Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Z Geburtshilfe Neonatol ; 227(4): 261-268, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36889342

RESUMO

BACKGROUND: Propolis has become one of the most preferred supplements due to its beneficial biological properties. Organic (water and vegetable oils) and chemical (ethyl alcohol, propylene glycol, and glycerol) solvents are used for propolis extraction. However, the effects of these chemicals on health should be taken into account. OBJECTIVES: In this study, the effects of propolis extracts on health were evaluated. METHODS: 32 pregnant Wistar albino rats and 64 neonatal/young adults were given three different extractions of propolis (propylene glycol, water, and olive oil). Histopathological analyses were performed on the liver and brain, and blood samples were taken from the hearts of rats. RESULTS: Histopathological scoring showed that the intensity of pycnotic hepatocyte, sinusoidal dilatation, and bleeding was high in liver samples of pregnant and baby rats given propylene glycol extract of propolis (p<0.05). Propylene glycol extract caused dilatation of blood vessels and apoptosis of neurons in brain tissue. The histopathological score was significantly lower in liver and brain tissues of rats treated with water and olive oil extract compared to propylene propolis groups (p<0.05). Liver enzyme levels in the blood increased in propylene propolis rats (p<0.05). CONCLUSION: Histopathological changes and biochemical alterations may indicate that propylene glycol extracts of propolis are more toxic than olive oil and water extracts. Therefore, olive oil and water extracts of propolis are more reliable than propylene glycol extract in pregnant and infant rats.


Assuntos
Própole , Humanos , Ratos , Animais , Gravidez , Feminino , Própole/toxicidade , Própole/química , Animais Recém-Nascidos , Ratos Wistar , Azeite de Oliva/toxicidade , Fígado , Propilenoglicol/toxicidade , Sistema Nervoso Central
2.
Nutrients ; 13(7)2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34371939

RESUMO

A high-fat diet (HFD) and obesity are risk factors for many diseases including breast cancer. This is particularly important with close to 40% of the current adult population being overweight or obese. Previous studies have implicated that Mediterranean diets (MDs) partially protect against breast cancer. However, to date, the links between diet and breast cancer progression are not well defined. Therefore, to begin to define and assess this, we used an isocaloric control diet (CD) and two HFDs enriched with either olive oil (OOBD, high in oleate, and unsaturated fatty acid in MDs) or a milk fat-based diet (MFBD, high in palmitate and myristate, saturated fatty acids in Western diets) in a mammary polyomavirus middle T antigen mouse model (MMTV-PyMT) of breast cancer. Our data demonstrate that neither MFBD or OOBD altered the growth of primary tumors in the MMTV-PyMT mice. The examination of lung metastases revealed that OOBD mice exhibited fewer surface nodules and smaller metastases when compared to MFBD and CD mice. These data suggest that different fatty acids found in different sources of HFDs may alter breast cancer metastasis.


Assuntos
Neoplasias da Mama/patologia , Dieta Hiperlipídica/efeitos adversos , Gorduras na Dieta/toxicidade , Ácidos Graxos/toxicidade , Neoplasias Pulmonares/secundário , Leite/toxicidade , Ração Animal , Animais , Antígenos Transformantes de Poliomavirus , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Feminino , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Vírus do Tumor Mamário do Camundongo/genética , Azeite de Oliva/toxicidade , Medição de Risco , Fatores de Risco , Carga Tumoral , Fator de Necrose Tumoral alfa/metabolismo
3.
J Hazard Mater ; 393: 122337, 2020 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-32172058

RESUMO

Linseed oil, olive oil, and sunflower oil were selected based on green chemistry principles and C60 solubility as alternative solvents to replace 1,2,4-trimethylbenzene (TMB) for C60 manufacturing. Singular acute toxicity experiments of C60 and the four solvents was performed using Daphnia magna to identify the solvent with the lowest toxicity and estimate the toxicity of C60. The EC50 for C60 was estimated to be higher than 176 ppm. The toxicity of the solvents increased from sunflower oil to olive oil, linseed oil, and TMB. Combined toxicity tests were conducted to investigate the interaction between C60 and the solvent since essential oils can be nanocarriers and facilitate the transport of C60 into the cell membranes, which would increase its toxicity. Various concentrations of C60 (0, 11, 22, 44, 88, and 176 mg/L) were mixed with solvents at their EC50 concentrations. The toxicity of linseed oil increased with increasing C60 concentrations. For olive and sunflower oil, the toxicity was lowered with low concentrations of C60. Olive oil was determined to be a suitable solvent for C60 manufacturing based on singular and combined toxicity assessments. This study showed the importance of considering combined toxicity for solvent selection.


Assuntos
Linho/química , Fulerenos/química , Azeite de Oliva/química , Solventes/química , Óleo de Girassol/química , Animais , Derivados de Benzeno/química , Derivados de Benzeno/toxicidade , Daphnia/efeitos dos fármacos , Linho/toxicidade , Fulerenos/toxicidade , Azeite de Oliva/toxicidade , Solubilidade , Solventes/toxicidade , Óleo de Girassol/toxicidade
4.
Nutrients ; 11(9)2019 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-31500145

RESUMO

The objective of this study was to determine the acute (one single dose), subacute (14 days), and sub-chronic (90 days) toxicity of an aqueous virgin olive oil (VOO) extract rich in hydroxytyrosol in rats. For acute/subacute toxicity, rats were divided into three groups. The control group received distilled water (n = 9), another experimental group received a single dose of 300 mg/kg (n = 3), and a third group received one dose of 2000 mg/kg (n = 4) during 14 days. The sub-chronic study included 60rats distributed in three groups (n = 20: 10 males and 10 females) receiving daily different three doses of the VOO extract in the drinking water during 90 days: (1) 100 mg/kg, (2) 300 mg/kg, and (3) 1000 mg/kg. In parallel, a fourth additional group (n = 20: 10 males and 10 females) did not receive any extract (control group). Clinical signs, body weight, functional observations of sensory and motor reactivity, hematological and biochemical analyses, and macroscopic and microscopic histopathology were evaluated. No adverse effects were observed after the administration of the different doses of the hydroxytyrosol-rich VOO extract, which suggests that the enrichment of VOO in its phenolic compound is safe, and can be used as functional foods for the treatment of chronic degenerative diseases.


Assuntos
Azeite de Oliva/toxicidade , Álcool Feniletílico/análogos & derivados , Testes de Toxicidade Aguda , Testes de Toxicidade Subaguda , Testes de Toxicidade Subcrônica , Animais , Feminino , Masculino , Nível de Efeito Adverso não Observado , Álcool Feniletílico/toxicidade , Ratos Wistar , Medição de Risco , Fatores de Tempo
5.
Arterioscler Thromb Vasc Biol ; 39(3): 373-386, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30700132

RESUMO

Objective- APOA5 variants are strongly associated with hypertriglyceridemia, as well as increased risks of cardiovascular disease and acute pancreatitis. Hypertriglyceridemia in apo AV dysfunction often aggravates by environmental factors such as high-carbohydrate diets or aging. To date, the molecular mechanisms by which these environmental factors induce hypertriglyceridemia are poorly defined, leaving the high-risk hypertriglyceridemia condition undertreated. Previously, we reported that LXR (liver X receptor)-SREBP (sterol regulatory element-binding protein)-1c pathway regulates large-VLDL (very low-density lipoprotein) production induced by LXR agonist. However, the pathophysiological relevance of the finding remains unknown. Approach and Results- Here, we reconstitute the environment-induced hypertriglyceridemia phenotype of human APOA5 deficiency in Apoa5-/- mice and delineate the role of SREBP-1c in vivo by generating Apoa5-/- ;Srebp-1c-/- mice. The Apoa5-/- mice, which showed moderate hypertriglyceridemia on a chow diet, developed severe hypertriglyceridemia on high-carbohydrate feeding or aging as seen in patients with human apo AV deficiency. These responses were nearly completely abolished in the Apoa5-/- ;Srebp-1c-/- mice. Further mechanistic studies revealed that in response to these environmental factors, SREBP-1c was activated to increase triglyceride synthesis and to permit the incorporation of triglyceride into abnormally large-VLDL particles, which require apo AV for efficient clearance. Conclusions- Severe hypertriglyceridemia develops only when genetic factors (apo AV deficiency) and environmental effects (SREBP-1c activation) coexist. We demonstrate that the regulated production of large-sized VLDL particles via SREBP-1c determines plasma triglyceride levels in apo AV deficiency. Our findings explain the long-standing enigma of the late-onset hypertriglyceridemia phenotype of apo AV deficiency and suggest a new approach to treat hypertriglyceridemia by targeting genes that mediate environmental effects.


Assuntos
Apolipoproteína A-V/deficiência , Hipertrigliceridemia/sangue , Lipoproteínas VLDL/biossíntese , Proteína de Ligação a Elemento Regulador de Esterol 1/fisiologia , Envelhecimento/metabolismo , Ração Animal/efeitos adversos , Animais , Apolipoproteína A-V/genética , Apolipoproteínas/sangue , Quilomícrons/metabolismo , Feminino , Frutose/toxicidade , Regulação da Expressão Gênica/efeitos dos fármacos , Interação Gene-Ambiente , Humanos , Hidrocarbonetos Fluorados/farmacologia , Hipertrigliceridemia/induzido quimicamente , Hipertrigliceridemia/genética , Lipídeos/sangue , Receptores X do Fígado/agonistas , Receptores X do Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Animais , Azeite de Oliva/toxicidade , Proteína de Ligação a Elemento Regulador de Esterol 1/deficiência , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Sulfonamidas/farmacologia
6.
Sci Rep ; 6: 22140, 2016 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-26907368

RESUMO

With the goal of finding a new way to reduce population densities of Bemisia tabaci biotype Q in greenhouses, seven repellent volatile chemicals and their combinations were screened. The mixture of DLCO (D-limonene, citral and olive oil (63:7:30)) had a better cost performance(SC50 = 22.59 mg/ml)to repel whiteflies from settling than the other mixtures or single chemicals. In the greenhouse, in both the choice test and the no-choice tests, the number of adult whiteflies that settled on 1% DLCO-treated tomato plants was significantly lower than those settling on the control plants for the different exposure periods (P < 0.01). In the choice test, the egg amount on the treated tomato plants was significantly lower (P < 0.01) than that on the control plants, but there was no significant difference (P > 0.05) between the number of eggs on treated and control plants in the no-choice test. Compared with the controls, 1% DLCO did not cause significantly statistic mortality rates (P > 0.05) out of different living stages of B. tabaci. The tests for evaluating the repellent efficacy, showed that a slow-releasing bottle containing the mixture had a period of efficacy of 29 days, and the application of this mixture plus a yellow board used as a push-pull strategy in the greenhouse was also effective.


Assuntos
Hemípteros/efeitos dos fármacos , Repelentes de Insetos/toxicidade , Plantas/química , Solanum lycopersicum/parasitologia , Compostos Orgânicos Voláteis/toxicidade , Análise de Variância , Animais , Cicloexenos/isolamento & purificação , Cicloexenos/toxicidade , Ambiente Controlado , Hemípteros/crescimento & desenvolvimento , Controle de Insetos/métodos , Repelentes de Insetos/isolamento & purificação , Limoneno , Modelos Lineares , Óleos Voláteis/isolamento & purificação , Óleos Voláteis/toxicidade , Azeite de Oliva/isolamento & purificação , Azeite de Oliva/toxicidade , Contagem de Ovos de Parasitas , Doenças das Plantas/parasitologia , Óleos de Plantas/isolamento & purificação , Óleos de Plantas/toxicidade , Terpenos/isolamento & purificação , Terpenos/toxicidade , Testes de Toxicidade/métodos , Compostos Orgânicos Voláteis/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA