80 protein complex (Ku) plays a central role in double-strand breaks (DSBs) repair through the classical non-homologous end joining (c-NHEJ) pathway, and has proven to be one of the most promising drug target for cancer treatment when combined with radiotherapy or chemotherapy. In this study, we conducted a high-throughput screening of small-molecule inhibitors targeting the Ku complex by using a fluorescence polarization-based DNA binding assay. From a library of 11,745 small molecules, UMI-77 was identified as a potent Ku inhibitor, with an IC50 value of 2.3 µM. Surface plasmon resonance and molecular docking analyses revealed that UMI-77 directly bound the inner side of Ku ring, thereby disrupting Ku binding with DNA. In addition, UMI-77 also displayed potent inhibition against MUS81-EME1, a key player in homologous recombination (HR), demonstrating its potential for blocking both NHEJ- and HR-mediated DSB repair pathways. Further cell-based studies showed that UMI-77 could impair bleomycin-induced DNA damage repair, and significantly sensitized multiple cancer cell lines to the DNA-damaging agents. Finally, in a mouse xenograft tumor model, UMI-77 significantly enhanced the chemotherapeutic efficacy of etoposide with little adverse physiological effects. Our work offers a new avenue to combat chemoresistance in cancer treatment, and suggests that UMI-77 could be further developed as a promising candidate in cancer treatment.


Assuntos
Antineoplásicos , Autoantígeno Ku , Humanos , Autoantígeno Ku/metabolismo , Animais , Linhagem Celular Tumoral , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/química , Dano ao DNA/efeitos dos fármacos , Simulação de Acoplamento Molecular , Ensaios Antitumorais Modelo de Xenoenxerto , Reparo do DNA por Junção de Extremidades/efeitos dos fármacos , Etoposídeo/farmacologia , Descoberta de Drogas , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos
12.
BMC Cancer ; 24(1): 519, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38654216

RESUMO

BACKGROUND: Uveal melanoma (UVM) is the most common primary intraocular tumor in adults, with a median survival of 4-5 months following metastasis. DNA damage response (DDR) upregulation in UVM, which could be linked to its frequent activation of the PI3K/AKT pathway, contributes to its treatment resistance. We have reported that embryonic stem cell microenvironments (ESCMe) can revert cancer cells to less aggressive states through downregulation of the PI3K signaling, showing promise in modulating the DDR of UVM. METHODS: Since nonhomologous end joining (NHEJ) is the main DNA repair mechanism in UVM, this study utilized gene expression analysis and survival prognosis analysis to investigate the role of NHEJ-related genes in UVM based on public databases. Xenograft mouse models were established to assess the therapeutic potential of ESC transplantation and exposure to ESC-conditioned medium (ESC-CM) on key DNA repair pathways in UVM. Quantitative PCR and immunohistochemistry were used to analyze NHEJ pathway-related gene expression in UVM and surrounding normal tissues. Apoptosis in UVM tissues was evaluated using the TUNEL assay. RESULTS: PRKDC, KU70, XRCC5, LIG4 and PARP1 showed significant correlations with UM progression. High expression of PRKDC and XRCC5 predicted poorer overall survival, while low PARP1 and XRCC6 expression predicted better disease-free survival in UVM patients. ESCMe treatment significantly inhibited the NHEJ pathway transcriptionally and translationally and promoted apoptosis in tumor tissues in mice bearing UVM. Furthermore, ESC transplantation enhanced DDR activities in surrounding normal cells, potentially mitigating the side effects of cancer therapy. Notably, direct cell-to-cell contact with ESCs was more effective than their secreted factors in regulating the NHEJ pathway. CONCLUSIONS: Our results suggest that NHEJ-related genes might serve as prognostic markers and therapeutic targets in UVM. These findings support the therapeutic potential of ESC-based therapy in enhancing UVM sensitivity to radiochemotherapy and improving treatment outcomes while minimizing damage to healthy cells.


Assuntos
Dano ao DNA , Melanoma , Microambiente Tumoral , Neoplasias Uveais , Animais , Humanos , Neoplasias Uveais/genética , Neoplasias Uveais/patologia , Neoplasias Uveais/metabolismo , Neoplasias Uveais/mortalidade , Camundongos , Melanoma/genética , Melanoma/patologia , Melanoma/metabolismo , Melanoma/terapia , Células-Tronco Embrionárias/metabolismo , Reparo do DNA por Junção de Extremidades , Linhagem Celular Tumoral , Apoptose/genética , Regulação Neoplásica da Expressão Gênica , Feminino , Ensaios Antitumorais Modelo de Xenoenxerto , Prognóstico , Masculino , Autoantígeno Ku/metabolismo , Autoantígeno Ku/genética , Transdução de Sinais , Reparo do DNA
13.
In Vivo ; 38(3): 1470-1476, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38688633

RESUMO

BACKGROUND/AIM: Automated measurement of immunostained samples can enable more convenient and objective prediction of treatment outcome from radiotherapy. We aimed to validate the performance of the QuPath image analysis software in immune cell markers detection by comparing QuPath cell counting results with those of physician manual cell counting. PATIENTS AND METHODS: CD8- and FoxP3-stained cervical, CD8-stained oropharyngeal, and Ku70-stained prostate cancer tumor sections were analyzed in 104 cervical, 92 oropharyngeal, and 58 prostate cancer patients undergoing radiotherapy at our Institution. RESULTS: QuPath and manual counts were highly correlated. When divided into two groups using ROC curves, the agreement between QuPath and manual counts was 89.4% for CD8 and 88.5% for FoxP3 in cervical cancer, 87.0% for CD8 in oropharyngeal cancer and 80.7% for Ku70 in prostate cancer. In cervical cancer, the high CD8 group based on QuPath counts had a better prognosis and the low CD8 group had a significantly worse prognosis [p=0.0003; 5-year overall survival (OS), 65.9% vs. 34.7%]. QuPath counts were more predictive than manual counts. Similar results were observed for FoxP3 in cervical cancer (p=0.002; 5-year OS, 62.1% vs. 33.6%) and CD8 in oropharyngeal cancer (p=0.013; 5-year OS, 80.2% vs. 47.2%). In prostate cancer, high Ku70 group had worse and low group significantly better outcome [p=0.007; 10-year progression-free survival (PFS), 56.0% vs. 93.8%]. CONCLUSION: QuPath showed a strong correlation with manual counting, confirming its utility and accuracy and potential applicability in clinical practice.


Assuntos
Software , Humanos , Masculino , Feminino , Prognóstico , Pessoa de Meia-Idade , Idoso , Resultado do Tratamento , Biomarcadores Tumorais/metabolismo , Adulto , Autoantígeno Ku/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Neoplasias da Próstata/radioterapia , Neoplasias da Próstata/patologia , Neoplasias da Próstata/metabolismo , Curva ROC , Antígenos CD8/metabolismo , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica , Neoplasias/radioterapia , Neoplasias/metabolismo , Neoplasias/patologia
14.
DNA Cell Biol ; 43(5): 219-231, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38634815

RESUMO

Breast cancer risk have been discussed to be associated with polymorphisms in genes as well as abnormal DNA damage repair function. This study aims to assess the relationship between genes single nucleotide polymorphisms (SNPs) related to DNA damage repair and female breast cancer risk in Chinese population. A case-control study containing 400 patients and 400 healthy controls was conducted. Genotype was identified using the sequence MassARRAY method and expression of estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor-2 (HER-2) in tumor tissues was analyzed by immunohistochemistry assay. The results revealed that ATR rs13091637 decreased breast cancer risk influenced by ER, PR (CT/TT vs. CC: adjusted odds ratio [OR] = 1.54, 95% confidence interval [CI]: 1.04-2.27, p = 0.032; CT/TT vs. CC: adjusted OR = 1.63, 95%CI: 1.14-2.35, p = 0.008) expression. Stratified analysis revealed that PALB2 rs16940342 increased breast cancer risk in response to menstrual status (AG/GG vs. AA: adjusted OR = 1.72, 95%CI: 1.13-2.62, p = 0.011) and age of menarche (AG/GG vs. AA: adjusted OR = 1.54, 95%CI: 1.03-2.31, p = 0.037), whereas ATM rs611646 and Ku70 rs132793 were associated with reduced breast cancer risk influenced by menarche (GA/AA vs. GG: adjusted OR = 0.50, 95%CI: 0.30-0.95, p = 0.033). In a summary, PALB2 rs16940342, ATR rs13091637, ATM rs611646, and Ku70 rs132793 were associated with breast cancer risk.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia , Neoplasias da Mama , Reparo do DNA , Predisposição Genética para Doença , Autoantígeno Ku , Polimorfismo de Nucleotídeo Único , Receptores de Progesterona , Humanos , Feminino , Neoplasias da Mama/genética , Reparo do DNA/genética , Pessoa de Meia-Idade , Proteínas Mutadas de Ataxia Telangiectasia/genética , Estudos de Casos e Controles , Adulto , Autoantígeno Ku/genética , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo , Receptor ErbB-2/genética , Dano ao DNA/genética , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Proteína do Grupo de Complementação N da Anemia de Fanconi/genética , Fatores de Risco
15.
Nucleic Acids Res ; 52(11): 6360-6375, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38682589

RESUMO

Although DNA-PK inhibitors (DNA-PK-i) have been applied in clinical trials for cancer treatment, the biomarkers and mechanism of action of DNA-PK-i in tumor cell suppression remain unclear. Here, we observed that a low dose of DNA-PK-i and PARP inhibitor (PARP-i) synthetically suppresses BRCA-deficient tumor cells without inducing DNA double-strand breaks (DSBs). Instead, we found that a fraction of DNA-PK localized inside of nucleoli, where we did not observe obvious DSBs. Moreover, the Ku proteins recognize pre-rRNA that facilitates DNA-PKcs autophosphorylation independent of DNA damage. Ribosomal proteins are also phosphorylated by DNA-PK, which regulates pre-rRNA biogenesis. In addition, DNA-PK-i acts together with PARP-i to suppress pre-rRNA biogenesis and tumor cell growth. Collectively, our studies reveal a DNA damage repair-independent role of DNA-PK-i in tumor suppression.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , Proteína Quinase Ativada por DNA , Autoantígeno Ku , Precursores de RNA , Proteína Quinase Ativada por DNA/metabolismo , Proteína Quinase Ativada por DNA/genética , Humanos , Precursores de RNA/metabolismo , Precursores de RNA/genética , Linhagem Celular Tumoral , Autoantígeno Ku/metabolismo , Autoantígeno Ku/genética , Fosforilação , Nucléolo Celular/metabolismo , Nucléolo Celular/genética , Nucléolo Celular/efeitos dos fármacos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , RNA Ribossômico/metabolismo , RNA Ribossômico/genética , Animais , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo
16.
Cell Death Differ ; 31(5): 683-696, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38589496

RESUMO

Protein phosphatase 1 catalytic subunit gamma (PPP1CC) promotes DNA repair and tumor development and progression, however, its underlying mechanisms remain unclear. This study investigated the molecular mechanism of PPP1CC's involvement in DNA repair and the potential clinical implications. High expression of PPP1CC was significantly correlated with radioresistance and poor prognosis in human nasopharyngeal carcinoma (NPC) patients. The mechanistic study revealed that PPP1CC bound to Ku70/Ku80 heterodimers and activated DNA-PKcs by promoting DNA-PK holoenzyme formation, which enhanced nonhomologous end junction (NHEJ) -mediated DNA repair and led to radioresistance. Importantly, BRCA1-BRCA2-containing complex subunit 3 (BRCC3) interacted with PPP1CC to enhance its stability by removing the K48-linked polyubiquitin chain at Lys234 to prevent PPP1CC degradation. Therefore, BRCC3 helped the overexpressed PPP1CC to maintain its high protein level, thereby sustaining the elevation of DNA repair capacity and radioresistance. Our study identified the molecular mechanism by which PPP1CC promotes NHEJ-mediated DNA repair and radioresistance, suggesting that the BRCC3-PPP1CC-Ku70 axis is a potential therapeutic target to improve the efficacy of radiotherapy.


Assuntos
Reparo do DNA por Junção de Extremidades , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Proteína Fosfatase 1 , Tolerância a Radiação , Animais , Feminino , Humanos , Masculino , Camundongos , Linhagem Celular Tumoral , Reparo do DNA , Proteína Quinase Ativada por DNA/metabolismo , Proteína Quinase Ativada por DNA/genética , Autoantígeno Ku/metabolismo , Autoantígeno Ku/genética , Camundongos Nus , Carcinoma Nasofaríngeo/radioterapia , Carcinoma Nasofaríngeo/patologia , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/metabolismo , Neoplasias Nasofaríngeas/radioterapia , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/patologia , Neoplasias Nasofaríngeas/metabolismo , Prognóstico , Proteína Fosfatase 1/metabolismo , Proteína Fosfatase 1/genética , Tolerância a Radiação/genética
17.
Cell Signal ; 119: 111164, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38583745

RESUMO

The development of resistance to cisplatin (CDDP) in bladder cancer presents a notable obstacle, with indications pointing to the substantial role of circular RNAs (circRNAs) in this resistance. Nevertheless, the precise mechanisms through which circRNAs govern resistance are not yet fully understood. Our findings demonstrate that circUGGT2 is significantly upregulated in bladder cancer, facilitating cancer cell migration and invasion. Additionally, our analysis of eighty patient outcomes revealed a negative correlation between circUGGT2 expression levels and prognosis. Using circRNA pull-down assays, mass spectrometry analyses, and RNA Immunoprecipitation (RIP), it was shown that circUGGT2 interacts with the KU heterodimer, consisting of KU70 and KU80. Both KU70 and KU80 are critical components of the non-homologous end joining (NHEJ) pathway, which plays a role in CDDP resistance. Flow cytometry was utilized in this study to illustrate the impact of circUGGT2 on the sensitivity of bladder cancer cell lines to CDDP through its interaction with KU70 and KU80. Additionally, a reduction in the levels of DNA repair factors associated with the NHEJ pathway, such as KU70, KU80, DNA-PKcs, and XRCC4, was observed in chromatin of bladder cancer cells following circUGGT2 knockdown post-CDDP treatment, while the levels of DNA repair factors in total cellular proteins remained constant. Thus, the promotion of CDDP resistance by circUGGT2 is attributed to its facilitation of repair factor recruitment to DNA breaks via interaction with the KU heterodimer. Furthermore, our study demonstrated that knockdown of circUGGT2 resulted in reduced levels of γH2AX, a marker of DNA damage response, in CDDP-treated bladder cancer cells, implicating circUGGT2 in the NHEJ pathway for DNA repair.


Assuntos
Cisplatino , Reparo do DNA por Junção de Extremidades , Resistencia a Medicamentos Antineoplásicos , Autoantígeno Ku , RNA Circular , Neoplasias da Bexiga Urinária , Humanos , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/tratamento farmacológico , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , RNA Circular/metabolismo , RNA Circular/genética , Linhagem Celular Tumoral , Autoantígeno Ku/metabolismo , Autoantígeno Ku/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Progressão da Doença
18.
Cell Death Differ ; 31(6): 792-803, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38664591

RESUMO

As the major DNA sensor that activates the STING-TBK1 signaling cascade, cGAS is mainly present in the cytosol. A number of recent reports have indicated that cGAS also plays critical roles in the nucleus. Our previous work demonstrated for the first time that cGAS is translocated to the nucleus upon the occurrence of DNA damage and inhibits homologous recombination (HR), one of the two major pathways of DNA double strand break (DSB) repair. However, whether nuclear cGAS regulates the other DSB repair pathway, nonhomologous end joining (NHEJ), which can be further divided into the less error-prone canonical NHEJ (c-NHEJ) and more mutagenic alternative NHEJ (alt-NHEJ) subpathways, has not been characterized. Here, we demonstrated that cGAS tipped the balance of the two NHEJ subpathways toward c-NHEJ. Mechanistically, the cGAS-Ku80 complex enhanced the interaction between DNA-PKcs and the deubiquitinase USP7 to improve DNA-PKcs protein stability, thereby promoting c-NHEJ. In contrast, the cGAS-Ku80 complex suppressed alt-NHEJ by directly binding to the promoter of Polθ to suppress its transcription. Together, these findings reveal a novel function of nuclear cGAS in regulating DSB repair, suggesting that the presence of cGAS in the nucleus is also important in the maintenance of genome integrity.


Assuntos
Reparo do DNA por Junção de Extremidades , Autoantígeno Ku , Nucleotidiltransferases , Humanos , Nucleotidiltransferases/metabolismo , Nucleotidiltransferases/genética , Autoantígeno Ku/metabolismo , Autoantígeno Ku/genética , Quebras de DNA de Cadeia Dupla , Proteína Quinase Ativada por DNA/metabolismo , Células HEK293 , Animais , Células HeLa , Camundongos
19.
Clin Rheumatol ; 43(6): 2145-2152, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38652335

RESUMO

The frequency of antibodies to Ku varies in various autoimmune diseases. In 2019, Spielmann et al. identified two types of anti-Ku syndrome based on a hierarchical clustering analysis. Sjögren's syndrome occurs both in the first type of anti-Ku syndrome and in the second type. Despite the fact that increased tissue expression of Ku proteins was noted in lymphocytic cells with focal sialoadenitis of the minor salivary glands in patients with primary Sjogren's syndrome, only 49 cases of a combination of anti-Ku antibodies and manifestations of Sjogren's syndrome have been described in the literature. Some researchers examined patients for the presence of Sjogren's syndrome only if they had anti-Ro or anti-La antibodies, although in the literature, there are descriptions of Sjogren's syndrome in the presence of only isolated anti-Ku antibodies, as in our case. Literature data on glandular and extraglandular manifestations of Sjögren's syndrome in anti-Ku-positive patients are limited. Below, we present the first case of Sjögren's syndrome in combination with the first type of anti-Ku syndrome complicated by the development of mucosa-associated lymphoid tissue (MALT) lymphoma. The article also provides a systematic review of the literature on the association of Sjögren's syndrome with anti-Ku antibodies.


Assuntos
Autoantígeno Ku , Linfoma de Zona Marginal Tipo Células B , Síndrome de Sjogren , Humanos , Síndrome de Sjogren/complicações , Síndrome de Sjogren/imunologia , Linfoma de Zona Marginal Tipo Células B/complicações , Linfoma de Zona Marginal Tipo Células B/imunologia , Feminino , Autoantígeno Ku/imunologia , Pessoa de Meia-Idade , Autoanticorpos/imunologia
20.
Cell Rep ; 43(4): 114001, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38547127

RESUMO

In the ciliate Paramecium, precise excision of numerous internal eliminated sequences (IESs) from the somatic genome is essential at each sexual cycle. DNA double-strands breaks (DSBs) introduced by the PiggyMac endonuclease are repaired in a highly concerted manner by the non-homologous end joining (NHEJ) pathway, illustrated by complete inhibition of DNA cleavage when Ku70/80 proteins are missing. We show that expression of a DNA-binding-deficient Ku70 mutant (Ku70-6E) permits DNA cleavage but leads to the accumulation of unrepaired DSBs. We uncoupled DNA cleavage and repair by co-expressing wild-type and mutant Ku70. High-throughput sequencing of the developing macronucleus genome in these conditions identifies the presence of extremities healed by de novo telomere addition and numerous translocations between IES-flanking sequences. Coupling the two steps of IES excision ensures that both extremities are held together throughout the process, suggesting that DSB repair proteins are essential for assembly of a synaptic precleavage complex.


Assuntos
Clivagem do DNA , Paramecium , Paramecium/genética , Paramecium/metabolismo , Quebras de DNA de Cadeia Dupla , Genoma de Protozoário , Autoantígeno Ku/metabolismo , Autoantígeno Ku/genética , Reparo do DNA , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , Reparo do DNA por Junção de Extremidades
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA