Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.599
Filtrar
1.
Vet Med Sci ; 10(3): e1427, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38695207

RESUMO

BACKGROUND: Canine babesiosis is a clinically significant tick-transmitted disease caused by several species of the intraerythrocytic protozoan parasite Babesia, which result in a wide range of clinical manifestations, from mild, transient infection to serious disease and even death. OBJECTIVES: The current study aimed to estimate the global prevalence and associated risk factors of Babesia in dogs. METHODS: Multiple databases (PubMed, Scopus, ProQuest, Web of Science and Google Scholar) were searched for relevant literature published from January 2000 up to December 2022. The statistical analyses were performed based on the R software (version 3.6) meta-package. RESULTS: Out of 23,864 publications, 229 studies met the inclusion criteria. The pooled prevalence of canine babesiosis was 0.120 (95% CI; 0.097-0.146). The highest pooled prevalence was found in Europe (0.207, 95% CI; 0.097-0.344). Among several species, Babesia canis was the most prevalent parasite (0.216, 95% CI; 0.056-0.441). The highest pooled prevalence of Babesia in dogs was observed in the summer season (0.097, 95% CI; 0.040-0.174). CONCLUSIONS: Regular screening and appropriate control strategies are recommended for the prevention of transmission of tick-borne disease transmission among dogs.


Assuntos
Babesia , Babesiose , Doenças do Cão , Cães , Babesiose/epidemiologia , Babesiose/parasitologia , Animais , Doenças do Cão/epidemiologia , Doenças do Cão/parasitologia , Babesia/isolamento & purificação , Prevalência , Fatores de Risco
2.
Front Immunol ; 15: 1380660, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38720894

RESUMO

Introduction: Babesia bovis, a tick-borne apicomplexan parasite causing bovine babesiosis, remains a significant threat worldwide, and improved and practical vaccines are needed. Previous studies defined the members of the rhoptry associated protein-1 (RAP-1), and the neutralization-sensitive rhoptry associated protein-1 related antigen (RRA) superfamily in B. bovis, as strong candidates for the development of subunit vaccines. Both RAP-1 and RRA share conservation of a group of 4 cysteines and amino acids motifs at the amino terminal end (NT) of these proteins. Methods and results: Sequence comparisons among the RRA sequences of several B. bovis strains and other Babesia spp parasites indicate a high level of conservation of a 15-amino acid (15-mer) motif located at the NT of the protein. BlastP searches indicate that the 15-mer motif is also present in adenylate cyclase, dynein, and other ATP binding proteins. AlphaFold2 structure predictions suggest partial exposure of the 15-mer on the surface of RRA of three distinct Babesia species. Antibodies in protected cattle recognize a synthetic peptide representing the 15-mer motif sequence in iELISA, and rabbit antibodies against the 15-mer react with the surface of free merozoites in immunofluorescence. Discussion and conclusion: The presence of the 15-mer-like regions in dynein and ATP-binding proteins provides a rationale for investigating possible functional roles for RRA. The demonstrated presence of a surface exposed B-cell epitope in the 15-mer motif of the B. bovis RRA, which is recognized by sera from protected bovines, supports its inclusion in future subunit epitope-based vaccines against B. bovis.


Assuntos
Anticorpos Antiprotozoários , Antígenos de Protozoários , Babesia bovis , Babesiose , Epitopos de Linfócito B , Proteínas de Protozoários , Animais , Bovinos , Babesia bovis/imunologia , Epitopos de Linfócito B/imunologia , Babesiose/imunologia , Babesiose/parasitologia , Babesiose/prevenção & controle , Anticorpos Antiprotozoários/imunologia , Proteínas de Protozoários/imunologia , Antígenos de Protozoários/imunologia , Motivos de Aminoácidos , Sequência Conservada , Doenças dos Bovinos/imunologia , Doenças dos Bovinos/parasitologia , Doenças dos Bovinos/prevenção & controle , Sequência de Aminoácidos , Vacinas Protozoárias/imunologia
3.
Vet Parasitol Reg Stud Reports ; 50: 101006, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38644035

RESUMO

Vector-borne diseases (VBDs) affecting dromedary camels (Camelus dromedarius) have considerable importance in the United Arab Emirates (UAE) because of the consequences associated with production decline and economic losses. Our study aimed to determine the prevalence of selected VBDs in camels in the UAE and identify risk factors. This research is currently affected by the low number of epidemiological molecular surveys addressing this issue. Blood samples were obtained from 425 dromedary camels from different locations across the UAE. Whole genomic DNA was isolated, and PCR screening was done to detect piroplasmids (Babesia/Theileria spp.), Trypanosoma spp., and Anaplasmataceae spp. (Anaplasma, Ehrlichia, Neorickettsia and Wolbachia spp.). Amplicons were sequenced, and phylogenetic trees were constructed. Trypanosoma sequences were identified as T. brucei evansi, whereas Anaplasmataceae sequences were identified as A. platys-like. All camels were negative for Babesia/Theileria spp. (0%); however, 18 camels were positive for T. b. evansi (4%) and 52 were positive for A. platys-like (12%). Mixed infection with T. b. evansi and A. platys-like was found in one camel. Statistical analyses revealed that camels with a brown coat colour were significantly more prone to acquire the A. platys-like strain compared with those having a clearer coat. A similar finding was observed when comparing urban moving camels with desert indoor and urban indoor camels. Continuous disease surveillance is required to ensure and maintain the good health status of the camels in the UAE. Nonetheless, the risk of disease outbreak remains if the misuse of drugs continues.


Assuntos
Camelus , Doenças Transmitidas por Vetores , Animais , Emirados Árabes Unidos/epidemiologia , Camelus/parasitologia , Prevalência , Doenças Transmitidas por Vetores/epidemiologia , Doenças Transmitidas por Vetores/parasitologia , Doenças Transmitidas por Vetores/veterinária , Doenças Transmitidas por Vetores/microbiologia , Feminino , Masculino , Babesia/isolamento & purificação , Babesia/genética , Filogenia , Trypanosoma/isolamento & purificação , Trypanosoma/genética , Trypanosoma/classificação , Anaplasmataceae/isolamento & purificação , Anaplasmataceae/genética , Babesiose/epidemiologia , Babesiose/parasitologia , Fatores de Risco
4.
Vet Parasitol Reg Stud Reports ; 50: 101011, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38644043

RESUMO

Anaplasmosis and babesiosis are globally distributed arthropod-borne diseases known for causing substantial economic losses due to their high morbidity and mortality rates. This study aims to assess the frequency and epidemiological features associated with the infection of Anaplasma marginale, Babesia bigemina, and Babesia bovis in three Creole cattle breeds (Chino Santandereano (Chino), Casanareño (CAS), and Sanmartinero (SM)) in northeastern Colombia. Between June 2019 and March 2020, a total of 252 Creole cattle were sampled, with Chino, CAS, and SM accounting for 42.8%, 29.5%, and 29.5% of the samples, respectively. Blood samples were subjected to molecular analysis to detect the DNA of A. marginale, B. bigemina, and B. bovis, using species-specific primers. Additionally, Packed Cell Volume (PCV), total serum proteins, and body condition were evaluated. Molecular analyses revealed the presence of B. bigemina, A. marginale, and B. bovis in 83.7% (211/252; 95% CI = 79.1%-88.3%), 59.9% (151/252; 95% CI = 53.8%-66.1%), and 40.9% (103/252; 95% CI = 34.7%-46.9%) of the samples, respectively, with 69% (174/252; 95% CI = 57.8%-80.3%) exhibiting coinfections. Notably, in infected animals, no significant alterations in PCV, total serum proteins, or body condition were observed. Multivariate analyses indicated a statistically significant association between the frequency of A. marginale infection and the breed and season, with a higher frequency in SM during the rainy season (P < 0.05). To our knowledge, this is the first molecular survey that evaluates multiple arthropod-borne pathogens in Colombian Creole breeds. The results revel a high frequency of B. bigemina and A. marginale infections, coupled with a notable frequency of coinfections, all without significant alteration in the PCV, total serum proteins and body conditions. Our findings enhance the understanding of the epidemiological aspects of arthropod-borne pathogens in Colombian Creole breed and contribute to the improvement of sanitary programs for these animals.


Assuntos
Anaplasma marginale , Anaplasmose , Babesia bovis , Babesia , Babesiose , Doenças dos Bovinos , Animais , Bovinos , Colômbia/epidemiologia , Babesiose/epidemiologia , Babesiose/parasitologia , Anaplasma marginale/genética , Anaplasma marginale/isolamento & purificação , Anaplasmose/epidemiologia , Anaplasmose/microbiologia , Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/parasitologia , Doenças dos Bovinos/microbiologia , Babesia/isolamento & purificação , Babesia/genética , Babesia/classificação , Babesia bovis/genética , Babesia bovis/isolamento & purificação , Feminino , Masculino , Prevalência
5.
ACS Infect Dis ; 10(4): 1405-1413, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38563132

RESUMO

Endochin-like quinolones (ELQs) define a class of small molecule antimicrobials that target the mitochondrial electron transport chain of various human parasites by inhibiting their cytochrome bc1 complexes. The compounds have shown potent activity against a wide range of protozoan parasites, including the intraerythrocytic parasites Plasmodium and Babesia, the agents of human malaria and babesiosis, respectively. First-generation ELQ compounds were previously found to reduce infection by Babesia microti and Babesia duncani in animal models of human babesiosis but achieved a radical cure only in combination with atovaquone and required further optimization to address pharmacological limitations. Here, we report the identification of two second-generation 3-biaryl ELQ compounds, ELQ-596 and ELQ-650, with potent antibabesial activity in vitro and favorable pharmacological properties. In particular, ELQ-598, a prodrug of ELQ-596, demonstrated high efficacy as an orally administered monotherapy at 10 mg/kg. The compound achieved radical cure in both the chronic model of B. microti-induced babesiosis in immunocompromised mice and the lethal infection model induced by B. duncani in immunocompetent mice. Given its high potency, favorable physicochemical properties, and low toxicity profile, ELQ-596 represents a promising drug for the treatment of human babesiosis.


Assuntos
Babesiose , Quinolonas , Camundongos , Humanos , Animais , Babesiose/tratamento farmacológico , Babesiose/parasitologia , Quinolonas/farmacologia , Atovaquona/farmacologia , Atovaquona/uso terapêutico
6.
Parasit Vectors ; 17(1): 160, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38549117

RESUMO

BACKGROUND: Equine piroplasmosis is caused by two tick-borne protozoan parasites, Theileria equi and Babesia caballi,, which are clinically relevant in susceptible horses, donkeys, and mules. Moreover, equine piroplasmosis significantly constrains international trading and equestrian events. Rapidly diagnosing both parasites in carrier animals is essential for implementing effective control measures. Here, a rapid immunochromatographic test for the simultaneous detection of antibodies to T. equi and B. caballi was evaluated using samples from horses and donkeys collected in Greece, Israel, and Italy. The results were compared with an improved competitive enzyme-linked immunosorbent assay (cELISA) for detecting antibodies to both parasites using the same panel of samples. METHODS: Blood samples were collected from 255 horses and donkeys. The panel consisted of 129 horses sampled at four locations in northern Greece, 105 donkeys sampled at four locations in Sicily, and 21 horses sampled at two locations in Israel. The rapid test and the cELISA were performed according to the manufacturer's instructions, and the results were subjected to a statistical analysis to determine the sensitivity and specificity of both tests and their association. RESULTS: The immunochromatographic test provided a result within 15 min and can be performed in the field, detecting both pathogens simultaneously. The overall coincidence rate between the rapid test and the cELISA for detecting antibodies against T. equi was 93% and 92.9% for B. caballi. The rapid test's sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) for T. equi were above 91.5%. Sixteen samples were positive for both parasites in the rapid test and eight in the cELISA. Either test had no significant association between T. equi and B. caballi detection. The detection rates of both parasites were significantly higher in Italy than in Greece or Israel and in donkeys than in horses. The agreement for T. equi between the results of both tests was high in Greece (93.8%) and Italy (95.2%) and moderate in Israel (76.2%). For B. caballi, the specificity and NPV of the rapid test were high (94.2% and 98.3%, respectively), although the sensitivity and PPV were moderate (69.2% and 39.1%, respectively) due to the small sample size. However, for B. caballi, the sensitivity was higher with the rapid test. CONCLUSIONS: The rapid test detected T. equi and B. caballi simultaneously in the field, potentially replacing laborious cELISA testing and is recommended for import/export purposes. The test can also be helpful for the differential diagnosis of clinical cases, since seropositivity may rule out equine piroplasmosis since it does not indicate current or active infection.


Assuntos
Babesia , Babesiose , Doenças dos Bovinos , Doenças dos Cavalos , Theileria , Theileriose , Carrapatos , Cavalos , Animais , Bovinos , Equidae , Babesiose/parasitologia , Theileriose/parasitologia , Anticorpos , Carrapatos/parasitologia , Sicília , Doenças dos Cavalos/parasitologia
7.
Infect Genet Evol ; 119: 105571, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38365128

RESUMO

Equine piroplasmosis is a tick-borne disease caused by Theileria equi and Babesia caballi in horses. Because of its impact on horse industry, control of this disease is crucial for endemic countries. The control of equine piroplasmosis may be influenced by the genotypic diversity of T. equi and B. caballi. Mongolia, a country with a thriving livestock industry, is endemic for T. equi and B. caballi. However, nationwide epidemiological surveys have not been conducted to determine the current status of infections and genetic diversity of these two parasite species. Therefore, the objective of this research was to investigate the infection rates and genotypes of T. equi and B. caballi in horses across Mongolia. Blood samples were collected from 1353 horses in 15 of Mongolia's 21 provinces, and their DNAs were analyzed with T. equi- and B. caballi-specific PCR assays. Additionally, blood smears were prepared from 251 horses, stained with Giemsa, and examined under a light microscope to identify T. equi and B. caballi. The microscopy revealed that 30 (11.9%) and 4 (1.6%) of the 251 horses were positive for T. equi and B. caballi, respectively. By contrast, PCR assays detected the T. equi and B. caballi in 1058 (78.2%) and 62 (4.6%) horses, respectively. Phylogenetic analysis of 18S rRNA sequences from 42 randomly selected T. equi-positive DNA samples detected the genotypes A and E. On the other hand, the rap-1 sequences from 19 randomly selected B. caballi-positive DNA samples occurred in clades representing the genotypes A and B1, as well as in a distinct clade closely related to the genotype A. Our findings confirm the widespread occurrence of T. equi and B. caballi infections in Mongolian horses, highlighting the need for a comprehensive control approach.


Assuntos
Babesia , Babesiose , Doenças dos Cavalos , Theileria , Theileriose , Bovinos , Cavalos/genética , Animais , Babesia/genética , Theileria/genética , Babesiose/parasitologia , Theileriose/epidemiologia , Theileriose/parasitologia , Filogenia , Doenças dos Cavalos/epidemiologia , Doenças dos Cavalos/parasitologia , DNA de Protozoário/genética , Variação Genética
8.
Braz J Biol ; 84: e277636, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38422286

RESUMO

Parasitic diseases, notably babesiosis, exert a substantial impact on the global cattle industry, posing challenges to commerce, economies, and human health. This study, conducted in Southern Punjab, Pakistan, aimed to assess the prevalence of Babesia spp. across various livestock species using microscopic and PCR methods. A total of 180 blood samples (60 from each district) were systematically collected from apparently healthy animals, with 36 samples obtained from each domestic animal species, including camel, cattle, buffalo, goat, and sheep, noting that 12 samples were collected from each district for each animal species. Overall prevalence was determined to be 32.8% (59/180), with varying rates among species: 25.0% in cattle, 41.66% in buffalo, 30.55% in goats, 33.3% in sheep, and 33.3% in camels. Microscopic examination revealed slightly varied infection rates among large and small domestic animals (22.2%), while PCR results indicated a 32.8% overall infection rate in both large and small domestic animals, with no statistical significance. District-wise analysis showed regional variations, with Muzaffargarh recording a prevalence rate of 23.33% through microscopic examination, while Lodhran and Bahawalpur recorded 21.67%. PCR results revealed higher rates (38.33%, 26.67%, and 33.33%, respectively), underlining the importance of employing PCR for accurate detection. Examining ruminant types, large ruminants exhibited a 32.4% infection rate, while small domestic animals showed 33.3%, with no significant difference (p=0.897). District-wise prevalence showcased significant variation, with Muzaffargarh demonstrating a 25% prevalence, Lodhran 22%, and Bahawalpur 22%, through microscopic examination. PCR results displayed 38.33%, 27%, and 33.3%, respectively, with no statistical significance. Detailed analysis of individual districts highlighted variations in infection rates among camels, cattle, buffalo, goats, and sheep. The binomial test indicated significant differences through microscopic analysis (P=0.011) but non-significant variations through PCR (P=0.065), emphasizing the precision of PCR. Regional variations in prevalence, notably with Punjab exhibiting the highest frequency (33.87%) and KPK the lowest (13.24%), suggest potential influences from varying veterinary practices and environmental factors. This study underscores the pivotal role of PCR alongside microscopy for accurate babesiosis diagnosis. These findings contribute to the broader understanding of babesiosis prevalence, emphasizing the necessity of advanced molecular techniques for informed control measures.


Assuntos
Babesia , Babesiose , Humanos , Bovinos , Ovinos , Animais , Animais Domésticos , Babesia/genética , Babesiose/epidemiologia , Babesiose/parasitologia , Prevalência , Búfalos , Paquistão/epidemiologia , Camelus , Cabras
9.
Acta Parasitol ; 69(1): 813-818, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38424400

RESUMO

PURPOSE: Piroplasmosis is responsible for anemia, fever, loss of physical activity and even death in equines. In epidemiological studies, accurate diagnostic tests are essential for detecting asymptomatic carriers. This study aimed to investigate the prevalence of infection in asymptomatic horses from Lorestan province, western Iran by developing a multiplex PCR. METHODS AND RESULTS: Blood samples were examined by microscopy and multiplex PCR targeting the SSU rRNA gene of Theileria equi and Babesia caballi. Out of the total of 165 horses, 19 (11.51%) and 31 (18.78%) cases were positive for piroplasms by microscopy and PCR, respectively. The detection rates of both genera were significantly higher in multiplex PCR compared to microscopy (p < 0.0001). Compared with multiplex PCR, the sensitivities of microscopy for the detection of Babesia were only 28.5%. The prevalence of T. equi infection was significantly higher in summer (p = 0.035). The prevalence of B. caballi was significantly higher in males (p = 0.038). CONCLUSION: Findings indicate that the multiplex PCR described here is a sensitive technique for the detection of piroplasm DNA in carriers. Furthermore, asymptomatic carriers must be considered as an important source of infection for equids living in this region.


Assuntos
Babesia , Babesiose , Doenças dos Cavalos , Microscopia , Reação em Cadeia da Polimerase Multiplex , Theileria , Animais , Cavalos , Doenças dos Cavalos/parasitologia , Doenças dos Cavalos/diagnóstico , Doenças dos Cavalos/epidemiologia , Irã (Geográfico)/epidemiologia , Babesiose/epidemiologia , Babesiose/diagnóstico , Babesiose/parasitologia , Babesia/genética , Babesia/isolamento & purificação , Babesia/classificação , Reação em Cadeia da Polimerase Multiplex/métodos , Reação em Cadeia da Polimerase Multiplex/veterinária , Theileria/genética , Theileria/isolamento & purificação , Theileria/classificação , Masculino , Feminino , Microscopia/métodos , Prevalência , DNA de Protozoário/genética , Theileriose/epidemiologia , Theileriose/diagnóstico , Theileriose/parasitologia , Sensibilidade e Especificidade
10.
Proc Natl Acad Sci U S A ; 121(9): e2312987121, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38377214

RESUMO

Babesiosis is an emerging zoonosis and widely distributed veterinary infection caused by 100+ species of Babesia parasites. The diversity of Babesia parasites and the lack of specific drugs necessitate the discovery of broadly effective antibabesials. Here, we describe a comparative chemogenomics (CCG) pipeline for the identification of conserved targets. CCG relies on parallel in vitro evolution of resistance in independent populations of Babesia spp. (B. bovis and B. divergens). We identified a potent antibabesial, MMV019266, from the Malaria Box, and selected for resistance in two species of Babesia. After sequencing of multiple independently derived lines in the two species, we identified mutations in a membrane-bound metallodependent phosphatase (phoD). In both species, the mutations were found in the phoD-like phosphatase domain. Using reverse genetics, we validated that mutations in bdphoD confer resistance to MMV019266 in B. divergens. We have also demonstrated that BdPhoD localizes to the endomembrane system and partially with the apicoplast. Finally, conditional knockdown and constitutive overexpression of BdPhoD alter the sensitivity to MMV019266 in the parasite. Overexpression of BdPhoD results in increased sensitivity to the compound, while knockdown increases resistance, suggesting BdPhoD is a pro-susceptibility factor. Together, we have generated a robust pipeline for identification of resistance loci and identified BdPhoD as a resistance mechanism in Babesia species.


Assuntos
Anti-Infecciosos , Babesia , Babesiose , Humanos , Babesia/genética , Fosfatase Alcalina , Antiparasitários/farmacologia , Antiparasitários/uso terapêutico , Babesiose/tratamento farmacológico , Babesiose/parasitologia , Genômica , Anti-Infecciosos/farmacologia
11.
Parasit Vectors ; 17(1): 75, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374075

RESUMO

BACKGROUND: Bovine babesiosis caused by Babesia bovis is one of the most important tick-borne diseases of cattle in tropical and subtropical regions. Babesia bovis parasites have a complex lifecycle, including development within the mammalian host and tick vector. In the tick midgut, extracellular Babesia parasites transform into gametes that fuse to form zygotes. To date, little is known about genes and proteins expressed by male gametes. METHODS AND RESULTS: We developed a method to separate male gametes from in vitro induced B. bovis culture. Separation enabled the validation of sex-specific markers. Collected male gametocytes were observed by Giemsa-stained smear and live-cell fluorescence microscopy. Babesia male gametes were used to confirm sex-specific markers by quantitative real-time PCR. Some genes were found to be male gamete specific genes including pka, hap2, α-tubulin II and znfp2. However, α-tubulin I and ABC transporter, trap2-4 and ccp1-3 genes were found to be upregulated in culture depleted of male gametes (female-enriched). Live immunofluorescence analysis using polyclonal antibodies confirmed surface expression of HAP2 by male and TRAP2-4 by female gametes. These results revealed strong markers to distinguish between B. bovis male and female gametes. CONCLUSIONS: Herein, we describe the identification of sex-specific molecular markers essential for B. bovis sexual reproduction. These tools will enhance our understanding of the biology of sexual stages and, consequently, the development of additional strategies to control bovine babesiosis.


Assuntos
Babesia bovis , Babesia , Babesiose , Doenças dos Bovinos , Carrapatos , Bovinos , Feminino , Masculino , Animais , Babesia bovis/genética , Babesiose/parasitologia , Tubulina (Proteína) , Babesia/genética , Carrapatos/parasitologia , Biomarcadores , Células Germinativas , Doenças dos Bovinos/diagnóstico , Doenças dos Bovinos/parasitologia , Mamíferos
12.
Front Cell Infect Microbiol ; 14: 1334426, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38375363

RESUMO

Background: Babesia is a unique apicomplexan parasite that specifically invades and proliferates in red blood cells and can be transmitted via blood transfusion, resulting in transfusion-transmitted babesiosis. However, detecting Babesia in blood before transfusion has not received enough attention, and the risk of transfusing blood containing a low density of Babesia microti (B. microti) is unclear, possibly threatening public health and wellness. Purpose: This study aimed to determine the lower detection limit of B. microti in blood and to evaluate the transmission risk of blood transfusion containing low-density B. microti. Methods: Infected BALB/c mouse models were established by transfusing infected whole blood with different infection rates and densities of B. microti. Microscopic examination, nested Polymerase Chain Reaction (nested PCR), and an enzyme-linked immunosorbent assay (ELISA) were used to evaluate the infection status of the mouse models. Meanwhile, the nested PCR detection limit of B. microti was obtained using pure B. microti DNA samples with serial concentrations and whole blood samples with different densities of B. microti-infected red blood cells. Thereafter, whole mouse blood with a B. microti density lower than that of the nested PCR detection limit and human blood samples infected with B. microti were transfused into healthy mice to assess the transmission risk in mouse models. The infection status of these mice was evaluated through microscopic examination, nested PCR tests, and ELISA. Results: The mice inoculated with different densities of B. microti reached the peak infection rate on different days. Overall, the higher the blood B. microti density was, the earlier the peak infection rate was reached. The levels of specific antibodies against B. microti in the blood of the infected mice increased sharply during the first 30 days of infection, reaching a peak level at 60 days post-infection, and maintaining a high level thereafter. The nested PCR detection limits of B. microti DNA and parasite density were 3 fg and 5.48 parasites/µL, respectively. The whole blood containing an extremely low density of B. microti and human blood samples infected with B. microti could infect mice, confirming the transmission risk of transfusing blood with low-density B. microti. Conclusion: Whole blood containing extremely low density of B. microti poses a high transmission risk when transfused between mice and mice or human and mice, suggesting that Babesia detection should be considered by governments, hospitals, and disease prevention and control centers as a mandatory test before blood donation or transfusion.


Assuntos
Babesia microti , Babesia , Babesiose , Humanos , Animais , Camundongos , Babesia microti/genética , Babesia/genética , Transfusão de Sangue , Babesiose/diagnóstico , Babesiose/parasitologia , DNA de Protozoário , Camundongos Endogâmicos BALB C , Modelos Animais de Doenças
13.
Acta Parasitol ; 69(1): 375-383, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38133744

RESUMO

PURPOSE: The study aimed to investigate genetic diversity in Babesia gibsoni, the causative agent of canine babesiosis, and to assess the presence of atovaquone-resistant isolates in naturally infected dogs. METHODS: A total of 24 blood samples confirmed for B. gibsoni infection was subjected to PCR amplification and sequencing based on cytb gene. Genetic characterization of B. gibsoni as well as attempts to detect the point mutation rendering atovaquone resistance was carried out based on the analysis of nucleotide sequence of cytb gene using bioinformatics software. RESULTS: The findings indicated that the B. gibsoni isolates in the investigation exhibited a high nucleotide identity with the Asian genotype, ranging from 98.41 to 98.69%. Notably, none of the isolates carried cytb gene variants associated with atovaquone resistance. Phylogenetic analysis revealed clustering of most isolates with those from Japan and China, except for one isolate forming a distinct subclade. Haplotype network analysis indicated a high diversity with 22 distinct haplotypes among the B. gibsoni isolates, emphasizing the genetic variability within the studied population. CONCLUSION: In conclusion, the cytb gene exhibited remarkable conservation among the twenty-four B. gibsoni isolates studied and the study represents the first genetic diversity assessment of B. gibsoni using the cytb gene in dogs from India. These findings shed light on the genetic characteristics of B. gibsoni in the region and provide valuable insight for addressing the challenges posed by this life-threatening disease in dogs.


Assuntos
Babesia , Babesiose , Citocromos b , Doenças do Cão , Variação Genética , Filogenia , Cães , Animais , Babesia/genética , Babesia/classificação , Babesia/isolamento & purificação , Babesiose/parasitologia , Doenças do Cão/parasitologia , Índia , Citocromos b/genética , Haplótipos , Atovaquona/farmacologia , Resistência a Medicamentos/genética , Genótipo , Reação em Cadeia da Polimerase/veterinária
14.
Acta Parasitol ; 69(1): 135-151, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38157135

RESUMO

BACKGROUND: Piroplasmosis and anaplasmosis stand out as the primary diseases affecting livestock during periods of tick activity. These vector-borne diseases continue to emerge worldwide, exerting a detrimental impact on both animal health and national economies. The purpose of this study is to assess the prevalence of Piroplasma spp. and its co-occurrence with Anaplasma marginale in domestic ruminants in Algeria. METHODS: Three databases were systematically reviewed to identify eligible studies for the final meta-analysis, following the PRISMA statement. The 'meta' package in the R software was employed for the meta-analysis with the random effects model chosen for data pooling. RESULTS: The meta-analysis encompasses 14 research papers spanning a 19-year period (2004-2023). Theileria spp. was identified in all studies, covering 1675 cattle, 190 sheep, and 128 goats, yielding an overall Theileria infection rate of 45% (95% CI 26-65%). Specifically, cattle had a 59% infection rate, while sheep and goats had rates of 18% and 20%, respectively. Babesia spp. was found in nine studies, involving 1183 cattle and 190 sheep, resulting in an overall Babesia infection rate of 7% (95% CI 4-15%), with cattle and sheep having rates of 10% and 3%, respectively. Notably, eight Piroplasma species T. annulata, T. orientalis, T. buffeli, T. equi, Theileria sp., B. bovis, B. bigemina, and B. occultans were detected in cattle, with T. annulata being the most prevalent at 54%. Regional disparities and host factors also impacted infection rates, with higher rates in Northeastern Algeria and among suspected disease cattle. Additionally, gender, age, and breed influenced cattle susceptibility to Theileria infection. Furthermore, six distinct co-infections between Piroplasma spp. and A. marginale were observed, with T. annulata/A. marginale identified in six studies, demonstrating an 8.3% co-infection rate. CONCLUSION: This analysis offers crucial insights into the current status of Piroplasmosis and its co-infection with A. marginale in Algerian domestic ruminants, providing valuable data for surveillance and prevention strategies.


Assuntos
Anaplasma marginale , Anaplasmose , Babesia , Babesiose , Doenças dos Bovinos , Coinfecção , Doenças das Cabras , Cabras , Doenças dos Ovinos , Animais , Argélia/epidemiologia , Anaplasmose/epidemiologia , Anaplasma marginale/isolamento & purificação , Anaplasma marginale/genética , Bovinos , Babesiose/epidemiologia , Babesiose/parasitologia , Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/parasitologia , Doenças dos Bovinos/microbiologia , Coinfecção/epidemiologia , Coinfecção/parasitologia , Coinfecção/veterinária , Coinfecção/microbiologia , Babesia/isolamento & purificação , Babesia/genética , Ovinos , Doenças dos Ovinos/epidemiologia , Doenças dos Ovinos/parasitologia , Doenças das Cabras/epidemiologia , Doenças das Cabras/parasitologia , Doenças das Cabras/microbiologia , Prevalência , Theileriose/epidemiologia , Theileriose/parasitologia , Theileria/isolamento & purificação , Theileria/genética , Theileria/classificação
15.
Ticks Tick Borne Dis ; 15(1): 102282, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37989015

RESUMO

Canine babesiosis is an important protozoan tick-borne disease associated with anemia and thrombocytopenia and caused by several different Babesia spp. Babesia negevi was first reported to infect dogs in the Middle East in 2020. This study describes the presentation, clinical signs, parasitemia levels quantified by molecular techniques, laboratory findings and treatment of dogs infected with B. negevi following the first description of this species. Clinical findings in the infected dogs, a 3-year old female and two 8-week old male and female pups, included extreme lethargy and pale mucous membranes, anemia and thrombocytopenia found in all three animals. Fever was present in the older female and icterus in the female pup. Babesia parasites resembling B. negevi were detected by microscopy of blood smears from the dogs. PCR of blood targeting the 18S rRNA and cox1 genes confirmed that babesiosis was caused by B. negevi and PCR targeting the Borrelia flagellin gene indicated co-infection with Borrelia persica in two dogs. Treatment of the dogs with imidocarb dipropionate resulted in clinical improvement and initial decrease in the B. negevi parasite load as detected by quantitative PCR in two dogs, however the female pup continued to deteriorate and died. The parasite load in the 3-year old female decreased from 43,451 parasites/µl blood pre-imidocarb dipropionate treatment to 803 parasites/µl within two weeks. In the surviving pup, it decreased from 3,293,538 parasites/µl pre-treatment to 20,092 parasites/µl after two weeks. Babesia negevi DNA was still recovered from blood samples by PCR despite repeated treatment with imidocarb dipropionate one-month post-treatment in the surviving pup and up to seven months post-treatment in the 3-year old female. Only treatment with atovaquone and azithromycin for ten days eliminated B. negevi in both dogs as confirmed by negative PCR two weeks later. In conclusion, treatment with imidocarb dipropionate was helpful for recovery from clinical disease but did not facilitate parasite elimination, and it is therefore recommended to treat canine B. negevi infection with the combination of atovaquone and azithromycin.


Assuntos
Anemia , Antiprotozoários , Babesia , Babesiose , Doenças do Cão , Trombocitopenia , Cães , Animais , Masculino , Feminino , Babesiose/parasitologia , Atovaquona/uso terapêutico , Antiprotozoários/uso terapêutico , Azitromicina/uso terapêutico , Babesia/genética , Anemia/tratamento farmacológico , Doenças do Cão/parasitologia
16.
Ticks Tick Borne Dis ; 15(1): 102283, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38029454

RESUMO

Babesia vesperuginis is an intraerythrocytic protozoan parasite that circulates among bats and ticks in many countries worldwide. However, the distribution of B. vesperuginis in the Baltic region has not been studied. A total of 86 dead bats from eight different species were collected and screened for Babesia spp. using real-time PCR. Overall, 52.3% (45/86) of the bats were found positive for Babesia spp. The prevalence of Babesia spp. in different organs varied, with the highest prevalence observed in heart tissues (37.0%) and the lowest in liver tissues (22.2%). However, the observed differences in prevalence among organs were not statistically significant. Blood samples from 125 bats of nine different species were also analyzed for Babesia spp. prevalence using real-time PCR and nested PCR. The results showed a prevalence of 35.2% and 22.4%, respectively. Moreover, 28.3% (17/60) of the examined blood samples were confirmed positive for Babesia spp. through blood smear analysis. The total of 32 partial sequences of the 18S rRNA gene derived in this study were 100% identical to B. vesperuginis sequences from GenBank. In eight species of bats, Pipistrellus nathusii, Pipistrellus pipistrellus, Pipistrellus pygmaeus, Vespertilio murinus, Eptesicus nilssonii, Eptesicus serotinus, Myotis daubentonii and Nyctalus noctula, Babesia parasites were identified. In E. nilssonii, Babesia spp. was identified for the first time.


Assuntos
Babesia , Babesiose , Quirópteros , Animais , Babesia/genética , Quirópteros/parasitologia , Lituânia/epidemiologia , Filogenia , Reação em Cadeia da Polimerase em Tempo Real/veterinária , RNA Ribossômico 18S/genética , RNA Ribossômico 18S/análise , Babesiose/epidemiologia , Babesiose/parasitologia
17.
Front Cell Infect Microbiol ; 13: 1278041, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38156314

RESUMO

Babesia divergens is an emerging tick-borne pathogen considered as the principal causative agent of bovine babesiosis in Europe with a notable zoonotic risk to human health. Despite its increasing impact, considerable gaps persist in our understanding of the molecular interactions between this parasite and its hosts. In this study, we address the current limitation of functional genomic tools in B. divergens and introduce a stable transfection system specific to this parasite. We define the parameters for a drug selection system hdhfr-WR99210 and evaluate different transfection protocols for highly efficient generation of transgenic parasites expressing GFP. We proved that plasmid delivery into bovine erythrocytes prior to their infection is the most optimal transfection approach for B. divergens, providing novel evidence of Babesia parasites' ability to spontaneously uptake external DNA from erythrocytes cytoplasm. Furthermore, we validated the bidirectional and symmetrical activity of ef-tgtp promoter, enabling simultaneous expression of external genes. Lastly, we generated a B. divergens knockout line by targeting a 6-cys-e gene locus. The observed dispensability of this gene in intraerythrocytic parasite development makes it a suitable recipient locus for further transgenic application. The platform for genetic manipulations presented herein serves as the initial step towards developing advanced functional genomic tools enabling the discovery of B. divergens molecules involved in host-vector-pathogen interactions.


Assuntos
Babesia , Babesiose , Humanos , Babesia/genética , Babesiose/parasitologia , Transfecção , Marcação de Genes , Eritrócitos/parasitologia
18.
Front Cell Infect Microbiol ; 13: 1277956, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38029260

RESUMO

Babesiosis is an acute and persistent tick-borne disease caused by protozoan parasites of the genus Babesia. These hemoparasites affect vertebrates globally, resulting in symptoms such as high fever, anemia, jaundice, and even death. Advancements in molecular parasitology revealed new Babesia species/genotypes affecting sheep and goats, including Babesia aktasi n. sp., which is highly prevalent in goats from Turkiye's Mediterranean region. The objective of this study was to investigate the pathogenesis of B. aktasi infection in immunosuppressed (n=7) and non-immunosuppressed (n=6) goats. These animals were experimentally infected with fresh B. aktasi infected blood, and their clinical signs, hematological and serum biochemical parameters were monitored throughout the infection. The presence of parasites in the blood of immunosuppressed goats was detected by microscopic examination between 4 and 6 days after infection, accompanied by fever and increasing parasitemia. Goats that succumbed acute disease exhibited severe clinical signs, such as anemia, hemoglobinuria, and loss of appetite. However, the goats that survived showed milder clinical signs. In the non-immunosuppressed group, piroplasm forms of B. aktasi were observed in the blood within 2-5 days after inoculation, but with low (0.01-0.2%) parasitemia. Although these goats showed loss of appetite, typical signs of babesiosis were absent except for increased body temperature. Hematological analysis revealed significant decreases in the levels of red blood cells, leukocytes and platelet values post-infection in immunosuppressed goats, while no significant hematological changes were observed in non-immunosuppressed goats. In addition, serum biochemical analysis showed elevated transaminase liver enzymes levels, decreased glucose, and lower total protein values in the immunosuppressed group post-infection. Babesia aktasi, caused mild disease with minor clinical symptoms in non-immunosuppressed goats. However, in immunosuppressed goats, it exhibited remarkable pathogenicity, leading to severe clinical infections and death. In conclusion, this study provides valuable insights into the pathogenicity of the parasite and will serve as a foundation for future research aimed at developing effective prevention and control strategies against babesiosis in small ruminants. Further research is required to investigate the pathogenicity of B. aktasi in various goat breeds, other potential hosts, the vector ticks involved, and its presence in natural reservoirs.


Assuntos
Anemia , Babesia , Babesiose , Doenças dos Ovinos , Animais , Ovinos , Babesia/genética , Babesiose/parasitologia , Cabras , Parasitemia/veterinária , Doenças dos Ovinos/parasitologia , Anemia/veterinária
19.
Vet Parasitol ; 324: 110055, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37931475

RESUMO

BACKGROUND: Babesiosis is an infectious disease caused by protozoa of the apicomplexan phylum, genus Babesia. It is a malaria-like parasitic disease that can be transmitted via tick bites. The apicomplexan phylum of eukaryotic microbial parasites has had detrimental impacts on human and veterinary medicine. There are only a few drugs currently available to treat this disease; however, parasitic strains that are resistant to these commercial drugs are increasing in numbers. Plasmodium and Babesia are closely related as they share similar biological features including mechanisms for host cell invasion and metabolism. Therefore, antimalarial drugs may be useful in the treatment of Babesia infections. In addition to antimalarials, iron chelators also inhibit parasite growth. In this study, we aimed to evaluate the in vitro inhibitory efficacy of iron chelator and different antimalarials in the treatment of Babesia bovis. METHODS: Cytotoxicity of antimalarial drugs; pyrimethamine, artefenomel, chloroquine, primaquine, dihydroarthemisinine, and the iron chelator, 1-(N-acetyl-6-aminohexyl)- 3-hydroxy-2 methylpyridin-4-one (CM1), were evaluated against Madin Darby Bovine Kidney (MDBK) cells and compared to diminazene aceturate, which is the currently available drug for animal babesiosis using an MTT solution. Afterwards, an evaluation of the in vitro growth-inhibitory effects of antimalarial drug concentrations was performed and monitored using a flow cytometer. Half maximal inhibitory concentrations (IC50) of each antimalarial and iron chelator were determined and compared to the antibabesial drug, diminazine aceturate, by interpolation using a curve-fitting technique. Subsequently, the effect of the drug combination was assessed by constructing an isobologram. Values of the sum of fractional inhibitions at 50% inhibition were then estimated. RESULTS: Results indicate that all drugs tested could safely inhibit babesia parasite growth, as high as 2500 µM were non-toxic to mammalian cells. Although no drugs inhibited B. bovis more effectively than diminazine aceturate in this experiment, in vitro growth inhibition results with IC50 values of pyrimethamine 6.25 ± 2.59 µM, artefenomel 2.56 ± 0.67 µM, chloroquine 2.14 ± 0.76 µM, primaquine 22.61 ± 6.72 µM, dihydroarthemisinine 4.65 ± 0.22 µM, 1-(N-acetyl-6-aminohexyl)- 3-hydroxy-2 methylpyridin-4-one (CM1) 9.73 ± 1.90 µM, and diminazine aceturate 0.42 ± 0.01 µM, confirm that all drugs could inhibit B. bovis and could be used as alternative treatments for bovine babesial infection. Furthermore, the efficacy of a combination of the iron chelator, CM1, in combination with artefenomel dihydroarthemisinin or chloroquine, and artefenomel in combination with the iron chelator, CM1, dihydroarthemisinin or chloroquine, exhibited synergism against B. bovis in vitro. CONCLUSION: Our evaluation of the inhibitory efficacy of the iron chelator CM1, antimalarial drugs, and a combination of these drugs against B. bovis could be potentially useful in the development and discovery of a novel drug for the treatment of B. bovis in the future.


Assuntos
Antimaláricos , Babesia , Babesiose , Doenças dos Bovinos , Animais , Bovinos , Humanos , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Babesiose/tratamento farmacológico , Babesiose/parasitologia , Pirimetamina/farmacologia , Primaquina/farmacologia , Primaquina/uso terapêutico , Quelantes de Ferro/farmacologia , Quelantes de Ferro/uso terapêutico , Cloroquina/farmacologia , Cloroquina/uso terapêutico , Concentração Inibidora 50 , Mamíferos , Doenças dos Bovinos/tratamento farmacológico
20.
Parasit Vectors ; 16(1): 396, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37919757

RESUMO

BACKGROUND: In Europe, canine babesiosis is most frequently caused by Babesia canis and Babesia vogeli, and occasionally by Babesia gibsoni.. In Germany, B. canis is recognized as endemic. The aims of this study were to assess how often Babesia spp. infections were diagnosed in a commercial laboratory in samples from dogs from Germany, and to evaluate potential risk factors for infection. METHODS: The database of the LABOKLIN laboratory was screened for Babesia spp.-positive polymerase chain reaction (PCR) tests for dogs for the period January 2007-December 2020. Sequencing was performed for positive tests from 2018 and 2019. Binary logistic regression analysis was performed to determine the effects of sex, season, and year of testing. Questionnaires were sent to the submitting veterinarians to obtain information on travel abroad, tick infestation, and ectoparasite prophylaxis of the respective dogs. Fisher's exact test was used to calculate statistical significance and P < 0.05 was considered statistically significant. RESULTS: In total, 659 out of 20,914 dogs (3.2%) tested positive for Babesia spp. by PCR. Of 172 sequenced samples, B. canis was identified in 156, B. vogeli in nine, B. gibsoni in five, and B. vulpes in two. Season had a statistically significant impact on test results when summer/winter (1.6% tested positive) was compared to spring/autumn (4.7%), with peaks in April (5.2%) and October (7.4%) [P < 0.001, odds ratio (OR) = 3.16]. Sex (male 3.5%, female 2.8%; P = 0.012, OR = 1.49) and age (< 7 years old 4.0%, ≥ 7 years old 2.3%; P < 0.001, OR = 1.76) of the tested dogs also had a statistically significant effect. A statistically significant impact was demonstrated for observed tick attachment (P < 0.001, OR = 7.62) and lack of ectoparasite prophylaxis (P = 0.001, OR = 3.03). The frequency of positive Babesia spp. tests did not significantly differ between the 659 dogs that had never left Germany and the 1506 dogs with known stays abroad (P = 0.088). CONCLUSIONS: The possibility of canine infection with B. canis needs to be especially taken into consideration in spring and autumn in Germany as the activity of the tick Dermacentor reticulatus, a potential vector for canine babesiosis, is highest in these seasons. Travel and importation of dogs are considered major factors associated with canine babesiosis in Germany. However, autochthonous Babesia spp. infections also occur in a considerable number of dogs in Germany.


Assuntos
Babesia , Babesiose , Doenças do Cão , Carrapatos , Cães , Animais , Feminino , Masculino , Babesia/genética , Babesiose/diagnóstico , Babesiose/epidemiologia , Babesiose/parasitologia , Doenças do Cão/diagnóstico , Doenças do Cão/epidemiologia , Doenças do Cão/parasitologia , Alemanha/epidemiologia , Raposas , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA