Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.666
Filtrar
1.
Libyan J Med ; 19(1): 2348235, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38718270

RESUMO

Among hospitalized patients worldwide, infections caused by multidrug-resistant (MDR) bacteria are a major cause of morbidity and mortality. This study aimed to isolate MDR bacteria from five intensive care units (ICUs) at Tripoli University Hospital (TUH). A prospective cross-sectional study was conducted over a seven-month period (September 2022 to March 2023) across five ICUs at TUH. A total of 197 swabs were collected from Patients', healthcare workers' and ICUs equipment. Samples collected from patients were nasal swabs, oral cavity swabs, hand swabs, sputum specimens, skin swabs, umbilical venous catheter swabs, and around cannula. Swabs collected from health care workers were nasal swabs, whereas ICUs equipment's samples were from endotracheal tubes, oxygen masks, and neonatal incubators. Identification and antimicrobial susceptibility test was confirmed by using MicroScan auto SCAN 4 (Beckman Coulter). The most frequent strains were Gram negative bacilli 113 (57.4%) with the predominance of Acinetobacter baumannii 50/113 (44%) followed by Klebsiella pneumoniae 44/113 (40%) and Pseudomonas aeruginosa 6/113 (5.3%). The total Gram positive bacterial strains isolated were 84 (42.6%), coagulase negative Staphylococci 55 (66%) with MDRs (89%) were the most common isolates followed by Staphylococcus aureus 15 (17.8%). Different antibiotics were used against these isolates; Gram- negative isolates showed high resistance rates to ceftazidime, gentamicin, amikacin and ertapenem. A. baumannii were the most frequent MDROs (94%), and the highest resistance rates in Gram-positive strains were observed toward ampicillin, oxacillin, ampicillin/sulbactam and Cefoxitin, representing 90% of total MDR Gram-positive isolates. ESBL and MRS were identified in most of strains. The prevalence of antibiotic resistance was high for both Gram negative and Gram positive isolates. This prevalence requires strict infection prevention and control intervention, continuous monitoring, implementation of effective antibiotic stewardship, immediate, concerted and collaborative action to monitor its prevalence and spread in the hospital.


Assuntos
Farmacorresistência Bacteriana Múltipla , Hospitais Universitários , Unidades de Terapia Intensiva , Humanos , Líbia/epidemiologia , Estudos Transversais , Prevalência , Estudos Prospectivos , Masculino , Feminino , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Adulto , Bactérias Gram-Negativas/isolamento & purificação , Bactérias Gram-Negativas/efeitos dos fármacos , Infecção Hospitalar/epidemiologia , Infecção Hospitalar/microbiologia , Bactérias Gram-Positivas/isolamento & purificação , Bactérias Gram-Positivas/efeitos dos fármacos , Pessoa de Meia-Idade
2.
Medicine (Baltimore) ; 103(19): e38101, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38728506

RESUMO

To understand the distribution and antimicrobial resistance (AMR) of pathogens in respiratory samples in Changle District People's Hospital in Fujian Province in recent years, and provide empirical guidance for infection control and clinical treatment in the region. A retrospective analysis was conducted on 5137 isolates of pathogens from respiratory samples collected from 2019 to 2022. The AMR patterns were systematically analyzed. For research purposes, the data was accessed on October 12, 2023. A total of 3517 isolates were included in the study, including 811 (23.06%) gram-positive bacteria and 2706 (76.94%) gram-negative bacteria. The top 3 gram-positive bacteria were Staphylococcus aureus with 455 isolates (12.94%), Streptococcus pneumoniae with 99 isolates (2.81%), and Staphylococcus hemolytic with 99 isolates (2.81%). The top 3 gram-negative bacteria were Klebsiella pneumoniae with 815 isolates (23.17%), Pseudomonas aeruginosa with 589 isolates (16.75%), and Acinetobacter baumannii with 328 isolates (9.33%). The proportion of extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli and K pneumoniae fluctuated between 41.9% and 70.5%, and 18.6% and 20.9%, respectively. The resistance rates of E coli, K pneumoniae, P aeruginosa, and A baumannii to carbapenems were 2.36%, 8.9%, 18.5%, and 19.6%, respectively. The prevalence of methicillin-resistant S aureus (MRSA) was 48.55%, but it decreased to 38.4% by 2022. The resistance rate of Staphylococcus haemolyticus to methicillin was 100%, and 1 case of vancomycin-resistant strain was detected. K pneumoniae, P aeruginosa, A baumannii, and S aureus are the main pathogens in respiratory samples. Although the resistance rates of some multidrug-resistant strains have decreased, ESBL-producing Enterobacteriaceae, carbapenem-resistant bacteria have still increased. Therefore, it is necessary to strengthen the monitoring of pathogen resistance, promote rational use of antibiotics, and promptly report findings.


Assuntos
Antibacterianos , COVID-19 , Infecções Respiratórias , Humanos , Estudos Retrospectivos , China/epidemiologia , Infecções Respiratórias/microbiologia , Infecções Respiratórias/epidemiologia , Infecções Respiratórias/tratamento farmacológico , COVID-19/epidemiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/isolamento & purificação , Testes de Sensibilidade Microbiana , SARS-CoV-2 , Bactérias Gram-Positivas/efeitos dos fármacos , Bactérias Gram-Positivas/isolamento & purificação
3.
Nat Commun ; 15(1): 3947, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38729951

RESUMO

Gram-negative bacteria (GNB) are a major cause of neonatal sepsis in low- and middle-income countries (LMICs). Although the World Health Organization (WHO) reports that over 80% of these sepsis deaths could be prevented through improved treatment, the efficacy of the currently recommended first- and second-line treatment regimens for this condition is increasingly affected by high rates of drug resistance. Here we assess three well known antibiotics, fosfomycin, flomoxef and amikacin, in combination as potential antibiotic treatment regimens by investigating the drug resistance and genetic profiles of commonly isolated GNB causing neonatal sepsis in LMICs. The five most prevalent bacterial isolates in the NeoOBS study (NCT03721302) are Klebsiella pneumoniae, Acinetobacter baumannii, E. coli, Serratia marcescens and Enterobacter cloacae complex. Among these isolates, high levels of ESBL and carbapenemase encoding genes are detected along with resistance to ampicillin, gentamicin and cefotaxime, the current WHO recommended empiric regimens. The three new combinations show excellent in vitro activity against ESBL-producing K. pneumoniae and E. coli isolates. Our data should further inform and support the clinical evaluation of these three antibiotic combinations for the treatment of neonatal sepsis in areas with high rates of multidrug-resistant Gram-negative bacteria.


Assuntos
Acinetobacter baumannii , Antibacterianos , Bactérias Gram-Negativas , Infecções por Bactérias Gram-Negativas , Klebsiella pneumoniae , Testes de Sensibilidade Microbiana , Sepse Neonatal , Humanos , Antibacterianos/uso terapêutico , Antibacterianos/farmacologia , Sepse Neonatal/microbiologia , Sepse Neonatal/tratamento farmacológico , Recém-Nascido , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/genética , Bactérias Gram-Negativas/isolamento & purificação , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Infecções por Bactérias Gram-Negativas/microbiologia , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/isolamento & purificação , Acinetobacter baumannii/genética , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/isolamento & purificação , Klebsiella pneumoniae/genética , Amicacina/farmacologia , Amicacina/uso terapêutico , Fosfomicina/farmacologia , Fosfomicina/uso terapêutico , beta-Lactamases/genética , beta-Lactamases/metabolismo , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Países em Desenvolvimento , Farmacorresistência Bacteriana Múltipla/genética , Quimioterapia Combinada , Serratia marcescens/efeitos dos fármacos , Serratia marcescens/genética , Serratia marcescens/isolamento & purificação , Enterobacter cloacae/efeitos dos fármacos , Enterobacter cloacae/genética , Enterobacter cloacae/isolamento & purificação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
4.
Drug Dev Res ; 85(3): e22182, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38704829

RESUMO

Our research aims to reduce the bacterial resistance of clindamycin against Gram-positive bacteria and expand its range of bacterial susceptibility. First, we optimized the structure of clindamycin based on its structure-activity relationship. Second, we employed the fractional inhibitory concentration method to detect drugs suitable for combination with clindamycin derivatives. We then used a linker to connect the clindamycin derivatives with the identified combined therapy drugs. Finally, we tested antibacterial susceptibility testing and conducted in vitro bacterial inhibition activity assays to determine the compounds. with the highest efficacy. The results of our study show that we synthesized clindamycin propionate derivatives and clindamycin homo/heterodimer derivatives, which exhibited superior antibacterial activity compared to clindamycin and other antibiotics against both bacteria and fungi. In vitro bacteriostatic activity testing against four types of Gram-negative bacteria and one type of fungi revealed that all synthesized compounds had bacteriostatic effects at least 1000 times better than clindamycin and sulfonamides. The minimum inhibitory concentration (MIC) values for these compounds ranged from 0.25 to 0.0325 mM. Significantly, compound 5a demonstrated the most potent inhibitory activity against three distinct bacterial strains, displaying MIC values spanning from 0.0625 to 0.0325 mM. Furthermore, our calculations indicate that compound 5a is safe for cellular use. In conclusion, the synthesized compounds hold great promise in addressing bacterial antibiotic resistance.


Assuntos
Antibacterianos , Clindamicina , Desenho de Fármacos , Farmacorresistência Bacteriana Múltipla , Bactérias Gram-Negativas , Testes de Sensibilidade Microbiana , Clindamicina/farmacologia , Clindamicina/síntese química , Antibacterianos/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Relação Estrutura-Atividade , Humanos , Bactérias Gram-Positivas/efeitos dos fármacos , Antifúngicos/farmacologia , Antifúngicos/síntese química , Antifúngicos/química
5.
ACS Infect Dis ; 10(5): 1839-1855, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38725407

RESUMO

Multidrug resistance against conventional antibiotics has dramatically increased the difficulty of treatment and accelerated the need for novel antibacterial agents. The peptide Tat (47-57) is derived from the transactivating transcriptional activator of human immunodeficiency virus 1, which is well-known as a cell-penetrating peptide in mammalian cells. However, it is also reported that the Tat peptide (47-57) has antifungal activity. In this study, a series of membrane-active hydrocarbon-stapled α-helical amphiphilic peptides were synthesized and evaluated as antibacterial agents against Gram-positive and Gram-negative bacteria, including multidrug-resistant strains. The impact of hydrocarbon staple, the position of aromatic amino acid residue in the hydrophobic face, the various types of aromatic amino acids, and the hydrophobicity on bioactivity were also investigated and discussed in this study. Among those synthesized peptides, analogues P3 and P10 bearing a l-2-naphthylalanine (Φ) residue at the first position and a Tyr residue at the eighth position demonstrated the highest antimicrobial activity and negligible hemolytic toxicity. Notably, P3 and P10 showed obviously enhanced antimicrobial activity against multidrug-resistant bacteria, low drug resistance, high cell selectivity, extended half-life in plasma, and excellent performance against biofilm. The antibacterial mechanisms of P3 and P10 were also preliminarily investigated in this effort. In conclusion, P3 and P10 are promising antimicrobial alternatives for the treatment of the antimicrobial-resistance crisis.


Assuntos
Antibacterianos , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/química , Humanos , Produtos do Gene tat do Vírus da Imunodeficiência Humana/química , Bactérias Gram-Negativas/efeitos dos fármacos , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Interações Hidrofóbicas e Hidrofílicas , Hidrocarbonetos/química , Hidrocarbonetos/farmacologia , Hemólise/efeitos dos fármacos , Conformação Proteica em alfa-Hélice
6.
BMC Med Inform Decis Mak ; 24(1): 123, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745177

RESUMO

BACKGROUND: Predicting whether Carbapenem-Resistant Gram-Negative Bacterial (CRGNB) cause bloodstream infection when giving advice may guide the use of antibiotics because it takes 2-5 days conventionally to return the results from doctor's order. METHODS: It is a regional multi-center retrospective study in which patients with suspected bloodstream infections were divided into a positive and negative culture group. According to the positive results, patients were divided into the CRGNB group and other groups. We used the machine learning algorithm to predict whether the blood culture was positive and whether the pathogen was CRGNB once giving the order of blood culture. RESULTS: There were 952 patients with positive blood cultures, 418 patients in the CRGNB group, 534 in the non-CRGNB group, and 1422 with negative blood cultures. Mechanical ventilation, invasive catheterization, and carbapenem use history were the main high-risk factors for CRGNB bloodstream infection. The random forest model has the best prediction ability, with AUROC being 0.86, followed by the XGBoost prediction model in bloodstream infection prediction. In the CRGNB prediction model analysis, the SVM and random forest model have higher area under the receiver operating characteristic curves, which are 0.88 and 0.87, respectively. CONCLUSIONS: The machine learning algorithm can accurately predict the occurrence of ICU-acquired bloodstream infection and identify whether CRGNB causes it once giving the order of blood culture.


Assuntos
Bacteriemia , Carbapenêmicos , Infecções por Bactérias Gram-Negativas , Unidades de Terapia Intensiva , Aprendizado de Máquina , Humanos , Carbapenêmicos/farmacologia , Masculino , Pessoa de Meia-Idade , Feminino , Estudos Retrospectivos , Idoso , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Bacteriemia/microbiologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/isolamento & purificação , Adulto , Antibacterianos/farmacologia , Farmacorresistência Bacteriana
7.
Arch Microbiol ; 206(6): 250, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38722362

RESUMO

The widespread evolution of phenotypic resistance in clinical isolates over the years, coupled with the COVID-19 pandemic onset, has exacerbated the global challenge of antimicrobial resistance. This study aimed to explore changes in bacterial infection patterns and antimicrobial resistance during the COVID-19 pandemic. This study involved the periods before and during COVID-19: the pre-pandemic and pandemic eras. The surveillance results of bacterial isolates causing infections in cancer patients at an Egyptian tertiary oncology hospital were retrieved. The Vitek®2 or Phoenix systems were utilized for species identification and susceptibility testing. Statistical analyses were performed comparing microbiological trends before and during the pandemic. Out of 2856 bacterial isolates, Gram-negative bacteria (GNB) predominated (69.7%), and Gram-positive bacteria (GPB) comprised 30.3% of isolates. No significant change was found in GNB prevalence during the pandemic (P = 0.159). Elevated rates of Klebsiella and Pseudomonas species were demonstrated during the pandemic, as was a decrease in E. coli and Acinetobacter species (P < 0.001, 0.018, < 0.001, and 0.046, respectively) in hematological patients. In surgical patients, Enterobacteriaceae significantly increased (P = 0.012), while non-fermenters significantly decreased (P = 0.007). GPB species from either hematological or surgical wards exhibited no notable changes during the pandemic. GNB resistance increased in hematological patients to carbapenems, amikacin, and tigecycline and decreased in surgical patients to amikacin and cefoxitin (P < 0.001, 0.010, < 0.001, < 0.001, and 0.016, respectively). The study highlights notable shifts in the microbial landscape during the COVID-19 pandemic, particularly in the prevalence and resistance patterns of GNB in hematological and surgical wards.


Assuntos
Antibacterianos , COVID-19 , Farmacorresistência Bacteriana , SARS-CoV-2 , Centros de Atenção Terciária , Humanos , COVID-19/epidemiologia , Centros de Atenção Terciária/estatística & dados numéricos , Egito/epidemiologia , Antibacterianos/farmacologia , SARS-CoV-2/efeitos dos fármacos , Neoplasias , Testes de Sensibilidade Microbiana , Infecções Bacterianas/epidemiologia , Infecções Bacterianas/microbiologia , Infecções Bacterianas/tratamento farmacológico , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/isolamento & purificação , Bactérias/efeitos dos fármacos , Bactérias/isolamento & purificação , Bactérias/classificação , Bactérias Gram-Positivas/efeitos dos fármacos , Bactérias Gram-Positivas/isolamento & purificação , Institutos de Câncer , Pandemias
8.
New Microbiol ; 47(1): 107-110, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38700891

RESUMO

We evaluated the performance of a new rapid phenotypic antimicrobial susceptibility test (ASTar; Q-linea AB) on Gram-negative bacilli, directly from positive blood cultures bottles. MIC values obtained by the routine reference method (Microscan, Beckman Coulter) were compared to the ones provided by the tested method (ASTar). ASTar demonstrated an overall essential agreement of 98% and a category agreement of 96.1%. The overall rate of major errors and very major errors was 2.5% and 3.3%, respectively. ASTar can represent a rapid, simple, and reliable method to speed up information about antimicrobial susceptibility of Gram-negative pathogens from positive blood culture bottles.


Assuntos
Antibacterianos , Hemocultura , Bactérias Gram-Negativas , Infecções por Bactérias Gram-Negativas , Testes de Sensibilidade Microbiana , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/isolamento & purificação , Humanos , Hemocultura/métodos , Antibacterianos/farmacologia , Infecções por Bactérias Gram-Negativas/microbiologia , Bacteriemia/microbiologia , Fenótipo
9.
Microbiology (Reading) ; 170(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38739436

RESUMO

Endolysins are bacteriophage (or phage)-encoded enzymes that catalyse the peptidoglycan breakdown in the bacterial cell wall. The exogenous action of recombinant phage endolysins against Gram-positive organisms has been extensively studied. However, the outer membrane acts as a physical barrier when considering the use of recombinant endolysins to combat Gram-negative bacteria. This study aimed to evaluate the antimicrobial activity of the SAR-endolysin LysKpV475 against Gram-negative bacteria as single or combined therapies, using an outer membrane permeabilizer (polymyxin B) and a phage, free or immobilized in a pullulan matrix. In the first step, the endolysin LysKpV475 in solution, alone and combined with polymyxin B, was tested in vitro and in vivo against ten Gram-negative bacteria, including highly virulent strains and multidrug-resistant isolates. In the second step, the lyophilized LysKpV475 endolysin was combined with the phage phSE-5 and investigated, free or immobilized in a pullulan matrix, against Salmonella enterica subsp. enterica serovar Typhimurium ATCC 13311. The bacteriostatic action of purified LysKpV475 varied between 8.125 µg ml-1 against Pseudomonas aeruginosa ATCC 27853, 16.25 µg ml-1 against S. enterica Typhimurium ATCC 13311, and 32.50 µg ml-1 against Klebsiella pneumoniae ATCC BAA-2146 and Enterobacter cloacae P2224. LysKpV475 showed bactericidal activity only for P. aeruginosa ATCC 27853 (32.50 µg ml-1) and P. aeruginosa P2307 (65.00 µg ml-1) at the tested concentrations. The effect of the LysKpV475 combined with polymyxin B increased against K. pneumoniae ATCC BAA-2146 [fractional inhibitory concentration index (FICI) 0.34; a value lower than 1.0 indicates an additive/combined effect] and S. enterica Typhimurium ATCC 13311 (FICI 0.93). A synergistic effect against S. enterica Typhimurium was also observed when the lyophilized LysKpV475 at ⅔ MIC was combined with the phage phSE-5 (m.o.i. of 100). The lyophilized LysKpV475 immobilized in a pullulan matrix maintained a significant Salmonella reduction of 2 logs after 6 h of treatment. These results demonstrate the potential of SAR-endolysins, alone or in combination with other treatments, in the free form or immobilized in solid matrices, which paves the way for their application in different areas, such as in biocontrol at the food processing stage, biosanitation of food contact surfaces and biopreservation of processed food in active food packing.


Assuntos
Antibacterianos , Endopeptidases , Glucanos , Polimixina B , Fagos de Salmonella , Endopeptidases/farmacologia , Endopeptidases/química , Endopeptidases/metabolismo , Polimixina B/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Fagos de Salmonella/genética , Fagos de Salmonella/fisiologia , Fagos de Salmonella/química , Glucanos/química , Glucanos/farmacologia , Animais , Testes de Sensibilidade Microbiana , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/virologia , Camundongos , Salmonella typhimurium/virologia , Salmonella typhimurium/efeitos dos fármacos , Bacteriófagos/fisiologia , Bacteriófagos/genética , Proteínas Virais/genética , Proteínas Virais/metabolismo , Proteínas Virais/farmacologia , Proteínas Virais/química
10.
Molecules ; 29(8)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38675646

RESUMO

Antibiotic resistance in Gram-negative bacteria remains one of the most pressing challenges to global public health. Blocking the transportation of lipopolysaccharides (LPS), a crucial component of the outer membrane of Gram-negative bacteria, is considered a promising strategy for drug discovery. In the transportation process of LPS, two components of the LPS transport (Lpt) complex, LptA and LptC, are responsible for shuttling LPS across the periplasm to the outer membrane, highlighting their potential as targets for antibacterial drug development. In the current study, a protein-protein interaction (PPI) model of LptA and LptC was constructed, and a molecular screening strategy was employed to search a protein-protein interaction compound library. The screening results indicated that compound 18593 exhibits favorable binding free energy with LptA and LptC. In comparison with the molecular dynamics (MD) simulations on currently known inhibitors, compound 18593 shows more stable target binding ability at the same level. The current study suggests that compound 18593 may exhibit an inhibitory effect on the LPS transport process, making it a promising hit compound for further research.


Assuntos
Antibacterianos , Proteínas de Bactérias , Proteínas de Transporte , Lipopolissacarídeos , Antibacterianos/farmacologia , Antibacterianos/química , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/metabolismo , Descoberta de Drogas/métodos , Bactérias Gram-Negativas/efeitos dos fármacos , Lipopolissacarídeos/metabolismo , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Proteínas de Transporte/antagonistas & inibidores , Proteínas de Transporte/metabolismo
11.
Nat Commun ; 15(1): 3424, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654023

RESUMO

Developing unique mechanisms of action are essential to combat the growing issue of antimicrobial resistance. Supramolecular assemblies combining the improved biostability of non-natural compounds with the complex membrane-attacking mechanisms of natural peptides are promising alternatives to conventional antibiotics. However, for such compounds the direct visual insight on antibacterial action is still lacking. Here we employ a design strategy focusing on an inducible assembly mechanism and utilized electron microscopy (EM) to follow the formation of supramolecular structures of lysine-rich heterochiral ß3-peptides, termed lamellin-2K and lamellin-3K, triggered by bacterial cell surface lipopolysaccharides. Combined molecular dynamics simulations, EM and bacterial assays confirmed that the phosphate-induced conformational change on these lamellins led to the formation of striped lamellae capable of incising the cell envelope of Gram-negative bacteria thereby exerting antibacterial activity. Our findings also provide a mechanistic link for membrane-targeting agents depicting the antibiotic mechanism derived from the in-situ formation of active supramolecules.


Assuntos
Antibacterianos , Membrana Celular , Simulação de Dinâmica Molecular , Antibacterianos/farmacologia , Antibacterianos/química , Membrana Celular/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Testes de Sensibilidade Microbiana , Peptídeos/química , Peptídeos/farmacologia , Microscopia Eletrônica , Bactérias Gram-Negativas/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos
12.
ACS Infect Dis ; 10(5): 1753-1766, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38606463

RESUMO

The antibacterial activity of silver species is well-established; however, their mechanism of action has not been adequately explored. Furthermore, issues of low-molecular silver compounds with cytotoxicity, stability, and solubility hamper their progress to drug leads. We have investigated silver N-heterocyclic carbene (NHC) halido complexes [(NHC)AgX, X = Cl, Br, and I] as a promising new type of antibacterial silver organometallics. Spectroscopic studies and conductometry established a higher stability for the complexes with iodide ligands, and nephelometry indicated that the complexes could be administered in solutions with physiological chloride levels. The complexes showed a broad spectrum of strong activity against pathogenic Gram-negative bacteria. However, there was no significant activity against Gram-positive strains. Further studies clarified that tryptone and yeast extract, as components of the culture media, were responsible for this lack of activity. The reduction of biofilm formation and a strong inhibition of both glutathione and thioredoxin reductases with IC50 values in the nanomolar range were confirmed for selected compounds. In addition to their improved physicochemical properties, the compounds with iodide ligands did not display cytotoxic effects, unlike the other silver complexes. In summary, silver NHC complexes with iodide secondary ligands represent a useful scaffold for nontoxic silver organometallics with improved physicochemical properties and a distinct mechanism of action that is based on inhibition of thioredoxin and glutathione reductases.


Assuntos
Antibacterianos , Glutationa Redutase , Bactérias Gram-Negativas , Testes de Sensibilidade Microbiana , Prata , Tiorredoxina Dissulfeto Redutase , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Prata/química , Prata/farmacologia , Tiorredoxina Dissulfeto Redutase/antagonistas & inibidores , Glutationa Redutase/antagonistas & inibidores , Glutationa Redutase/metabolismo , Bactérias Gram-Negativas/efeitos dos fármacos , Humanos , Biofilmes/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/síntese química , Tiorredoxinas , Bactérias Gram-Positivas/efeitos dos fármacos , Metano/análogos & derivados , Metano/química , Metano/farmacologia
13.
ACS Infect Dis ; 10(5): 1458-1482, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38661541

RESUMO

Efflux is a natural process found in all prokaryotic and eukaryotic cells that removes a diverse range of substrates from inside to outside. Many antibiotics are substrates of bacterial efflux pumps, and modifications to the structure or overexpression of efflux pumps are an important resistance mechanism utilized by many multidrug-resistant bacteria. Therefore, chemical inhibition of bacterial efflux to revitalize existing antibiotics has been considered a promising approach for antimicrobial chemotherapy over two decades, and various strategies have been employed. In this review, we provide an overview of bacterial multidrug resistance (MDR) efflux pumps, of which the resistance nodulation division (RND) efflux pumps are considered the most clinically relevant in Gram-negative bacteria, and describe over 50 efflux inhibitors that target such systems. Although numerous efflux inhibitors have been identified to date, none have progressed into clinical use because of formulation, toxicity, and pharmacokinetic issues or a narrow spectrum of inhibition. For these reasons, the development of efflux inhibitors has been considered a difficult and complex area of research, and few active preclinical studies on efflux inhibitors are in progress. However, recently developed tools, including but not limited to computational tools including molecular docking models, offer hope that further research on efflux inhibitors can be a platform for research and development of new bacterial efflux inhibitors.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana Múltipla , Bactérias Gram-Negativas , Proteínas de Membrana Transportadoras , Antibacterianos/farmacologia , Antibacterianos/química , Bactérias Gram-Negativas/efeitos dos fármacos , Proteínas de Membrana Transportadoras/metabolismo , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/antagonistas & inibidores , Humanos
14.
Mar Drugs ; 22(4)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38667789

RESUMO

Sea anemones are valuable for therapeutic research as a diversified source of bioactive molecules, due to their diverse bioactive molecules linked to predation and defence mechanisms involving toxins and antimicrobial peptides. Acid extracts from Actinia equina tentacles and body were examined for antibacterial activity against Gram-positive, Gram-negative bacteria, and fungi. The peptide fractions showed interesting minimum inhibitory concentration (MIC) values (up to 0.125 µg/mL) against the tested pathogens. Further investigation and characterization of tentacle acid extracts with significant antimicrobial activity led to the purification of peptides through reverse phase chromatography on solid phase and HPLC. Broad-spectrum antimicrobial peptide activity was found in 40% acetonitrile fractions. The resulting peptides had a molecular mass of 2612.91 and 3934.827 Da and MIC ranging from 0.06 to 0.20 mg/mL. Sequencing revealed similarities to AMPs found in amphibians, fish, and Cnidaria, with anti-Gram+, Gram-, antifungal, candidacidal, anti-methicillin-resistant Staphylococcus aureus, carbapenemase-producing, vancomycin-resistant bacteria, and multi-drug resistant activity. Peptides 6.2 and 7.3, named Equinin A and B, respectively, were synthesized and evaluated in vitro towards the above-mentioned bacterial pathogens. Equinin B exerted interesting antibacterial activity (MIC and bactericidal concentrations of 1 mg/mL and 0.25 mg/mL, respectively) and gene organization supporting its potential in applied research.


Assuntos
Testes de Sensibilidade Microbiana , Animais , Antibacterianos/farmacologia , Antibacterianos/isolamento & purificação , Antibacterianos/química , Peptídeos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos/isolamento & purificação , Peptídeos Antimicrobianos/química , Anêmonas-do-Mar/química , Bactérias Gram-Positivas/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Anti-Infecciosos/farmacologia , Anti-Infecciosos/isolamento & purificação , Anti-Infecciosos/química , Fungos/efeitos dos fármacos
15.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(2): 583-587, 2024 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-38660870

RESUMO

OBJECTIVE: To investigate distribution and drug resistance of pathogens of bloodstream infection in patients with hematological malignancies, in order to provide reference for clinical infection control and treatment. METHODS: The clinical information of blood culture patients in the hematology department of our hospital from January 2016 to December 2021 was reviewed. They were divided into transplantation group and non-transplantation group according to whether they had undergone hematopoietic stem cell transplantation. The types of pathogens and their drug resistance were analyzed. RESULTS: Two hundred and ninety-nine positive strains of pathogenic bacteria were detected. In the transplantation group, Gram-negative bacteria accounted for 68.5% (50/73), Gram-positive bacteria accounted for 6.8% (5/73), and fungi accounted for 24.7% (18/73). The resistance rate of Escherichia coli to the third-generation cephalosporins was 77.8%, and 11.5% to carbapenems. The resistance rate of Klebsiella pneumoniae to the third-generation cephalosporins was 50.0%, and 56.2% to carbapenems. In the non-transplantation group, Gram-negative bacteria accounted for 64.1% (145/226), Gram-positive bacteria accounted for 31.0% (70/226), and fungi accounted for 4.9% (11/226). Gram-positive bacteria were mainly Enterococcus faecium (6.6%, 15/226) and Coagulase-negative Staphylococci (6.2%, 14/226). The fungi were all Candida tropicalis. The resistance rate of Escherichia coli to the third-generation cephalosporins was 63.8%, and 10.3% to carbapenems. The resistance rate of Klebsiella pneumoniae to the third-generation cephalosporins was 46.3%, and 26.8% to carbapenems. CONCLUSION: The types of pathogenic bacteria in bloodstream infection in patients with hematological malignancies are varied. Gram-negative bacteria is the main pathogenic bacteria. The resistance of pathogenic bacteria to antibiotics is severe. Antibiotics should be used scientifically and reasonably according to the detection and resistance of pathogenic bacteria.


Assuntos
Antibacterianos , Escherichia coli , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Neoplasias Hematológicas , Humanos , Neoplasias Hematológicas/complicações , Bactérias Gram-Negativas/isolamento & purificação , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/isolamento & purificação , Bactérias Gram-Positivas/efeitos dos fármacos , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana , Klebsiella pneumoniae/isolamento & purificação , Carbapenêmicos/farmacologia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Cefalosporinas/farmacologia , Bacteriemia/microbiologia , Fungos
16.
J Med Chem ; 67(8): 6705-6725, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38596897

RESUMO

Cefiderocol is the first approved catechol-conjugated cephalosporin against multidrug-resistant Gram-negative bacteria, while its application was limited by poor chemical stability associated with the pyrrolidinium linker, moderate potency against Klebsiella pneumoniae and Acinetobacter baumannii, intricate procedures for salt preparation, and potential hypersensitivity. To address these issues, a series of novel catechol-conjugated derivatives were designed, synthesized, and evaluated. Extensive structure-activity relationships and structure-metabolism relationships (SMR) were conducted, leading to the discovery of a promising compound 86b (Code no. YFJ-36) with a new thioether linker. 86b exhibited superior and broad-spectrum in vitro antibacterial activity, especially against A. baumannii and K. pneumoniae, compared with cefiderocol. Potent in vivo efficacy was observed in a murine systemic infection model. Furthermore, the physicochemical stability of 86b in fluid medium at pH 6-8 was enhanced. 86b also reduced potential the risk of allergy owing to the quaternary ammonium linker. The improved properties of 86b supported its further research and development.


Assuntos
Antibacterianos , Catecóis , Desenho de Fármacos , Bactérias Gram-Negativas , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Catecóis/química , Catecóis/farmacologia , Catecóis/síntese química , Animais , Relação Estrutura-Atividade , Camundongos , Bactérias Gram-Negativas/efeitos dos fármacos , Klebsiella pneumoniae/efeitos dos fármacos , Acinetobacter baumannii/efeitos dos fármacos , beta-Lactamas/farmacologia , beta-Lactamas/síntese química , beta-Lactamas/química , Cefalosporinas/farmacologia , Cefalosporinas/síntese química , Cefalosporinas/química , Descoberta de Drogas
17.
J Med Chem ; 67(8): 6585-6609, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38598362

RESUMO

G0775, an arylomycin-type SPase I inhibitor that is being evaluated in a preclinical study, exhibited potent antibacterial activities against some Gram-negative bacteria but meanwhile suffered defects such as a narrow antibacterial spectrum and poor pharmacokinetic properties. Herein, systematic structural modifications were carried out, including optimization of the macrocyclic skeleton, warheads, and lipophilic regions. The optimization culminated in the discovery of 138f, which showed more potent activity and a broader spectrum against clinically isolated carbapenem-resistant Gram-negative bacteria, especially against Acinetobacter baumannii and Pseudomonas aeruginosa. 162, the free amine of 138f, exhibited an excellent pharmacokinetic profile in rats. In a neutropenic mouse thigh model of infection with multidrug-resistant P. aeruginosa, the potent in vivo antibacterial efficacy of 162 was confirmed and superior to that of G0775 (3.5-log decrease vs 1.1-log decrease in colony-forming unit (CFU)). These results support 162 as a potential antimicrobial agent for further research.


Assuntos
Antibacterianos , Desenho de Fármacos , Farmacorresistência Bacteriana Múltipla , Bactérias Gram-Negativas , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Antibacterianos/farmacocinética , Antibacterianos/uso terapêutico , Animais , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Camundongos , Relação Estrutura-Atividade , Pseudomonas aeruginosa/efeitos dos fármacos , Ratos , Acinetobacter baumannii/efeitos dos fármacos , Masculino
18.
Microb Pathog ; 190: 106637, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38570103

RESUMO

We seek to investigate the multifaceted factors influencing secondary infections in patients with multidrug-resistant Gram-negative bacteria (MDR-GNB) colonization or infection post-hospitalization. A total of 100 patients with MDR-GNB colonization or infection were retrospectively reviewed, encompassing those admitted to both the general ward and intensive care unit of our hospital from August 2021 to December 2022. Patients were categorized into the control group (non-nosocomial infection, n = 56) and the observation group (nosocomial infection, n = 44) based on the occurrence of nosocomial infection during hospitalization. Clinical data were compared between the two groups, including the distribution and antibiotic sensitivity of MDR-GNB before nosocomial infection. Significant differences were observed between the two groups in terms of age, underlying diseases, immune status, length of stay, and invasive medical procedures (P < 0.05). The observation group also had fewer patients practicing optimized hygiene, strict isolation, and antibiotic control than the control group (P < 0.05). Factors influencing the risk of secondary infection after hospitalization in patients colonized or infected with MDR-GNB included patient age, underlying diseases, immune status, length of hospitalization, medical invasive procedures, optimized hygiene, strict isolation, and antibiotic control (P < 0.05). The length of hospitalization and treatment cost in the observation group were higher than those in the control group (P < 0.05). This study comprehensively analyzes the intricate mechanisms of secondary infections in patients with MDR-GNB infections post-hospitalization. Key factors influencing infection risk include patient age, underlying diseases, immune status, length of hospitalization, medical invasive procedures, optimized hygiene, strict isolation, and antibiotic control.


Assuntos
Antibacterianos , Infecção Hospitalar , Farmacorresistência Bacteriana Múltipla , Bactérias Gram-Negativas , Infecções por Bactérias Gram-Negativas , Hospitalização , Humanos , Masculino , Feminino , Infecções por Bactérias Gram-Negativas/microbiologia , Infecções por Bactérias Gram-Negativas/epidemiologia , Infecção Hospitalar/microbiologia , Infecção Hospitalar/epidemiologia , Estudos Retrospectivos , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/isolamento & purificação , Pessoa de Meia-Idade , Hospitalização/estatística & dados numéricos , Idoso , Fatores de Risco , Antibacterianos/uso terapêutico , Antibacterianos/farmacologia , Tempo de Internação , Adulto , Idoso de 80 Anos ou mais , Unidades de Terapia Intensiva/estatística & dados numéricos
19.
BMC Microbiol ; 24(1): 148, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38678188

RESUMO

BACKGROUND: Urinary tract infections, a prevalent global infectious disease, are clinical issues not well studied in HIV-positive individuals. UTIs have become a global drug resistance issue, but the prevalence and antibiotic susceptibility patterns of UTI-causing bacteria among HIV patients in Tigray, Ethiopia, are poorly understood. This study aims to identify the prevalence of UTI-causing bacteria, their antibiotic susceptibility patterns, and associated risk factors in HIV patients attending ART clinics at Mekelle General Hospital and Ayder Comprehensive Specialized Hospital in Tigray, Northern Ethiopia. METHOD: Clean-catch midstream urine samples (10-15 mL) were collected from HIV patients who are attending ART clinics at Mekelle General Hospital and Ayder Comprehensive Specialized Hospital. Samples were analyzed based on standard microbiological protocols using cysteine-lactose electrolyte deficient (CLED) agar. Pure colonies of bacterial isolates were obtained by sub-culturing into Mac-Conkey, Manitol Salt agar and blood agar plates. The bacterial isolates were then identified using macroscopic, microscopic, biochemical, and Gram staining methods. Gram-negative bacteria were identified using biochemical tests like triple sugar iron agar, Simon's citrate agar, lysine iron agar, urea, motility test, and indol test, whereas Gram-positive isolates were identified using catalase and coagulase tests. The Kirby-Bauer disk diffusion technique was used to analyze the antimicrobial susceptibility pattern of bacterial isolates. Data was analyzed using SPSS version 25.0. RESULTS: Among the 224 patients, 28 (12.5%) of them had been infected by UTIs-causing bacteria. E. coli was the dominant bacterium (16 (57%)) followed by K. pneumoniae (4 (14%)), and S. aureus (3 (11%)). Of the total bacterial isolates, 22 (78.6%) of them developed multi-drug resistance. All Gram-positive (100%) and 75% of Gram-negative bacterial isolates were found to be resistant to two or more drugs. Patients with a history of UTIs, and with CD4 count < 200 cells/ mm3, were more likely to have significant bacteriuria. Compared to male patients, female patients were more affected by the UTIs-causing bacteria. More than 93% of the UTIs-causing bacterial isolates were susceptible to nitrofurantoin, ceftriaxone, ciprofloxacin, and gentamycin; whereas they are highly resistant to ampicillin (96%), cotrimoxazole (82%) and tetracycline (71%). CONCLUSIONS: Most of the bacterial isolates were highly resistant to ampicillin, cotrimoxazole, and tetracycline. Female patients were more affected by the UTIs causing bacteria. The highest prevalence (12.5%) of UTIs in HIV patients needs special attention for better management and monitoring. Previous UTI history and immune suppression are predictors of UTIs, highlighting the need for intervention measures involving molecular studies to identify resistant bacteria genes and promote patient immune reconstitution.


Assuntos
Antibacterianos , Infecções por HIV , Testes de Sensibilidade Microbiana , Infecções Urinárias , Humanos , Etiópia/epidemiologia , Infecções Urinárias/microbiologia , Infecções Urinárias/epidemiologia , Feminino , Adulto , Infecções por HIV/complicações , Masculino , Fatores de Risco , Antibacterianos/farmacologia , Pessoa de Meia-Idade , Adulto Jovem , Prevalência , Bactérias/efeitos dos fármacos , Bactérias/isolamento & purificação , Bactérias/classificação , Bactérias/genética , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/isolamento & purificação , Bactérias Gram-Negativas/classificação , Adolescente , Estudos Transversais
20.
Eur J Pharm Sci ; 197: 106776, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38663759

RESUMO

The emergence of multidrug-resistant (MDR) strains causes severe problems in the treatment of microbial infections owing to limited treatment options. Antimicrobial peptides (AMPs) are drawing considerable attention as promising antibiotic alternative candidates to combat MDR bacterial and fungal infections. Herein, we present a series of small amphiphilic membrane-active cyclic peptides composed, in part, of various nongenetically encoded hydrophilic and hydrophobic amino acids. Notably, lead cyclic peptides 3b and 4b showed broad-spectrum activity against drug-resistant Gram-positive (MIC = 1.5-6.2 µg/mL) and Gram-negative (MIC = 12.5-25 µg/mL) bacteria, and fungi (MIC = 3.1-12.5 µg/mL). Furthermore, lead peptides displayed substantial antibiofilm action comparable to standard antibiotics. Hemolysis (HC50 = 230 µg/mL) and cytotoxicity (>70 % cell viability against four different mammalian cells at 100 µg/mL) assay results demonstrated the selective lethal action of 3b against microbes over mammalian cells. A calcein dye leakage experiment substantiated the membranolytic effect of 3b and 4b, which was further confirmed by scanning electron microscopy. The behavior of 3b and 4b in aqueous solution and interaction with phospholipid bilayers were assessed by employing nuclear magnetic resonance (NMR) spectroscopy in conjunction with molecular dynamics (MD) simulations, providing a solid structural basis for understanding their membranolytic action. Moreover, 3b exhibited stability in human blood plasma (t1/2 = 13 h) and demonstrated no signs of resistance development against antibiotic-resistant S. aureus and E. coli. These findings underscore the potential of these newly designed amphiphilic cyclic peptides as promising anti-infective agents, especially against Gram-positive bacteria.


Assuntos
Biofilmes , Farmacorresistência Bacteriana Múltipla , Hemólise , Testes de Sensibilidade Microbiana , Humanos , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Peptídeos Cíclicos/farmacologia , Peptídeos Cíclicos/química , Antibacterianos/farmacologia , Antibacterianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Animais , Fungos/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Antifúngicos/farmacologia , Antifúngicos/química , Bactérias Gram-Negativas/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA