Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Phytochemistry ; 213: 113742, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37269935

RESUMO

Phytoalexins are antimicrobial plant metabolites elicited by microbial attack or abiotic stress. We investigated phytoalexin profiles after foliar abiotic elicitation in the crucifer Barbarea vulgaris and interactions with the glucosinolate-myrosinase system. The treatment for abiotic elicitation was a foliar spray with CuCl2 solution, a usual eliciting agent, and three independent experiments were carried out. Two genotypes of B. vulgaris (G-type and P-type) accumulated the same three major phytoalexins in rosette leaves after treatment: phenyl-containing nasturlexin D and indole-containing cyclonasturlexin and cyclobrassinin. Phytoalexin levels were investigated daily by UHPLC-QToF MS and tended to differ among plant types and individual phytoalexins. In roots, phytoalexins were low or not detected. In treated leaves, typical total phytoalexin levels were in the range 1-10 nmol/g fresh wt. during three days after treatment while typical total glucosinolate (GSL) levels were three orders of magnitude higher. Levels of some minor GSLs responded to the treatment: phenethylGSL (PE) and 4-substituted indole GSLs. Levels of PE, a suggested nasturlexin D precursor, were lower in treated plants than controls. Another suggested precursor GSL, 3-hydroxyPE, was not detected, suggesting PE hydrolysis to be a key biosynthetic step. Levels of 4-substituted indole GSLs differed markedly between treated and control plants in most experiments, but not in a consistent way. The dominant GSLs, glucobarbarins, are not believed to be phytoalexin precursors. We observed statistically significant linear correlations between total major phytoalexins and the glucobarbarin products barbarin and resedine, suggesting that GSL turnover for phytoalexin biosynthesis was unspecific. In contrast, we did not find correlations between total major phytoalexins and raphanusamic acid or total glucobarbarins and barbarin. In conclusion, two groups of phytoalexins were detected in B. vulgaris, apparently derived from the GSLs PE and indol-3-ylmethylGSL. Phytoalexin biosynthesis was accompanied by depletion of the precursor PE and by turnover of major non-precursor GSLs to resedine. This work paves the way for identifying and characterizing genes and enzymes in the biosyntheses of phytoalexins and resedine.


Assuntos
Barbarea , Fitoalexinas , Barbarea/química , Barbarea/classificação , Barbarea/genética , Barbarea/metabolismo , Flavonoides/química , Flavonoides/isolamento & purificação , Flavonoides/metabolismo , Genótipo , Glucosinolatos/química , Glucosinolatos/isolamento & purificação , Glucosinolatos/metabolismo , Indóis/metabolismo , Fitoalexinas/biossíntese , Fitoalexinas/química , Fitoalexinas/isolamento & purificação , Fitoalexinas/metabolismo
2.
Mol Phylogenet Evol ; 169: 107425, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35131423

RESUMO

Barbarea, winter-cress, is a genus of 29 species in Brassicaceae, the mustard family, which has emerged as a model for evolution of plant defence and specialised metabolites. Notably, some Barbarea species have evolved the ability to produce triterpenoid saponins as the only ones in Brassicaceae, some of which make plants resistant to important herbivores. Resistance has, however, been lost in a distinct group of plants within B. vulgaris ssp. arcuata, which is genetically strongly diverged from other B. vulgaris plants. This divergence is not reflected present in taxonomy. Thus, a phylogeny is needed to understand evolution and defence in Barbarea. Here, we analysed the nuclear ITS and the plastid matK, ndhF, rps16, and psbA-trnH DNA regions from seven out of 29 Barbarea species, 57 accessions of B. vulgaris, 10 accessions of other Barbarea species, and eight outgroup species, in addition to sequences available from GenBank. All Barbarea species formed a highly supported monophyletic group, separated from sister genera. Several clades seem to have radiated within the genus with no simple branching pattern, and discordant nuclear and plastid DNA phylogenies indicate reticulate evolution and chloroplast capture. One of the complex patterns may have resulted from chloroplast capture of a non-Nordic Barbarea species not included in the study. Two pairs of species were almost identical, B. australis and B. grayi, and B. orthoceras and B. stricta. Despite hybridization, chloroplast capture, and incongruence among the plastid and nuclear DNA data, the high level of intraspecific diversity, coupled with lineage specificity, lead us to recognize three groups of Barbarea vulgaris: G-type (glabrous) and P-type (pubescent) individuals of the current B. vulgaris ssp. arcuata as two distinct groups and the current B. vulgaris ssp. vulgaris as the third. Despite the high molecular diversity below species level, the evolutionary history of the saponin-based resistance remains unsettled due to unresolved basal branching.


Assuntos
Barbarea , Brassicaceae , Barbarea/genética , Barbarea/metabolismo , Brassicaceae/genética , Herbivoria , Humanos , Hibridização Genética , Filogenia
3.
Plant Physiol ; 188(3): 1483-1495, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-34865155

RESUMO

In the wild cruciferous wintercress (Barbarea vulgaris), ß-amyrin-derived saponins are involved in resistance against insect herbivores like the major agricultural pest diamondback moth (Plutella xylostella). Enzymes belonging to the 2,3-oxidosqualene cyclase family have been identified and characterized in B. vulgaris G-type and P-type plants that differ in their natural habitat, insect resistance and saponin content. Both G-type and P-type plants possess highly similar 2,3-oxidosqualene cyclase enzymes that mainly produce ß-amyrin (Barbarea vulgaris Lupeol synthase 5 G-Type; BvLUP5-G) or α-amyrin (Barbarea vulgaris Lupeol synthase 5 P-Type; BvLUP5-P), respectively. Despite the difference in product formation, the two BvLUP5 enzymes are 98% identical at the amino acid level. This provides a unique opportunity to investigate determinants of product formation, using the B. vulgaris 2,3-oxidosqualene cyclase enzymes as a model for studying amino acid residues that determine differences in product formation. In this study, we identified two amino acid residues at position 121 and 735 that are responsible for the dominant changes in generated product ratios of ß-amyrin and α-amyrin in both BvLUP5 enzymes. These amino acid residues have not previously been highlighted as directly involved in 2,3-oxidosqualene cyclase product specificity. Our results highlight the functional diversity and promiscuity of 2,3-oxidosqualene cyclase enzymes. These enzymes serve as important mediators of metabolic plasticity throughout plant evolution.


Assuntos
Barbarea/genética , Barbarea/metabolismo , Barbarea/parasitologia , Transferases Intramoleculares/genética , Transferases Intramoleculares/metabolismo , Ácido Oleanólico/metabolismo , Extratos Vegetais/farmacologia , Animais , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Herbivoria/efeitos dos fármacos , Controle de Insetos , Mariposas/efeitos dos fármacos , Mutação , Ácido Oleanólico/análogos & derivados
4.
Phytochemistry ; 185: 112658, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33744557

RESUMO

A library of ion trap MS2 spectra and HPLC retention times reported here allowed distinction in plants of at least 70 known glucosinolates (GSLs) and some additional proposed GSLs. We determined GSL profiles of selected members of the tribe Cardamineae (Brassicaceae) as well as Reseda (Resedaceae) used as outgroup in evolutionary studies. We included several accessions of each species and a range of organs, and paid attention to minor peaks and GSLs not detected. In this way, we obtained GSL profiles of Barbarea australis, Barbarea grayi, Planodes virginica selected for its apparent intermediacy between Barbarea and the remaining tribe and family, and Rorippa sylvestris and Nasturtium officinale, for which the presence of acyl derivatives of GSLs was previously untested. We also screened Armoracia rusticana, with a remarkably diverse GSL profile, the emerging model species Cardamine hirsuta, for which we discovered a GSL polymorphism, and Reseda luteola and Reseda odorata. The potential for aliphatic GSL biosynthesis in Barbarea vulgaris was of interest, and we subjected P-type and G-type B. vulgaris to several induction regimes in an attempt to induce aliphatic GSL. However, aliphatic GSLs were not detected in any of the B. vulgaris types. We characterized the investigated chemotypes phylogenetically, based on nuclear rDNA internal transcribed spacer (ITS) sequences, in order to understand their relation to the species B. vulgaris in general, and found them to be representative of the species as it occurs in Europe, as far as documented in available ITS-sequence repositories. In short, we provide GSL profiles of a wide variety of tribe Cardamineae plants and conclude aliphatic GSLs to be absent or below our limit of detection in two major evolutionary lines of B. vulgaris. Concerning analytical chemistry, we conclude that availability of authentic reference compounds or reference materials is critical for reliable GSL analysis and characterize two publicly available reference materials: seeds of P. virginica and N. officinale.


Assuntos
Barbarea , Brassicaceae , Resedaceae , Barbarea/genética , Brassicaceae/genética , Cromatografia Líquida de Alta Pressão , Europa (Continente) , Glucosinolatos , Filogenia , Espectrometria de Massas em Tandem
5.
Plant J ; 106(4): 978-992, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33624307

RESUMO

2-Phenylethylglucosinolate (2PE) derived from homophenylalanine is present in plants of the Brassicales order as a defense compound. It is associated with multiple biological properties, including deterrent effects on pests and antimicrobial and health-promoting functions, due to its hydrolysis product 2-phenylethyl isothiocyanate, which confers 2PE as a potential application in agriculture and industry. In this study, we characterized the putative key genes for 2PE biosynthesis from Barbarea vulgaris W.T. Aiton and demonstrated the feasibility of engineering 2PE production in Nicotiana benthamiana Domin. We used different combinations of genes from B. vulgaris and Arabidopsis thaliana (L.) Heynh. to demonstrate that: (i) BvBCAT4 performed more efficiently than AtBCAT4 in biosynthesis of both homophenylalanine and dihomomethionine; (ii) MAM1 enzymes were critical for the chain-elongated profile, while CYP79F enzymes accepted both chain-elongated methionine and homophenylalanine; (iii) aliphatic but not aromatic core structure pathway catalyzed the 2PE biosynthesis; (iv) a chimeric pathway containing BvBCAT4, BvMAM1, AtIPMI and AtIPMDH1 resulted in a two-fold increase in 2PE production compared with the B. vulgaris-specific chain elongation pathway; and (v) profiles of chain-elongated products and glucosinolates partially mirrored the profiles in the gene donor plant, but were wider in N. benthamiana than in the native plants. Our study provides a strategy to produce the important homophenylalanine and 2PE in a heterologous host. Furthermore, chimeric engineering of the complex 2PE biosynthetic pathway enabled detailed understanding of catalytic properties of individual enzymes - a prerequisite for understanding biochemical evolution. The new-to-nature gene combinations have the potential for application in biotechnological and plant breeding.


Assuntos
Aminobutiratos/metabolismo , Arabidopsis/genética , Barbarea/genética , Glucosinolatos/metabolismo , Nicotiana/metabolismo , Vias Biossintéticas , Engenharia Genética , Hidrólise , Isotiocianatos/metabolismo , Nicotiana/genética , Transgenes
6.
BMC Genomics ; 20(1): 371, 2019 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-31088355

RESUMO

BACKGROUND: Barbarea vulgaris is a wild cruciferous plant and include two distinct types: the G- and P-types named after their glabrous and pubescent leaves, respectively. The types differ significantly in resistance to a range of insects and diseases as well as glucosinolates and other chemical defenses. A high-density linkage map was needed for further progress to be made in the molecular research of this plant. RESULTS: We performed restriction site-associated DNA sequencing (RAD-Seq) on an F2 population generated from G- and P-type B. vulgaris. A total of 1545 SNP markers were mapped and ordered in eight linkage groups, which represents the highest density linkage map to date for the crucifer tribe Cardamineae. A total of 722 previously published genome contigs (50.2 Mb, 30% of the total length) can be anchored to this high density genetic map, an improvement compared to a previously published map (431 anchored contigs, 38.7 Mb, 23% of the assembly genome). Most of these (572 contigs, 31.2 Mb) were newly anchored to the map, representing a significant improvement. On the basis of the present high-density genetic map, 37 QTL were detected for eleven traits, each QTL explaining 2.9-71.3% of the phenotype variation. QTL of glucosinolates, leaf size and color traits were in most cases overlapping, possibly implying a functional connection. CONCLUSIONS: This high-density linkage map and the QTL obtained in this study will be useful for further understanding of the genetic of the B. vulgaris and molecular basis of these traits, many of which are shared in the related crop watercress.


Assuntos
Barbarea/genética , Mapeamento Cromossômico/métodos , Locos de Características Quantitativas , Análise de Sequência de DNA/métodos , Barbarea/fisiologia , DNA de Plantas/genética , Ligação Genética , Fenótipo , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Polimorfismo de Nucleotídeo Único
7.
New Phytol ; 222(3): 1599-1609, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30661245

RESUMO

Plants continuously evolve new defense compounds. One class of such compounds is triterpenoid saponins. A few species in the Barbarea genus produce saponins as the only ones in the large crucifer family. However, the molecular mechanism behind saponin biosynthesis and their role in plant defense remains unclear. We used pathway reconstitution in planta, enzymatic production of saponins in vitro, insect feeding assays, and bioinformatics to identify a missing gene involved in saponin biosynthesis and saponin-based herbivore defense. A tandem repeat of eight CYP72A cytochromes P450 colocalise with a quantitative trait locus (QTL) for saponin accumulation and flea beetle resistance in Barbarea vulgaris. We found that CYP72A552 oxidises oleanolic acid at position C-23 to hederagenin. In vitro-produced hederagenin monoglucosides reduced larval feeding by up to 90% and caused 75% larval mortality of the major crucifer pest diamondback moth and the tobacco hornworm. Sequence analysis indicated that CYP72A552 evolved through gene duplication and has been under strong selection pressure. In conclusion, CYP72A552 has evolved to catalyse the formation of hederagenin-based saponins that mediate plant defense against herbivores. Our study highlights the evolution of chemical novelties by gene duplication and selection for enzyme innovations, and the importance of chemical modification in plant defense evolution.


Assuntos
Barbarea/imunologia , Barbarea/parasitologia , Sistema Enzimático do Citocromo P-450/metabolismo , Herbivoria/fisiologia , Ácido Oleanólico/análogos & derivados , Saponinas/biossíntese , Animais , Barbarea/enzimologia , Barbarea/genética , Sistema Enzimático do Citocromo P-450/genética , Duplicação Gênica , Genoma de Planta , Herbivoria/efeitos dos fármacos , Insetos/fisiologia , Mariposas/fisiologia , Ácido Oleanólico/biossíntese , Ácido Oleanólico/química , Ácido Oleanólico/farmacologia , Oxirredução , Filogenia , Locos de Características Quantitativas/genética , Saponinas/química , Saponinas/farmacologia
8.
Plant Mol Biol ; 97(1-2): 37-55, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29603041

RESUMO

KEY MESSAGE: This study identifies six UGT73Cs all able to glucosylate sapogenins at positions 3 and/or 28 which demonstrates that B. vulgaris has a much richer arsenal of UGTs involved in saponin biosynthesis than initially anticipated. The wild cruciferous plant Barbarea vulgaris is resistant to some insects due to accumulation of two monodesmosidic triterpenoid saponins, oleanolic acid 3-O-ß-cellobioside and hederagenin 3-O-ß-cellobioside. Insect resistance depends on the structure of the sapogenin aglycone and the glycosylation pattern. The B. vulgaris saponin profile is complex with at least 49 saponin-like metabolites, derived from eight sapogenins and including up to five monosaccharide units. Two B. vulgaris UDP-glycosyltransferases, UGT73C11 and UGT73C13, O-glucosylate sapogenins at positions 3 and 28, forming mainly 3-O-ß-D-glucosides. The aim of this study was to identify UGTs responsible for the diverse saponin oligoglycoside moieties observed in B. vulgaris. Twenty UGT genes from the insect resistant genotype were selected and heterologously expressed in Nicotiana benthamiana and/or Escherichia coli. The extracts were screened for their ability to glycosylate sapogenins (oleanolic acid, hederagenin), the hormone 24-epibrassinolide and sapogenin monoglucosides (hederagenin and oleanolic acid 3-O-ß-D-glucosides). Six UGTs from the UGT73C subfamily were able to glucosylate both sapogenins and both monoglucosides at positions 3 and/or 28. Some UGTs formed bisdesmosidic saponins efficiently. At least four UGT73C genes were localized in a tandem array with UGT73C11 and possibly UGT73C13. This organization most likely reflects duplication events followed by sub- and neofunctionalization. Indeed, signs of positive selection on several amino acid sites were identified and modelled to be localized on the UGT protein surface. This tandem array is proposed to initiate higher order bisdesmosidic glycosylation of B. vulgaris saponins, leading to the recently discovered saponin structural diversity, however, not directly to known cellobiosidic saponins.


Assuntos
Barbarea/enzimologia , Glicosiltransferases/isolamento & purificação , Sapogeninas/metabolismo , Saponinas/biossíntese , Barbarea/genética , Barbarea/metabolismo , Brassinosteroides/metabolismo , Escherichia coli/genética , Genes de Plantas , Glicosídeos/metabolismo , Glicosilação , Glicosiltransferases/química , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Modelos Moleculares , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/metabolismo , Saponinas/química , Saponinas/isolamento & purificação , Esteroides Heterocíclicos/metabolismo , Sequências de Repetição em Tandem , Nicotiana/genética , Transcriptoma
9.
Sci Rep ; 7: 40728, 2017 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-28094805

RESUMO

The genus Barbarea has emerged as a model for evolution and ecology of plant defense compounds, due to its unusual glucosinolate profile and production of saponins, unique to the Brassicaceae. One species, B. vulgaris, includes two 'types', G-type and P-type that differ in trichome density, and their glucosinolate and saponin profiles. A key difference is the stereochemistry of hydroxylation of their common phenethylglucosinolate backbone, leading to epimeric glucobarbarins. Here we report a draft genome sequence of the G-type, and re-sequencing of the P-type for comparison. This enables us to identify candidate genes underlying glucosinolate diversity, trichome density, and study the genetics of biochemical variation for glucosinolate and saponins. B. vulgaris is resistant to the diamondback moth, and may be exploited for "dead-end" trap cropping where glucosinolates stimulate oviposition and saponins deter larvae to the extent that they die. The B. vulgaris genome will promote the study of mechanisms in ecological biochemistry to benefit crop resistance breeding.


Assuntos
Barbarea/genética , Genoma de Planta , Genômica , Barbarea/química , Barbarea/classificação , Barbarea/metabolismo , Biologia Computacional/métodos , Resistência à Doença/genética , Variação Genética , Genômica/métodos , Glucosinolatos/metabolismo , Metaboloma , Metabolômica/métodos , Anotação de Sequência Molecular , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Locos de Características Quantitativas , Característica Quantitativa Herdável , Sequenciamento Completo do Genoma
10.
Plant J ; 84(3): 478-90, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26333142

RESUMO

The ability to evolve novel metabolites has been instrumental for the defence of plants against antagonists. A few species in the Barbarea genus are the only crucifers known to produce saponins, some of which make plants resistant to specialist herbivores, like Plutella xylostella, the diamondback moth. Genetic mapping in Barbarea vulgaris revealed that genes for saponin biosynthesis are not clustered but are located in different linkage groups. Using co-location with quantitative trait loci (QTLs) for resistance, transcriptome and genome sequences, we identified two 2,3-oxidosqualene cyclases that form the major triterpenoid backbones. LUP2 mainly produces lupeol, and is preferentially expressed in insect-susceptible B. vulgaris plants, whereas LUP5 produces ß-amyrin and α-amyrin, and is preferentially expressed in resistant plants; ß-amyrin is the backbone for the resistance-conferring saponins in Barbarea. Two loci for cytochromes P450, predicted to add functional groups to the saponin backbone, were identified: CYP72As co-localized with insect resistance, whereas CYP716As did not. When B. vulgaris sapogenin biosynthesis genes were transiently expressed by CPMV-HT technology in Nicotiana benthamiana, high levels of hydroxylated and carboxylated triterpenoid structures accumulated, including oleanolic acid, which is a precursor of the major resistance-conferring saponins. When the B. vulgaris gene for sapogenin 3-O-glucosylation was co-expressed, the insect deterrent 3-O-oleanolic acid monoglucoside accumulated, as well as triterpene structures with up to six hexoses, demonstrating that N. benthamiana further decorates the monoglucosides. We argue that saponin biosynthesis in the Barbarea genus evolved by a neofunctionalized glucosyl transferase, whereas the difference between resistant and susceptible B. vulgaris chemotypes evolved by different expression of oxidosqualene cyclases (OSCs).


Assuntos
Barbarea/genética , Barbarea/metabolismo , Saponinas/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Herbivoria , Transferases Intramoleculares/genética , Transferases Intramoleculares/metabolismo , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/metabolismo , Triterpenos Pentacíclicos/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Locos de Características Quantitativas , Sapogeninas/metabolismo , Saponinas/genética , Nicotiana/genética , Triterpenos/metabolismo
11.
BMC Genomics ; 16: 486, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26126637

RESUMO

BACKGROUND: Barbarea vulgaris contains two genotypes: the glabrous type (G-type), which confers resistance to the diamondback moth (DBM) and other insect pests, and the pubescent type (P-type), which is susceptible to the DBM. Herein, the transcriptomes of P-type B. vulgaris before and after DBM infestation were subjected to Illumina (Solexa) pyrosequencing and comparative analysis. RESULTS: 5.0 gigabase pairs of clean nucleotides were generated. Non-redundant unigenes (33,721) were assembled and 94.1 % of them were annotated. Compared with our previous G-type transcriptome, the expression patterns of many insect responsive genes, including those related to secondary metabolism, phytohormones and transcription factors, which were significantly induced by DBM in G-type plants, were less sensitive to DBM infestation in P-type plants. The genes of the triterpenoid saponin pathway were identified in both G- and P-type plants. The upstream genes of the pathway showed similar expression patterns between the two genotypes. However, gene expression for two downstream enzymes, the glucosyl transferase (UGT73C11) and an oxidosqualene cyclase (OSC), were significantly upregulated in the P-type compared with the G-type plant. The homologous genes from P- and G-type plants were detected by BLAST unigenes with a cutoff level E-value < e(-10). 12,980 gene families containing 26,793 P-type and 36,944 G-type unigenes were shared by the two types of B. vulgaris. 38,397 single nucleotide polymorphisms (SNPs) were found in 9,452 orthologous genes between the P- and G-type plants. We also detected 5,105 simple sequence repeats (SSRs) in the B. vulgaris transcriptome, comprising mono-nucleotide-repeats (2,477; 48.5 %) and triple-nucleotide-repeats (1,590; 31.1 %). Of these, 1,657 SSRs displayed polymorphisms between the P- and G-type. Consequently, 913 SSR primer pairs were designed with a resolution of more than two nucleotides. We randomly chose 30 SSRs to detect the genetic diversity of 32 Barbarea germplasms. The distance tree showed that these accessions were clearly divided into groups, with the G-type grouping with available Western and Central European B. vulgaris accessions in contrast to the P-type accession, B. stricta and B. verna. CONCLUSIONS: These data represent useful information for pest-resistance gene mining and for the investigation of the molecular basis of plant-pest interactions.


Assuntos
Barbarea/classificação , Barbarea/genética , Perfilação da Expressão Gênica/métodos , Mariposas/parasitologia , Proteínas de Plantas/genética , Animais , Barbarea/parasitologia , Resistência à Doença , Regulação da Expressão Gênica de Plantas , Variação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Repetições de Microssatélites , Filogenia , Análise de Sequência de RNA
12.
Phytochemistry ; 115: 130-42, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25277803

RESUMO

Two distinct glucosinolate (GSL) chemotypes (P and G-types) of Barbarea vulgaris (Brassicaceae) were known from southern Scandinavia, but whether the types were consistent in a wider geographic area was not known. Populations (26) from Eastern and Central Europe were analyzed for GSLs in order to investigate whether the two types were consistent in this area. Most (21) could be attributed to one of the previously described GSL profile types, the P-type (13 populations) and the G-type (8 populations), based on differences in the stereochemistry of 2-hydroxylation, presence or absence of phenolic glucobarbarin derivatives, and qualitative differences in indole GSL decoration (tested for a subset of 8+6 populations only). The distinction agreed with previous molecular genetic analysis of the same individuals. Geographically, the P-type typically occurred in Eastern Europe while the G-type mainly occurred in Central Europe. Of the remaining five populations, minor deviations were observed in some individuals from two populations genetically assigned to the G-type, and a hybrid population from Finland contained an additional dihydroxyphenethyl GSL isomer attributed to a combinatorial effect of P-type and G-type genes. Major exceptions to the typical GSL profiles were observed in two populations: (1) A G-type population from Slovenia deviated by a high frequency of a known variant in glucobarbarin biosynthesis ('NAS form') co-occurring with usual G-type individuals. (2) A population from Caucasus exhibited a highly deviating GSL profile dominated by p-hydroxyphenethyl GSL that was insignificant in other accessions, as well as two GSLs investigated by NMR, m-hydroxyphenethylGSL and a partially identified m,p disubstituted hydroxy-methoxy derivative of phenethylGSL. Tandem HPLC-MS of seven NMR-identified desulfoGSLs was carried out and interpreted for increased certainty in peak identification and as a tool for partial structure elucidation. The distinct, geographically separated chemotypes and rare variants are discussed in relation to future taxonomic revision and the genetics and ecology of GSLs in B. vulgaris.


Assuntos
Barbarea/química , Glucosinolatos/isolamento & purificação , Barbarea/genética , Europa (Continente) , Glucosinolatos/química , Isomerismo , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Polimorfismo Genético
13.
Oecologia ; 177(2): 441-52, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25380645

RESUMO

It is well known that pathogens and arthropod herbivores attacking the same host plant may affect each other. Little is known, however, about their combined impact on plant fitness, which may differ from simple additive expectations. In a 2-year common garden field experiment, we tested whether the pathogen Albugo sp. (white blister rust) and the herbivorous flea beetle Phyllotreta nemorum affected each other's performance on two resistance types (G-type and P-type) of the crucifer Barbarea vulgaris ssp. arcuata, and whether biomass, reproduction and survival of the plants were affected by interactive impacts of the antagonists. Most of the insect-resistant G-plants were severely affected by white rust, which reduced biomass and reproductive potential compared to the controls. However, when also exposed to flea beetles, biomass loss was mitigated in G-plants, even though apparent disease symptoms were not reduced. Most of the insect-susceptible P-plants were resistant to white rust; however, the number of flea beetle mines tended to increase in plants also exposed to Albugo, and biomass at the last harvest was slightly lower in the combined treatment. Thus, interactive impacts of the herbivore and pathogen differed between the two resistance types, with an antagonistic combined impact in G-plants, which lasted surprisingly long, and a slight synergistic impact in P-plants.


Assuntos
Barbarea/microbiologia , Besouros/microbiologia , Herbivoria , Oomicetos/fisiologia , Animais , Barbarea/genética , Resistência à Doença , Doenças das Plantas/microbiologia
14.
J Chem Ecol ; 40(5): 491-501, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24777484

RESUMO

The interactions of plants with herbivores and pathogens have been suggested to drive the evolution of resistances in plants and in some cases new lineages and taxa. However, such divergence may require reproductive isolation, e.g., in allopatry. In the crucifer Barbarea vulgaris, some plants are resistant to the flea beetle Phyllotreta nemorum, due to production of specific saponins, whereas others are susceptible. Resistant and susceptible plants additionally differ in resistance to the pathogen Albugo candida, content of glucosinolates, and leaf pubescence, and they are genetically strongly divergent and partially reproductively incompatible. This suggests that at some point they were separated for a considerable length of time. Previously, the insect susceptible P-type had been described only from Denmark, Sweden, and Estonia, whereas the resistant G-type is widely distributed in Western Europe. Here, we tested whether the two plant types have divergent geographical distributions and maintain their distinct trait associations throughout their range. The insect-susceptible type was found in Russia, the Baltics, and parts of Fennoscandia, but not in Central Europe. In contrast, the insect resistant type was found from Finland and westwards. Their different trait associations were consistent within the two ranges. We therefore suggest that the two plant types diverged in allopatry at some time in the past, and evolved different resistances in response to local antagonists. The two plant types probably maintain their distinctness due to a hybridization barrier. Thus, the present distributions of the two types may be shaped by both historical processes and current differential biotic selection.


Assuntos
Barbarea/genética , Barbarea/parasitologia , Herbivoria , Interações Hospedeiro-Parasita , Insetos/fisiologia , Oomicetos/fisiologia , Animais , Barbarea/química , Barbarea/fisiologia , Evolução Biológica , Variação Genética , Genótipo , Glucosinolatos/análise , Repetições de Microssatélites , Filogeografia , Saponinas/análise
15.
PLoS One ; 8(5): e64481, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23696897

RESUMO

BACKGROUND: The diamondback moth (DBM, Plutella xylostella) is a crucifer-specific pest that causes significant crop losses worldwide. Barbarea vulgaris (Brassicaceae) can resist DBM and other herbivorous insects by producing feeding-deterrent triterpenoid saponins. Plant breeders have long aimed to transfer this insect resistance to other crops. However, a lack of knowledge on the biosynthetic pathways and regulatory networks of these insecticidal saponins has hindered their practical application. A pyrosequencing-based transcriptome analysis of B. vulgaris during DBM larval feeding was performed to identify genes and gene networks responsible for saponin biosynthesis and its regulation at the genome level. PRINCIPAL FINDINGS: Approximately 1.22, 1.19, 1.16, 1.23, 1.16, 1.20, and 2.39 giga base pairs of clean nucleotides were generated from B. vulgaris transcriptomes sampled 1, 4, 8, 12, 24, and 48 h after onset of P. xylostella feeding and from non-inoculated controls, respectively. De novo assembly using all data of the seven transcriptomes generated 39,531 unigenes. A total of 37,780 (95.57%) unigenes were annotated, 14,399 of which were assigned to one or more gene ontology terms and 19,620 of which were assigned to 126 known pathways. Expression profiles revealed 2,016-4,685 up-regulated and 557-5188 down-regulated transcripts. Secondary metabolic pathways, such as those of terpenoids, glucosinolates, and phenylpropanoids, and its related regulators were elevated. Candidate genes for the triterpene saponin pathway were found in the transcriptome. Orthological analysis of the transcriptome with four other crucifer transcriptomes identified 592 B. vulgaris-specific gene families with a P-value cutoff of 1e(-5). CONCLUSION: This study presents the first comprehensive transcriptome analysis of B. vulgaris subjected to a series of DBM feedings. The biosynthetic and regulatory pathways of triterpenoid saponins and other DBM deterrent metabolites in this plant were classified. The results of this study will provide useful data for future investigations on pest-resistance phytochemistry and plant breeding.


Assuntos
Barbarea/genética , Barbarea/parasitologia , Larva/patogenicidade , Mariposas/patogenicidade , Transcriptoma/genética , Animais
16.
Plant Physiol ; 160(4): 1881-95, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23027665

RESUMO

Triterpenoid saponins are bioactive metabolites that have evolved recurrently in plants, presumably for defense. Their biosynthesis is poorly understood, as is the relationship between bioactivity and structure. Barbarea vulgaris is the only crucifer known to produce saponins. Hederagenin and oleanolic acid cellobioside make some B. vulgaris plants resistant to important insect pests, while other, susceptible plants produce different saponins. Resistance could be caused by glucosylation of the sapogenins. We identified four family 1 glycosyltransferases (UGTs) that catalyze 3-O-glucosylation of the sapogenins oleanolic acid and hederagenin. Among these, UGT73C10 and UGT73C11 show highest activity, substrate specificity and regiospecificity, and are under positive selection, while UGT73C12 and UGT73C13 show lower substrate specificity and regiospecificity and are under purifying selection. The expression of UGT73C10 and UGT73C11 in different B. vulgaris organs correlates with saponin abundance. Monoglucosylated hederagenin and oleanolic acid were produced in vitro and tested for effects on P. nemorum. 3-O-ß-d-Glc hederagenin strongly deterred feeding, while 3-O-ß-d-Glc oleanolic acid only had a minor effect, showing that hydroxylation of C23 is important for resistance to this herbivore. The closest homolog in Arabidopsis thaliana, UGT73C5, only showed weak activity toward sapogenins. This indicates that UGT73C10 and UGT73C11 have neofunctionalized to specifically glucosylate sapogenins at the C3 position and demonstrates that C3 monoglucosylation activates resistance. As the UGTs from both the resistant and susceptible types of B. vulgaris glucosylate sapogenins and are not located in the known quantitative trait loci for resistance, the difference between the susceptible and resistant plant types is determined at an earlier stage in saponin biosynthesis.


Assuntos
Barbarea/enzimologia , Biocatálise , Glucosiltransferases/metabolismo , Insetos/fisiologia , Sapogeninas/metabolismo , Saponinas/metabolismo , Difosfato de Uridina/metabolismo , Animais , Barbarea/genética , Barbarea/fisiologia , Expressão Gênica , Regulação da Expressão Gênica de Plantas , Biblioteca Gênica , Glucosiltransferases/genética , Glicosilação , Herbivoria , Cinética , Ácido Oleanólico/análogos & derivados , Especificidade de Órgãos/genética , Filogenia , Folhas de Planta/metabolismo , Saponinas/química , Especificidade por Substrato
17.
Phytochemistry ; 77: 16-45, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22405332

RESUMO

By 2000, around 106 natural glucosinolates (GSLs) were probably documented. In the past decade, 26 additional natural GSL structures have been elucidated and documented. Hence, the total number of documented GSLs from nature by 2011 can be estimated to around 132. A considerable number of additional suggested structures are concluded not to be sufficiently documented. In many cases, NMR spectroscopy would have provided the missing structural information. Of the GSLs documented in the past decade, several are of previously unexpected structures and occur at considerable levels. Most originate from just four species: Barbarea vulgaris, Arabidopsis thaliana, Eruca sativa and Isatis tinctoria. Acyl derivatives of known GSLs comprised 15 of the 26 newly documented structures, while the remaining exhibited new substitution patterns or chain length, or contained a mercapto group or related thio-functionality. GSL identification methods are reviewed, and the importance of using authentic references and structure-sensitive detection methods such as MS and NMR is stressed, especially when species with relatively unknown chemistry are analyzed. An example of qualitative GSL analysis is presented with experimental details (group separation and HPLC of both intact and desulfated GSLs, detection and structure determination by UV, MS, NMR and susceptibility to myrosinase) with emphasis on the use of NMR for structure elucidation of even minor GSLs and GSL hydrolysis products. The example includes identification of a novel GSL, (R)-2-hydroxy-2-(3-hydroxyphenyl)ethylglucosinolate. Recent investigations of GSL evolution, based on investigations of species with well established phylogeny, are reviewed. From the relatively few such investigations, it is already clear that GSL profiles are regularly subject to evolution. This result is compatible with natural selection for specific GSL side chains. The probable existence of structure-specific GSL catabolism in intact plants suggests that biochemical evolution of GSLs has more complex implications than the mere liberation of a different hydrolysis product upon tissue disruption.


Assuntos
Glucosinolatos/química , Arabidopsis/química , Arabidopsis/genética , Arabidopsis/metabolismo , Barbarea/química , Barbarea/genética , Barbarea/metabolismo , Brassicaceae/química , Brassicaceae/genética , Brassicaceae/metabolismo , Cromatografia Líquida de Alta Pressão , Evolução Molecular , Glucosinolatos/biossíntese , Glucosinolatos/isolamento & purificação , Isatis/química , Isatis/genética , Isatis/metabolismo , Espectrometria de Massas , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Filogenia , Especificidade da Espécie
18.
J Agric Food Chem ; 59(13): 6947-56, 2011 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-21615154

RESUMO

Nineteen apparent flavonoids were determined by HPLC-DAD in foliage of a chemotype (G-type) of Barbarea vulgaris , and four were isolated. Two were novel tetraglycosylated flavonols with identical glycosylation patterns, kaempferol 3-O-(2,6-di-O-ß-d-glucopyranosyl)-ß-d-glucopyranoside-7-O-α-l-rhamnopyranoside (1) and quercetin 3-O-(2,6-di-O-ß-d-glucopyranosyl)-ß-d-glucopyranoside-7-O-α-l-rhamnopyranoside (2). The identification of d/l configuration was tentatively based on susceptibility to α-l-rhamnosidase and ß-d-glucosidases. A characteristic feature of 1 and 2 was appreciable water solubility, an expected consequence of the extensive glycosylation. A less complex pair of flavonols comprised 3-O-ß-d-glucopyranoside-7-O-α-l-rhamnopyranosides of kaempferol and quercetin. Two natural chemotypes of B. vulgaris differed in levels of 1 and 2, with the P-type deficient in 1 and 2 and the insect-resistant G-type rich in 1 (ca. 3-4 µmol/g dry wt) and with moderate levels of 2 (ca. 0.3-0.8 µmol/g dry wt). However, there was only modest seasonal variation in flavonols 1 and 2, in contrast to a strong seasonal variation in insect resistance.


Assuntos
Barbarea/química , Flavonoides/química , Flavonoides/genética , Polimorfismo Genético , Animais , Barbarea/genética , Cromatografia Líquida de Alta Pressão , Flavonoides/análise , Glicosilação , Insetos , Folhas de Planta/química , Estações do Ano , Extração em Fase Sólida
19.
Phytochemistry ; 72(2-3): 188-98, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21130479

RESUMO

Combined genomics and metabolomics approaches were used to unravel molecular mechanisms behind interactions between winter cress (Barbarea vulgaris) and flea beetle (Phyllotreta nemorum). B. vulgaris comprises two morphologically, biochemically and cytologically deviating types, which differ in flea beetle resistance, saponin and glucosinolate profiles, as well as leaf pubescence. An F2 population generated from a cross between the two B. vulgaris types was used to construct a B. vulgaris genetic map based on 100 AFLP and 31 microsatellite markers. The map was divided into eight linkage groups. QTL (quantitative trait loci) analysis revealed a total of 15 QTL affecting eight traits, including nine QTL for four saponins, two QTL for two glucosinolates, two QTL for hairiness, and two QTL for flea beetle resistance. The two QTL for resistance towards flea beetles in B. vulgaris co-localized with QTL for the four saponins associated with resistance. Furthermore, global QTL analysis of B. vulgaris metabolites identified QTL for a number of flavonoid glycosides and additional saponins from both resistant and susceptible types. The transcriptome of the resistant B. vulgaris type was sequenced by pyrosequencing, and sequences containing microsatellites were identified. Microsatellite types in B. vulgaris were similar to Arabidopsis thaliana but different from Oryza sativa. Comparative analysis between B. vulgaris and A. thaliana revealed a remarkable degree of synteny between a large part of linkage groups 1 and 4 of B. vulgaris harboring the two QTL for flea beetle resistance and Arabidopsis chromosomes 3 and 1. Gene candidates that may underlie QTL for resistance and saponin biosynthesis are discussed.


Assuntos
Barbarea/química , Barbarea/genética , Besouros/metabolismo , Glucosinolatos/isolamento & purificação , Locos de Características Quantitativas , Saponinas/isolamento & purificação , Animais , Arabidopsis/genética , Barbarea/metabolismo , Besouros/genética , Glucosinolatos/genética , Glucosinolatos/metabolismo , Hirsutismo/genética , Larva/efeitos dos fármacos , Larva/genética , Larva/metabolismo , Estrutura Molecular , Folhas de Planta/genética , Folhas de Planta/metabolismo , Saponinas/genética , Saponinas/metabolismo
20.
Mol Ecol ; 19(16): 3456-65, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20670365

RESUMO

Co-evolution between herbivores and plants is believed to be one of the processes creating Earth's biodiversity. However, it is difficult to disentangle to what extent diversification is really driven by herbivores or by other historical-geographical processes like allopatric isolation. In the cruciferous plant Barbarea vulgaris, some Danish individuals are resistant to herbivory by flea beetles (Phyllotreta nemorum), whereas others are not. The flea beetles are, in parallel, either resistant or susceptible to the plants defenses. To understand the historical-evolutionary framework of these interactions, we tested how genetically divergent resistant and susceptible plants are, using microsatellite markers. To test whether they are reproductively fully compatible, resistant and susceptible plants were grown intermixed in an outdoor experiment, and the paternity of open-pollinated offspring was determined by analysis of molecular markers. Resistant and susceptible Danish plants were genetically strongly differentiated and produced significantly fewer hybrids than expected from random mating or nearest neighbour mating. Our results suggest that the two types belong to different evolutionary lineages that have been (partly) isolated at some time, during which genetic and reproductive divergence evolved. A parsimonious scenario could be that the two plant types were isolated in different refugia during the previous ice age, from which they migrated into and met in Denmark and possibly neighbouring regions. If so, resistance and susceptibility has for unknown reasons become associated with the different evolutionary lineages.


Assuntos
Barbarea/genética , Besouros , Evolução Molecular , Genética Populacional , Alelos , Animais , DNA de Plantas/genética , Dinamarca , Genótipo , Repetições de Microssatélites , Modelos Genéticos , Análise de Componente Principal , Reprodução/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA