Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 494
Filtrar
1.
Int J Mol Sci ; 25(13)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-39000375

RESUMO

Angiogenesis is critical for rheumatoid arthritis (RA) progression. The effects of tofacitinib, a JAK-STAT inhibitor used for RA treatment, on angiogenesis in RA are unclear. We, therefore, evaluated the levels of angiogenic factors in two systems of a human co-culture of fibroblast (HT1080) and monocytic (U937) cell lines treated with tofacitinib and in serum samples from RA patients before and after six months of tofacitinib treatment. Tofacitinib reduced CD147 levels, matrix metalloproteinase-9 (MMP-9) activity, and angiogenic potential but increased endostatin levels and secreted proteasome 20S activity. In vitro, tofacitinib did not change CD147 mRNA but increased miR-146a-5p expression and reduced STAT3 phosphorylation. We recently showed that CD147 regulates the ability of MMP-9 and secreted proteasome 20S to cleave collagen XVIIIA into endostatin. We show here that tofacitinib-enhanced endostatin levels are mediated by CD147, as CD147-siRNA or an anti-CD147 antibody blocked proteasome 20S activity. The correlation between CD147 and different disease severity scores supported this role. Lastly, tofacitinib reduced endostatin' s degradation by inhibiting cathepsin S activity and recombinant cathepsin S reversed this in both systems. Thus, tofacitinib inhibits angiogenesis by reducing pro-angiogenic factors and enhancing the anti-angiogenic factor endostatin in a dual effect mediated partly through CD147 and partly through cathepsin S.


Assuntos
Artrite Reumatoide , Basigina , Catepsinas , Endostatinas , Piperidinas , Pirimidinas , Humanos , Basigina/metabolismo , Basigina/genética , Piperidinas/farmacologia , Endostatinas/metabolismo , Endostatinas/farmacologia , Pirimidinas/farmacologia , Catepsinas/metabolismo , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Metaloproteinase 9 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/genética , Fator de Transcrição STAT3/metabolismo , Neovascularização Patológica/metabolismo , Neovascularização Patológica/tratamento farmacológico , Inibidores da Angiogênese/farmacologia , Feminino , Pessoa de Meia-Idade , Masculino , Pirróis/farmacologia , Linhagem Celular
2.
Int J Mol Sci ; 25(12)2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38928332

RESUMO

CD147 is upregulated in cancers, including aggressive T-ALL. Traditional treatments for T-ALL often entail severe side effects and the risk of relapse, highlighting the need for more efficacious therapies. ADCP contributes to the antitumor response by enhancing the ability of phagocytic cells to engulf cancer cells upon antibody binding. We aimed to engineer CD147KO THP-1 cells and evaluated their differentiation properties compared to the wild type. A humanized anti-CD147 antibody, HuM6-1B9, was also constructed for investing the phagocytic function of CD147KO THP-1 cells mediated by HuM6-1B9 in the phagocytosis of Jurkat T cells. The CD147KO THP-1 was generated by CRISPR/Cas9 and maintained polarization profiles. HuM6-1B9 was produced in CHO-K1 cells and effectively bound to CD147 with high binding affinity (KD: 2.05 ± 0.30 × 10-9 M). Additionally, HuM6-1B9 enhanced the phagocytosis of Jurkat T cells by CD147KO THP-1-derived LPS-activated macrophages (M-LPS), without self-ADCP. The formation of THP-1-derived mMDSC was limited in CD147KO THP-1 cells, highlighting the significant impact of CD147 deletion. Maintaining expression markers and phagocytic function in CD147KO THP-1 macrophages supports future engineering and the application of induced pluripotent stem cell-derived macrophages. The combination of HuM6-1B9 and CD147KO monocyte-derived macrophages holds promise as an alternative strategy for T-ALL.


Assuntos
Basigina , Diferenciação Celular , Fagocitose , Humanos , Células Jurkat , Basigina/metabolismo , Basigina/genética , Células THP-1 , Células Supressoras Mieloides/metabolismo , Células Supressoras Mieloides/imunologia , Anticorpos Monoclonais Humanizados/farmacologia , Animais , Células CHO , Cricetulus , Monócitos/metabolismo , Monócitos/imunologia , Macrófagos/metabolismo , Macrófagos/imunologia , Sistemas CRISPR-Cas
3.
Int J Mol Sci ; 25(11)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38892056

RESUMO

Desmoplasia is a common feature of aggressive cancers, driven by a complex interplay of protein production and degradation. Basigin is a type 1 integral membrane receptor secreted in exosomes or released by ectodomain shedding from the cell surface. Given that soluble basigin is increased in the circulation of patients with a poor cancer prognosis, we explored the putative role of the ADAM12-generated basigin ectodomain in cancer progression. We show that recombinant basigin ectodomain binds ß1 integrin and stimulates gelatin degradation and the migration of cancer cells in a matrix metalloproteinase (MMP)- and ß1-integrin-dependent manner. Subsequent in vitro and in vivo experiments demonstrated the altered expression of extracellular matrix proteins, including fibronectin and collagen type 5. Thus, we found increased deposits of collagen type 5 in the stroma of nude mice tumors of the human tumor cell line MCF7 expressing ADAM12-mimicking the desmoplastic response seen in human cancer. Our findings indicate a feedback loop between ADAM12 expression, basigin shedding, TGFß signaling, and extracellular matrix (ECM) remodeling, which could be a mechanism by which ADAM12-generated basigin ectodomain contributes to the regulation of desmoplasia, a key feature in human cancer progression.


Assuntos
Proteína ADAM12 , Basigina , Proteínas da Matriz Extracelular , Animais , Feminino , Humanos , Camundongos , Proteína ADAM12/metabolismo , Proteína ADAM12/genética , Basigina/metabolismo , Basigina/genética , Linhagem Celular Tumoral , Movimento Celular , Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Regulação Neoplásica da Expressão Gênica , Células MCF-7 , Camundongos Nus , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/genética , Ligação Proteica , Domínios Proteicos , Integrina beta1/metabolismo
4.
Medicine (Baltimore) ; 103(23): e38434, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38847725

RESUMO

BACKGROUND: Triple-negative breast cancer (TNBC) is a subtype of breast cancer with a poor prognosis, and the outcomes of common therapy were not favorable. METHODS: The samples of 84 patients with TNBC and 40 patients with breast fibroadenoma were collected in the pathology department specimen library of our hospital. The prognosis of patients was obtained through outpatient follow-up information, telephone and WeChat contacts, and medical records. The mRNA expression was analyzed using bioinformation and quantitative real-time polymerase chain reaction (qPCR). The protein expression was determined by hematoxylin-eosin staining and immunohistochemical staining. The results of survival analysis were visualized using Kaplan-Meier curves. RESULTS: The immunohistochemical staining showed that hypoxia-inducible factor-1alpha (HIF-1α) was mainly distributed in the nucleus and cytoplasm, while CD147 is mainly distributed in cell membrane and cytoplasm. The qPCR results exhibited that the expression level of HIF-1α and CD147 in TNBC tissue was significantly higher than that in breast fibroadenoma tissue. The expression of HIF-1α was related to the histological grade and lymph node metastasis in TNBC, and the expression of CD147 was related to Ki-67, histological grade and lymph node metastasis. There was a positive relationship between the expression of CD147 and HIF-1α. The upregulated expression of CD147 was closely related to the poor prognosis of OS in TNBC. CONCLUSION: CD147 could be a biomarker for the prognosis of TNBC and closely related to the expression of HIF-1α.


Assuntos
Basigina , Subunidade alfa do Fator 1 Induzível por Hipóxia , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/mortalidade , Neoplasias de Mama Triplo Negativas/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Feminino , Pessoa de Meia-Idade , Basigina/metabolismo , Basigina/genética , Adulto , Prognóstico , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Metástase Linfática , Fibroadenoma/patologia , Fibroadenoma/genética , Fibroadenoma/metabolismo , Estimativa de Kaplan-Meier , Imuno-Histoquímica , Idoso
5.
Int J Mol Sci ; 25(12)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38928225

RESUMO

Acute myeloid leukemia (AML) is an aggressive blood cancer. With low survival rates, new drug targets are needed to improve treatment regimens and patient outcomes. Pseudolaric acid B (PAB) is a plant-derived bioactive compound predicted to interact with cluster of differentiation 147 (CD147/BSG). CD147 is a transmembrane glycoprotein overexpressed in various malignancies with suggested roles in regulating cancer cell survival, proliferation, invasion, and apoptosis. However, the detailed function of PAB in AML remains unknown. In this study, AML cell lines and patient-derived cells were used to show that PAB selectively targeted AML (IC50: 1.59 ± 0.47 µM). Moreover, proliferation assays, flow cytometry, and immunoblotting confirmed that PAB targeting of CD147 resulted in AML cell apoptosis. Indeed, the genetic silencing of CD147 significantly suppressed AML cell growth and attenuated PAB activity. Overall, PAB imparts anti-AML activity through transmembrane glycoprotein CD147.


Assuntos
Apoptose , Basigina , Proliferação de Células , Diterpenos , Leucemia Mieloide Aguda , Humanos , Basigina/metabolismo , Basigina/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Proliferação de Células/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Diterpenos/farmacologia , Sobrevivência Celular/efeitos dos fármacos
6.
J Biol Chem ; 300(6): 107333, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38820650

RESUMO

The human Solute Carrier (SLC) family member, monocarboxylate transporter 1 (MCT1), transports lactic and pyruvic acid across biological membranes to regulate cellular pH and metabolism. Proper trafficking of MCT1 from the endoplasmic reticulum to the plasma membrane hinges on its interactions with the membrane-bound chaperone protein, CD147. Here, using AlphaFold2 modeling and copurification, we show how a conserved signature motif located in the flexible N-terminus of MCT1 is a crucial region of interaction between MCT1 and the C-terminus of CD147. Mutations to this motif-namely, the thymic cancer linked G19C and the highly conserved W20A-destabilize the MCT1-CD147 complex and lead to a loss of proper membrane localization and cellular substrate flux. Notably, the monomeric stability of MCT1 remains unaffected in mutants, thus supporting the role of CD147 in mediating the trafficking of the heterocomplex. Using the auxiliary chaperone, GP70, we demonstrated that W20A-MCT1 can be trafficked to the plasma membrane, while G19C-MCT1 remains internalized. Overall, our findings underscore the critical role of the MCT1 transmembrane one signature motif for engaging CD147 and identify altered chaperone binding mechanisms between the CD147 and GP70 glycoprotein chaperones.


Assuntos
Motivos de Aminoácidos , Basigina , Transportadores de Ácidos Monocarboxílicos , Transporte Proteico , Simportadores , Basigina/metabolismo , Basigina/genética , Basigina/química , Transportadores de Ácidos Monocarboxílicos/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/química , Humanos , Simportadores/metabolismo , Simportadores/química , Simportadores/genética , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Células HEK293 , Mutação de Sentido Incorreto
7.
Front Immunol ; 15: 1374088, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38725999

RESUMO

Background: In vitro studies often use two-dimensional (2D) monolayers, but 3D cell organization, such as in spheroids, better mimics the complexity of solid tumors. To metastasize, cancer cells undergo the process of epithelial-to-mesenchymal transition (EMT) to become more invasive and pro-angiogenic, with expression of both epithelial and mesenchymal markers. Aims: We asked whether EMMPRIN/CD147 contributes to the formation of the 3D spheroid structure, and whether spheroids, which are often used to study proliferation and drug resistance, could better model the EMT process and the metastatic properties of cells, and improve our understanding of the role of EMMPRIN in them. Methods: We used the parental mouse CT26 colon carcinoma (CT26-WT) cells, and infected them with a lentivirus vector to knock down EMMPRIN expression (CT26-KD cells), or with an empty lentivirus vector (CT26-NC) that served as a negative control. In some cases, we repeated the experiments with the 4T1 or LLC cell lines. We compared the magnitude of change between CT26-KD and CT26-WT/NC cells in different metastatic properties in cells seeded as monolayers or as spheroids formed by the scaffold-free liquid overlay method. Results: We show that reduced EMMPRIN expression changed the morphology of cells and their spatial organization in both 2D and 3D models. The 3D models more clearly demonstrated how reduced EMMPRIN expression inhibited proliferation and the angiogenic potential, while it enhanced drug resistance, invasiveness, and EMT status, and moreover it enhanced cell dormancy and prevented CT26-KD cells from forming metastatic-like lesions when seeded on basement membrane extract (BME). Most interestingly, this approach enabled us to identify that EMMPRIN and miR-146a-5p form a negative feedback loop, thus identifying a key mechanism for EMMPRIN activities. These results underline EMMPRIN role as a gatekeeper that prevents dormancy, and suggest that EMMPRIN links EMT characteristics to the process of spheroid formation. Conclusions: Thus, 3D models can help identify mechanisms by which EMMPRIN facilitates tumor and metastasis progression, which might render EMMPRIN as a promising target for anti-metastatic tumor therapy.


Assuntos
Basigina , Neoplasias do Colo , Transição Epitelial-Mesenquimal , Esferoides Celulares , Basigina/metabolismo , Basigina/genética , Esferoides Celulares/metabolismo , Animais , Neoplasias do Colo/patologia , Neoplasias do Colo/metabolismo , Camundongos , Linhagem Celular Tumoral , Metástase Neoplásica
8.
Cell Rep Med ; 5(6): 101576, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38776909

RESUMO

Chemotherapy remains the first-line treatment for advanced esophageal cancer. However, durable benefits are achieved by only a limited subset of individuals due to the elusive chemoresistance. Here, we utilize patient-derived xenografts (PDXs) from esophageal squamous-cell carcinoma to investigate chemoresistance mechanisms in preclinical settings. We observe that activated cancer-associated fibroblasts (CAFs) are enriched in the tumor microenvironment of PDXs resistant to chemotherapy. Mechanistically, we reveal that cancer-cell-derived S100A8 triggers the intracellular RhoA-ROCK-MLC2-MRTF-A pathway by binding to the CD147 receptor of CAFs, inducing CAF polarization and leading to chemoresistance. Therapeutically, we demonstrate that blocking the S100A8-CD147 pathway can improve chemotherapy efficiency. Prognostically, we found the S100A8 levels in peripheral blood can serve as an indicator of chemotherapy responsiveness. Collectively, our study offers a comprehensive understanding of the molecular mechanisms underlying chemoresistance in esophageal cancer and highlights the potential value of S100A8 in the clinical management of esophageal cancer.


Assuntos
Calgranulina A , Fibroblastos Associados a Câncer , Resistencia a Medicamentos Antineoplásicos , Neoplasias Esofágicas , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Fibroblastos Associados a Câncer/efeitos dos fármacos , Humanos , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/genética , Resistencia a Medicamentos Antineoplásicos/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Calgranulina A/metabolismo , Calgranulina A/genética , Animais , Camundongos , Microambiente Tumoral/efeitos dos fármacos , Linhagem Celular Tumoral , Reprogramação Celular/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Basigina/metabolismo , Basigina/genética , Proteína rhoA de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/genética , Carcinoma de Células Escamosas do Esôfago/patologia , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/metabolismo , Carcinoma de Células Escamosas do Esôfago/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Feminino
9.
J Cell Sci ; 137(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38661040

RESUMO

Expression levels of the lactate-H+ cotransporter MCT4 (also known as SLC16A3) and its chaperone CD147 (also known as basigin) are upregulated in breast cancers, correlating with decreased patient survival. Here, we test the hypothesis that MCT4 and CD147 favor breast cancer invasion through interdependent effects on extracellular matrix (ECM) degradation. MCT4 and CD147 expression and membrane localization were found to be strongly reciprocally interdependent in MDA-MB-231 breast cancer cells. Overexpression of MCT4 and/or CD147 increased, and their knockdown decreased, migration, invasion and the degradation of fluorescently labeled gelatin. Overexpression of both proteins led to increases in gelatin degradation and appearance of the matrix metalloproteinase (MMP)-generated collagen-I cleavage product reC1M, and these increases were greater than those observed upon overexpression of each protein alone, suggesting a concerted role in ECM degradation. MCT4 and CD147 colocalized with invadopodia markers at the plasma membrane. They also colocalized with MMP14 and the lysosomal marker LAMP1, as well as partially with the autophagosome marker LC3, in F-actin-decorated intracellular vesicles. We conclude that MCT4 and CD147 reciprocally regulate each other and interdependently support migration and invasiveness of MDA-MB-231 breast cancer cells. Mechanistically, this involves MCT4-CD147-dependent stimulation of ECM degradation and specifically of MMP-mediated collagen-I degradation. We suggest that the MCT4-CD147 complex is co-delivered to invadopodia with MMP14.


Assuntos
Basigina , Neoplasias da Mama , Matriz Extracelular , Proteína 1 de Membrana Associada ao Lisossomo , Metaloproteinase 14 da Matriz , Transportadores de Ácidos Monocarboxílicos , Invasividade Neoplásica , Podossomos , Feminino , Humanos , Basigina/metabolismo , Basigina/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Movimento Celular , Matriz Extracelular/metabolismo , Gelatina/metabolismo , Proteínas de Membrana Lisossomal/metabolismo , Proteínas de Membrana Lisossomal/genética , Metaloproteinase 14 da Matriz/metabolismo , Metaloproteinase 14 da Matriz/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , Proteínas Musculares/metabolismo , Proteínas Musculares/genética , Invasividade Neoplásica/genética , Podossomos/metabolismo
10.
Front Immunol ; 15: 1319939, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38318187

RESUMO

During progression of rheumatoid arthritis (RA), angiogenesis provides oxygen and nutrients for the cells' increased metabolic demands and number. To turn on angiogenesis, pro-angiogenic factors must outweigh anti-angiogenic factors. We have previously shown that CD147/extracellular matrix metalloproteinase inducer (EMMPRIN) can induce the expression of the pro-angiogenic factors vascular endothelial growth factor (VEGF) and matrix metallopeptidase 9 (MMP-9) in a co-culture of the human HT1080 fibrosarcoma and U937 monocytic-like cell lines. However, whether CD147 influences anti-angiogenic factors was not known. We now show that relative to single cultures, the co-culture of these cells not only enhanced pro-angiogenic factors but also decreased the anti-angiogenic factors endostatin and thrombospondin-1 (Tsp-1), generally increasing the angiogenic potential as measured by a wound assay. Using anti-CD147 antibody, CD147 small interfering RNA (siRNA), and recombinant CD147, we demonstrate that CD147 hormetically regulates the generation of endostatin but has no effect on Tsp-1. Since endostatin is cleaved from collagen XVIII (Col18A), we applied different protease inhibitors and established that MMP-9 and proteasome 20S, but not cathepsins, are responsible for endostatin generation. MMP-9 and proteasome 20S collaborate to synergistically enhance endostatin generation, and in a non-cellular system, CD147 enhanced MMP-9 activity and hormetically regulated proteasome 20S activity. Serum samples obtained from RA patients and healthy controls mostly corroborated these findings, indicating clinical relevance. Cumulatively, these findings suggest that secreted CD147 mediates a possibly allosteric effect on MMP-9 and proteasome 20S activities and can serve as a switch that turns angiogenesis on or off, depending on its ambient concentrations in the microenvironment.


Assuntos
Artrite Reumatoide , Basigina , Humanos , Artrite Reumatoide/metabolismo , Basigina/genética , Endostatinas , Metaloproteinase 9 da Matriz/metabolismo , Inibidores de Metaloproteinases de Matriz , Complexo de Endopeptidases do Proteassoma , Trombospondina 1 , Fator A de Crescimento do Endotélio Vascular/metabolismo
11.
PLoS Pathog ; 20(2): e1011989, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38315723

RESUMO

Plasmodium falciparum invasion of the red blood cell is reliant upon the essential interaction of PfRh5 with the host receptor protein basigin. Basigin exists as part of one or more multiprotein complexes, most notably through interaction with the monocarboxylate transporter MCT1. However, the potential requirement for basigin association with MCT1 and the wider role of basigin host membrane context and lateral protein associations during merozoite invasion has not been established. Using genetically manipulated in vitro derived reticulocytes, we demonstrate the ability to uncouple basigin ectodomain presentation from its transmembrane domain-mediated interactions, including with MCT1. Merozoite invasion of reticulocytes is unaffected by disruption of basigin-MCT1 interaction and by removal or replacement of the basigin transmembrane helix. Therefore, presentation of the basigin ectodomain at the red blood cell surface, independent of its native association with MCT1 or other interactions mediated by the transmembrane domain, is sufficient to facilitate merozoite invasion.


Assuntos
Plasmodium falciparum , Simportadores , Plasmodium falciparum/metabolismo , Basigina/genética , Basigina/metabolismo , Eritrócitos/metabolismo , Domínios Proteicos , Simportadores/metabolismo
12.
Expert Opin Ther Targets ; 28(1-2): 83-95, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38235574

RESUMO

BACKGROUND: Ovarian cancer (OC) is the most lethal gynecological tumor, but it currently lacks effective therapeutic targets. CD147, which is overexpressed in OC, plays a crucial role in promoting malignant progression and is associated with poor prognosis in patients. Therefore, CD147 has been identified as a potential therapeutic target. However, there is a limited amount of research on the development of CD147 inhibitors. METHODS: Surface plasmon resonance (SPR) assay and virtual molecular docking analysis were performed to identify potential natural compounds targeting CD147. The anti­tumor effects of myricetin were evaluated using various assays, including CCK8, Alkaline comet, immunofluorescence and xenograft mouse models. The underlying mechanism was investigated through western blot analysis and lentivirus short hairpin RNA (LV-shRNA) transfection. RESULTS: Myricetin, a flavonoid commonly found in plants, was discovered to be a potent inhibitor of CD147. Our findings demonstrated that myricetin exhibited a strong affinity for CD147 and down-regulated the protein level of CD147 by facilitating its proteasome-dependent degradation. Additionally, we observed synergistic antitumor effects of myricetin and cisplatin both in vivo and in vitro. Mechanistically, myricetin suppressed the expression of FOXM1 and its downstream DNA damage response (DDR) genes E×O1and BRIP1, thereby enhancing the DDR induced by cisplatin. CONCLUSION: Our data demonstrate that myricetin, a natural inhibitor of CD147, may have clinical utility in the treatment of OC due to its ability to increase genomic toxicity when combined with cisplatin.


Assuntos
Antineoplásicos , Neoplasias Ovarianas , Humanos , Feminino , Animais , Camundongos , Cisplatino/farmacologia , Antineoplásicos/farmacologia , Simulação de Acoplamento Molecular , Apoptose , Linhagem Celular Tumoral , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Basigina/genética , Proliferação de Células
13.
Hypertension ; 81(1): 114-125, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37955149

RESUMO

BACKGROUND: Polycystic kidney disease is the most common hereditary kidney disorder with early and frequent hypertension symptoms. The mechanisms of cyst progression in polycystic kidney disease remain incompletely understood. METHODS: Bsg (basigin) heterozygous and homozygous knockout mice were generated using cas9 system, and Bsg overexpression was achieved by adeno-associated virus serotype 9 injection. Renal morphology was investigated through histological and imaging analysis. Molecular analysis was performed through transcriptomic profiling and biochemical approaches. RESULTS: Bsg-deficient mice exhibited significantly elevated arterial blood pressure. Further investigation demonstrated that Bsg deficiency triggers spontaneous cystic formation in mouse kidneys, which shares similar cyst pathological features and common transcriptional regulatory pathways with human polycystic kidney disease. Moreover, Bsg disruption promoted polycystin-1 ubiquitination and degradation, leading to activation of polycystic kidney disease associated cAMP and AMPK signaling pathways in Bsg knockout mouse kidneys. Finally, adeno-associated virus serotype 9 mediated Bsg reexpression reversed cystic progression in Bsg knockout mice in vivo, and Bsg overexpression inhibited the expansion of Madin-Darby canine kidney cysts in vitro. CONCLUSIONS: Our findings show that Bsg deficiency leads to an early-onset spontaneous polycystic kidney phenotype, suggesting that dysregulated Bsg signaling may be a contributing factor in cystogenesis.


Assuntos
Cistos , Doenças Renais Policísticas , Animais , Cães , Humanos , Camundongos , Basigina/genética , Basigina/metabolismo , Cistos/metabolismo , Cistos/patologia , Rim/metabolismo , Camundongos Knockout , Doenças Renais Policísticas/genética , Doenças Renais Policísticas/metabolismo
14.
BMC Cancer ; 23(1): 1214, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38066486

RESUMO

BACKGROUND: CD147, a transmembrane glycoprotein, has been implicated in various cancer-related processes but its role in breast cancer remains poorly understood. Herein, we investigated the expression of CD147 in different breast cancer cell lines and explored its functional roles, including migration, invasion, drug resistance and modulation of key proteins associated with cancer progression. METHODS: The expression of CD147 was assessed in MCF-10 A, BT549, MDA-MB-231 and MCF-7 breast cancer cell lines using qRT-PCR and Western blotting, following which lyposome transfections were performed, leading overexpression of CD147 in BT549 cells and knockdown of CD147 in MCF-7 cells. Scratch assays and Transwell invasion and were performed to evaluate the cells' migration and invasion abilities. Sensitivity to 5-FU was determined via CCK-8 assays, and the expression of Snail1, E-cadherin, Vimentin, MMP-9 and the MAPK/ERK pathway were analyzed by qRT-PCR and Western blotting. RESULTS: Compared with normal beast epithelial cells, CD147 was highly expressed in all breast cancer cell lines, with the highest overexpression observed in MCF-7 cells and the lowest overexpression observed in BT549 cells. Overexpression of CD147 in BT549 cells increased, migration, invasion, viability and resistance to 5-FU of BT549 cells, while CD147 knockdown in MCF-7 cells reduced these properties of MCF-7 cells. Furthermore, CD147 influenced the expression of Snail1, Vimentin, E-cadherin, and MMP-9, suggesting its involvement in epithelial-mesenchymal transition (EMT) regulation. The MAPK/ERK pathway was activated by CD147 in BT549 cells, as indicated by increased p-MEK/MEK ratio and p-ERK/ERK ratio. In contrast, CD147 silencing in MCF-7 cells resulted in reduced p-MEK/MEK ratio and p-ERK/ERK ratio. CONCLUSION: In summary, our findings suggest CD147 as a potential therapeutic target in breast cancer treatment, particularly in cases where drug resistance and metastasis are concerns, worthy of further explorations.


Assuntos
Basigina , Neoplasias da Mama , Sistema de Sinalização das MAP Quinases , Feminino , Humanos , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Caderinas/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Transição Epitelial-Mesenquimal/genética , Fluoruracila , Metaloproteinase 9 da Matriz/metabolismo , Células MCF-7 , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Transdução de Sinais , Vimentina/genética , Vimentina/metabolismo , Basigina/genética
15.
Int J Mol Sci ; 24(24)2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38139173

RESUMO

CD147/Basigin, a transmembrane glycoprotein belonging to the immunoglobulin superfamily, is a multifunctional molecule with various binding partners. CD147 binds to monocarboxylate transporters (MCTs) and supports their expression on plasma membranes. MTC-1 and MCT-4 export the lactic acid that is converted from pyruvate in glycolysis to maintain the intracellular pH level and a stable metabolic state. Under physiological conditions, cellular energy production is induced by mitochondrial oxidative phosphorylation. Glycolysis usually occurs under anaerobic conditions, whereas cancer cells depend on glycolysis under aerobic conditions. T cells also require glycolysis for differentiation, proliferation, and activation. Human malignant melanoma cells expressed higher levels of MCT-1 and MCT-4, co-localized with CD147 on the plasma membrane, and showed an increased glycolysis rate compared to normal human melanocytes. CD147 silencing by siRNA abrogated MCT-1 and MCT-4 membrane expression and disrupted glycolysis, inhibiting cancer cell activity. Furthermore, CD147 is involved in psoriasis. MCT-1 was absent on CD4+ T cells in CD147-deficient mice. The naïve CD4+ T cells from CD147-deficient mice exhibited a low capacity to differentiate into Th17 cells. Imiquimod-induced skin inflammation was significantly milder in the CD147-deficient mice than in the wild-type mice. Overall, CD147/Basigin is involved in the development of malignant tumors and T-cell-mediated immunological disorders via glycolysis regulation.


Assuntos
Basigina , Neoplasias , Animais , Humanos , Camundongos , Basigina/genética , Basigina/metabolismo , Glicólise , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , RNA Interferente Pequeno/metabolismo , Linfócitos T , Doenças do Sistema Imunitário/genética , Doenças do Sistema Imunitário/metabolismo
16.
Exp Biol Med (Maywood) ; 248(18): 1550-1555, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37937473

RESUMO

Preeclampsia increases the risk of pregnancy-related complications, nevertheless a successful spiral vessel remodeling, and trophoblast invasion reduces disorders of pregnancy. Matrix metalloproteinase-2 (MMP-2) clears the path for trophoblast invasion, and activation of MMP-2 largely depends on extracellular matrix metalloproteinases inducer (EMMPRIN) protein. This study aimed to investigate EMMPRIN gene polymorphism and MMP-2 activity in preeclampsia patients. Archival whole blood and serum samples of 74 preeclampsia and 66 normotensive pregnant women age-matched were used in this case-control study. Genomic DNA was extracted from the whole blood samples and EMMPRIN gene amplified with specific primers following fragments sequence mutation analysis. Serum MMP-2 activity was determined using enzyme-linked immunosorbent assay (ELISA) and socio-demographic data of participants retrieved from the database. Age of preeclampsia patients (32.78 ± 6.39) years and body mass index (BMI) (33.09 ± 7.27) kg/m2 compared with the normotensive counterparts (32.33 ± 5.56) years and (32.33 ± 5.56) kg/m2,respectively, were not statistically significant (P > 0.05). Serum matrix metalloprotease-2 (MMP-2) activity was significantly reduced in preeclampsia group (16.34 ± 7.07) compared with the normotensives (25.63 ± 4.56) (P < 0.001), and rs424243T/G variant (55.6%) was overrepresented among the cases compared with the normotensives (16.7%). The single-nucleotide polymorphism T/G was found to be associated with preeclampsia (odds ratio [OR] = 7.63; 95% confidence interval [CI] = 3.95-14.75; P < 0.0001). Decreased activity of MMP-2 and rs424243T/G SNP of EMMPRIN gene was reported in preeclampsia. These preliminary data warrant a further investigation into the relationship between EMMPRIN gene polymorphism and MMP-2 activity in preeclampsia.


Assuntos
Basigina , Pré-Eclâmpsia , Adulto , Feminino , Humanos , Gravidez , Basigina/genética , Basigina/metabolismo , Estudos de Casos e Controles , Matriz Extracelular/metabolismo , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Polimorfismo Genético , Pré-Eclâmpsia/genética , Pré-Eclâmpsia/metabolismo
17.
Respir Res ; 24(1): 253, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37880644

RESUMO

OBJECTIVE: CD147 is an important glycoprotein that participates in the progression of diverse cancers. This study aims to explore the specific function of CD147 in lung adenocarcinoma (LUAD) and to reveal related downstream molecular mechanisms. METHODS: Followed by silencing of CD147, the viability, migration, invasion, and apoptosis of LUAD cells were measured by CCK8, wound healing, transwell assay, and flow cytometer, respectively. The expression of CD147 and two markers of lipid metabolism (FASN and ACOX1) were detected by qRT-PCR. A xenograft tumor model was constructed to investigate the function of CD147 in vivo. Then transcriptome sequencing was performed to explore the potential mechanisms. After measuring the expression of Rap1 and p-p38 MAPK/p38 MAPK by western blot, the changes of CD147 and lipid metabolism markers (FASN, ACOX1) was detected by Immunohistochemistry. Moreover, a Rap1 activator and a Rap1 inhibitor were applied for feedback functional experiments. RESULTS: CD147 was up-regulated in LUAD cells, and its silencing inhibited cell proliferation, migration, invasion, lipid metabolism dysregulation and promoted apoptosis, while overexpression of CD147 showed the opposite results. Silencing of CD147 also inhibited the growth of tumor xenografts in mice. Transcriptome sequencing revealed 834 up-regulated differentially expressed genes (DEGs) and 602 down-regulated DEGs. After functional enrichment, the Rap1 signaling pathway was selected as a potential target, which was then verified to be blocked by CD147 silencing. In addition, the treatment of Rap1 activator weakened the inhibiting effects of si-CD147 on the proliferation, migration, invasion, and lipid metabolism in LUAD cells, while the intervention of RAP1 inhibitor showed the opposite results. CONCLUSIONS: Silencing of CD147 inhibited the proliferation, migration, invasion, lipid metabolism dysregulation and promoted apoptosis of LUAD cells through blocking the Rap1 signaling pathway.


Assuntos
Adenocarcinoma de Pulmão , Basigina , Neoplasias Pulmonares , Animais , Humanos , Camundongos , Adenocarcinoma de Pulmão/patologia , Apoptose/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Metabolismo dos Lipídeos/genética , Neoplasias Pulmonares/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Transdução de Sinais , Inativação Gênica , Basigina/genética
18.
Acta Biochim Biophys Sin (Shanghai) ; 55(10): 1640-1649, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37700592

RESUMO

The mechanism of extracellular matrix metalloproteinase inducer (EMMPRIN) in the regulation of liver fibrosis has not been clarified. This study aims to investigate the role of EMMPRIN S-nitrosylation (SNO) in the regulation of hepatic stellate cell (HSC) migration and matrix metalloproteinase (MMP) activities in liver fibrosis. The results from the tissue microarrays and rat/mouse liver tissues suggest that EMMPRIN mRNA and protein levels in the fibrotic livers are lower than those in the corresponding normal control livers, but higher SNO level of EMMPRIN in fibrotic liver area was shown by immunohistochemistry, immunofluorescence staining, and biotin-switch assay conversely in vivo. Primary EMMPRIN comes from hepatocytes and liver sinus epithelial cells (LSECs) rather than quiescent HSCs. To mimic the uptake of extrinsic EMMPRIN, supernatants from mouse primary hepatocytes/293 cells transfected with EMMPRIN wild-type plasmids (WT) and EMMPRIN SNO site (cysteine 87) mutation plasmids (MUT) were collected and added to JS-1/LX2 cell medium. The MUT EMMPRIN diminishes SNO successfully, enhances the activities of MMP2 and MMP9, and subsequently increases HSC migration. In conclusion, SNO of EMMPRIN influences HSC migration and MMP activities in liver fibrosis. This finding may shed light on the possible regulatory mechanism of MMPs in ECM accumulation in liver fibrosis.


Assuntos
Basigina , Cirrose Hepática , Animais , Camundongos , Ratos , Basigina/genética , Basigina/metabolismo , Células Epiteliais/metabolismo , Hepatócitos/metabolismo , Cirrose Hepática/metabolismo , Células Estreladas do Fígado/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo
19.
Acta Otorhinolaryngol Ital ; 43(6): 400-408, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37519135

RESUMO

Objective: Metalloproteinases (MMPs) are implicated in tissue remodeling in chronic rhinosinusitis with nasal polyps (CRSwNP). This study aimed to evaluate the expression profiles of MMP-9 and the extracellular matrix metalloproteinase inducer (EMMPRIN) in nasal polyps compared to healthy mucosa. Methods: Tissue samples from 37 CRSwNP patients undergoing functional endoscopic sinus surgery and mucosal specimens from 12 healthy controls were obtained intra-operatively. MMP-9 and EMMPRIN mRNA levels were assessed by reverse transcription-polymerase chain reaction and their protein expression by Western blot analysis. Results: MMP-9 mRNA expression levels were significantly elevated in CRSwNP compared to controls (p < 0.05). MMP-9 protein levels presented an increasing trend but with no statistical significance (p > 0.05). No statistically significant difference in EMMPRIN mRNA and protein levels was identified. Conclusions: Upregulation of MMP-9 in nasal polyps is evident and highlights its role in the pathogenesis of CRSwNP. The lack of concordance between MMP-9 mRNA and protein levels may be attributed to post-translational gene expression regulation. Although EMMPRIN expression was not significantly different between the two groups, its role remains to be elucidated. MMP-9 may be a valuable biomarker and treatment target in CRSwNP.


Assuntos
Pólipos Nasais , Rinossinusite , Humanos , Basigina/genética , Basigina/metabolismo , Doença Crônica , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Mucosa Nasal/metabolismo , Pólipos Nasais/complicações , Pólipos Nasais/genética , Rinossinusite/genética , RNA Mensageiro/metabolismo
20.
Anticancer Res ; 43(8): 3735-3745, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37500155

RESUMO

BACKGROUND/AIM: We previously found that binding between CD73 and extracellular matrix metalloproteinase (MMP) inducer (emmprin) and suppression of CD73 in both tumour cells and fibroblasts suppressed MMP-2 production when co-cultured. However, the importance of CD73 expression in either fibroblasts or cancer cells for cancer invasion remains unknown. In this study, we used siRNA to separately down-regulate CD73 in individual cells, and then performed a 3D co-culture to investigate tumour invasion. MATERIALS AND METHODS: siRNA was used for suppression of CD73 in either fibroblasts (ST353i, HDF) or tumour cells (FU-EPS-1, A431, CRL-2095). Immunoblotting was performed for detecting MMP-2 production after CD73 suppression. 3D-co-cultures were performed for examining tumour invasion. RESULTS: CD73 suppression revealed that CD73 expression on fibroblasts and emmprin on tumour cells were important in regulating MMP-2 production, suggesting that emmprin on tumour cells does not bind CD73 at the cis-manner, but rather at the trans-manner to CD73 present on fibroblasts. CD73 suppression also reduced MMP-2 production at the transcription level and reduced tumour invasion. CONCLUSION: CD73 on fibroblasts acts as a receptor for emmprin, which forms a complex that increases MMP-2 production, possibly resulting in increased invasiveness.


Assuntos
Basigina , Neoplasias , Humanos , Basigina/genética , Basigina/metabolismo , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Fibroblastos/metabolismo , RNA Interferente Pequeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA