Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Eur J Drug Metab Pharmacokinet ; 47(1): 57-67, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34635990

RESUMO

BACKGROUND AND OBJECTIVES: Huanglian-Houpo decoction (HH), which is recorded in the famous traditional Chinese medicine monograph "Puji Fang," contains two individual herbs, Huanglian (Rhizoma coptidis) and Houpo (Magnoliae officinalis cortex). It was regularly used to treat seasonal epidemic colds and influenzas in ancient China. Our laboratory discovered that HH has a significant anti-H1N1 influenza virus effect. However, no pharmacokinetic and pharmacodynamic data concerning the anti-H1N1 influenza virus activity of HH are available to date. In the current study, the concentration-time profiles of two major components of HH, berberine and magnolol, in rat plasma were investigated. METHODS: An integrate pharmacokinetic approach was developed for evaluating the holistic pharmacokinetic characteristics of berberine and magnolol from HH. Additionally, the inhibition rate and levels of IFN-ß in MDCK cells infected by influenza virus were analyzed. Data were calculated using 3p97 with pharmacokinetic analysis. RESULTS: The estimated pharmacokinetic parameters were maximum plasma concentration (Cmax) 0.9086 µg/ml, area under the concentration-time curve (AUC) 347.74 µg·min/ml, and time to reach Cmax (Tmax) 64.69 min for berberine and Cmax = 0.9843 µg/ml, AUC= 450.64 µg·min/ml, Tmax = 56.86 min for magnolol, respectively. Furthermore, integrated pharmacokinetic and pharmacodynamic analysis showed that the highest plasma concentration, inhibition rate and interferon-ß (IFN-ß) secretion of HH first increased and then weakened over time, reaching their peaks at 60 min. The plasma concentration of HH is directly related to the anti-influenza virus effect. CONCLUSION: The results indicated that berberine and magnolol are the main active ingredients of HH related to its anti-influenza virus effect, which is related to the improvement of IFN-ß secretion.


Assuntos
Antivirais/farmacologia , Berberina/farmacologia , Compostos de Bifenilo/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Lignanas/farmacologia , Animais , Antivirais/sangue , Antivirais/farmacocinética , Área Sob a Curva , Berberina/sangue , Berberina/farmacocinética , Compostos de Bifenilo/sangue , Compostos de Bifenilo/farmacocinética , China , Medicamentos de Ervas Chinesas/farmacocinética , Humanos , Influenza Humana/tratamento farmacológico , Lignanas/sangue , Lignanas/farmacocinética , Masculino , Modelos Animais , Fitoterapia , Ratos , Ratos Endogâmicos
2.
Biomed Chromatogr ; 35(9): e5144, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33880775

RESUMO

A sensitive, reproducible, and specific liquid chromatography tandem mass spectrometry method was developed and validated to simultaneously determine the concentration of berberine (BBR) and irbesartan in Sprague-Dawley rat plasma, and applied to study the pharmacokinetic drug-drug interaction (DDI) between BBR and irbesartan in rats. In this method, diphenhydramine was used as the internal standard, and the liquid-liquid extraction method using ethyl acetate as the extraction agent was used for sample preparation. After extraction, the prepared samples were run on an Agilent Welchrom C18 column with the mobile phase consisting of methanol-acetonitrile-water solution with 0.5% formic acid (45:50:5, v/v/v) at a flow rate of 0.8 mL·min-1 . The analytes BBR, irbesartan, and diphenhydramine (IS) were detected using multiple reactions monitoring mode, with the ion transitions being m/z 336.1 → m/z 320.0, m/z 429.1 → m/z 206.9, and m/z 256.2 → m/z 167.0, respectively. In the rats' plasma, BBR had good linearity in the range of 0.5-100 ng·mL-1 with the lower limit of quantitation of 0.5 ng·mL-1 , and the accuracy, intra-day, and inter-day precision were less than 12.33%. Irbesartan had good linearity in the range of 20-1200 ng·mL-1 with the lower limit of quantification of 20 ng·mL-1 , and the accuracy, intra-day, and inter-day precision were less than 13.55%. The validated method was verified to meet the determination requirements of biological samples. It was the first time to study the pharmacokinetics of DDI between BBR and irbesartan successfully, which would be necessary and beneficial to explore the clinical safety and efficacy of the combination of BBR and irbesartan in the treatment of diabetic nephropathy.


Assuntos
Berberina , Cromatografia Líquida/métodos , Irbesartana , Espectrometria de Massas em Tandem/métodos , Animais , Berberina/sangue , Berberina/química , Berberina/farmacocinética , Interações Medicamentosas , Irbesartana/sangue , Irbesartana/química , Irbesartana/farmacocinética , Modelos Lineares , Masculino , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
3.
Anal Bioanal Chem ; 413(4): 1099-1106, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33388931

RESUMO

We develop a capillary-paper spray (CPS) ion source which allows for sample separation in the capillary and enables rapid and sensitive paper spray (PS) mass spectrometry (MS) analysis of biofluids. The CPS employs a glass capillary to load liquid analytes, vertically standing at the rear of the PS. To further reduce the matrix effect, a nitrocellulose filter membrane is placed between the glass tube and chromatography paper to absorb proteins and other macromolecules, which is beneficial for the detection of the small molecules. Compared with the normal PS method, the CPS method markedly improves spray stability and prolongs analysis duration, and also generates significantly better signal intensities during the analysis of drugs, thus indicating its potential for clinical use. As a proof of concept, quantitative analysis of drugs (metformin hydrochloride and berberine hydrochloride) in serum is performed.


Assuntos
Berberina/análise , Hipoglicemiantes/análise , Espectrometria de Massas/instrumentação , Metformina/análise , Animais , Berberina/sangue , Bovinos , Desenho de Equipamento , Hipoglicemiantes/sangue , Metformina/sangue , Papel , Soro/química
4.
Nutrients ; 14(1)2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-35010998

RESUMO

Berberine is a natural alkaloid used to improve glycemia but displays poor bioavailability and increased rates of gastrointestinal distress at higher doses. Recently, dihydroberberine has been developed to combat these challenges. This study was designed to determine the rate and extent to which berberine appeared in human plasma after oral ingestion of a 500 mg dose of berberine (B500) or 100 mg and 200 mg doses of dihydroberberine (D100 and D200). In a randomized, double-blind, crossover fashion, five males (26 ± 2.6 years; 184.2 ± 11.6 cm; 91.8 ± 10.1 kg; 17.1 ± 3.5% fat) completed a four-dose supplementation protocol of placebo (PLA), B500, D100, and D200. The day prior to their scheduled visit, participants ingested three separate doses with breakfast, lunch, and dinner. Participants fasted overnight (8-10 h) and consumed their fourth dose with a standardized test meal (30 g glucose solution, 3 slices white bread) after arrival. Venous blood samples were collected 0, 20, 40, 60, 90, and 120 minutes (min) after ingestion and analyzed for BBR, glucose, and insulin. Peak concentration (CMax) and area under the curve (AUC) were calculated for all variables. Baseline berberine levels were different between groups (p = 0.006), with pairwise comparisons indicating that baseline levels of PLA and B500 were different than D100. Berberine CMax tended to be different (p = 0.06) between all conditions. Specifically, the observed CMax for D100 (3.76 ± 1.4 ng/mL) was different than PLA (0.22 ± 0.18 ng/mL, p = 0.005) and B500 (0.4 ± 0.17 ng/mL, p = 0.005). CMax for D200 (12.0 ± 10.1 ng/mL) tended (p = 0.06) to be different than B500. No difference in CMax was found between D100 and D200 (p = 0.11). Significant differences in berberine AUC were found between D100 (284.4 ± 115.9 ng/mL × 120 min) and PLA (20.2 ± 16.2 ng/mL × 120 min, p = 0.007) and between D100 and B500 (42.3 ± 17.6 ng/mL × 120 min, p = 0.04). Significant differences in D100 BBR AUC (284.4 ± 115.9 ng/mL×120 min) were found between PLA (20.2 ± 16.2 ng/mL × 120 min, p = 0.042) and B500 (42.3 ± 17.6 ng/mL × 120 min, p = 0.045). Berberine AUC values between D100 and D200 tended (p = 0.073) to be different. No significant differences in the levels of glucose (p = 0.97) and insulin (p = 0.24) were observed across the study protocol. These results provide preliminary evidence that four doses of a 100 mg dose of dihydroberberine and 200 mg dose of dihydroberberine produce significantly greater concentrations of plasma berberine across of two-hour measurement window when compared to a 500 mg dose of berberine or a placebo. The lack of observed changes in glucose and insulin were likely due to the short duration of supplementation and insulin responsive nature of study participants. Follow-up efficacy studies on glucose and insulin changes should be completed to assess the impact of berberine and dihydroberberine supplementation in overweight, glucose intolerant populations.


Assuntos
Berberina/análogos & derivados , Berberina/farmacocinética , Glicemia/efeitos dos fármacos , Absorção Gastrointestinal/efeitos dos fármacos , Período Pós-Prandial/efeitos dos fármacos , Adolescente , Adulto , Área Sob a Curva , Berberina/sangue , Disponibilidade Biológica , Estudos Cross-Over , Suplementos Nutricionais , Método Duplo-Cego , Voluntários Saudáveis , Humanos , Insulina/sangue , Cinética , Masculino , Refeições , Pessoa de Meia-Idade , Projetos Piloto , Adulto Jovem
5.
Drug Des Devel Ther ; 14: 4423-4438, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33122887

RESUMO

INTRODUCTION: Berberrubine (BRB), an isoquinoline alkaloid, is a major constituent of medicinal plants Coptis chinensis Franch or Phellodendron chinense Schneid. BRB exhibits various pharmacological activities, whereas exposure to BRB may cause toxicity in experimental animals. METHODS: In this study, we thoroughly investigated the liver injury induced by BRB in mice and rats. To explore the underlying mechanism, a study of the metabolic activation of BRB was conducted. Furthermore, covalent modifications of cysteine residues of proteins were observed in liver homogenate samples of animals after exposure to BRB, by application of an exhaustive proteolytic digestion method. RESULTS: It was demonstrated that BRB-induced hepatotoxicities in a time- and dose-dependent manner, based on the biochemical parameters ALT and AST. H&E stained histopathological examination showed the occurrence of obvious edema in liver of mice after intraperitoneal (i.p.) administration of BRB at a single dose of 100 mg/kg. Slight hepatotoxicity was also observed in rats given the same doses of BRB after six weeks of gavage. As a result, four GSH adducts derived from reactive metabolites of BRB were detected in microsomal incubations with BRB fortified with GSH as a trapping agent. Moreover, four cys-based adducts derived from reaction of electrophilic metabolites of BBR with proteins were found in livers. CONCLUSION: These results suggested that the formation of protein adducts originating from metabolic activation of BRB could be a crucial factor of the mechanism of BRB-induced toxicities.


Assuntos
Berberina/análogos & derivados , Fígado/efeitos dos fármacos , Ativação Metabólica/efeitos dos fármacos , Animais , Berberina/sangue , Berberina/metabolismo , Berberina/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Relação Dose-Resposta a Droga , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos , Microssomos Hepáticos/química , Microssomos Hepáticos/metabolismo , Estrutura Molecular , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade
6.
Anal Chim Acta ; 1125: 210-219, 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32674768

RESUMO

Electroactive polypyrrole-molybdenum disulfide (MoP) nanocomposites were synthesized and used for modifying screen-printed carbon electrodes (SPCEs) for ultrasensitive detection of berberine, an anticancer drug, in rat plasma. The electroactive nanocomposites were fabricated by exfoliating MoS2 followed by pyrrole polymerization. The effect of polypyrrole in the MoP nanocomposite was evaluated by varying the pyrrole concentration during polymerization, and the resulting nanocomposites prepared with pyrrole concentrations of 10, 20, 30 µL were named as MoP-1, MoP-2, and MoP-3, respectively. The electrochemical characterization of the three MoP nanocomposite sensors revealed that MoP-2/SPCE exhibited the highest electroactivity. The detection of berberine by the three MoP-coated SPCEs revealed that MoP-2/SPCE exhibited the highest activity against berberine due to a two-electron transfer mechanism on the MoP-2/SPCE electrode surface. The detection limit of berberine using the MoP-2/SPCE sensor was found to be about 0.05 µM, which is remarkably lower than the reported detection limits. The interference study proved the selectivity of the MoP-2/SPCE sensor toward berberine in the presence of other bioactive molecules and metal ions. The designed MoP-2/SPCE sensor retained 92% of its initial activity after 15 days of storage at room temperature, with RSD values of about 2.95% and 3.68% for the repeatability and reproducibility studies. Finally, the detection limit of berberine in a rat plasma sample determined using the MoP-2/SPCE sensor was found to be about 5 µM.


Assuntos
Berberina/sangue , Dissulfetos/química , Molibdênio/química , Nanocompostos/química , Polímeros/química , Pirróis/química , Animais , Carbono/química , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , Eletrodos , Limite de Detecção , Ratos
7.
Artigo em Inglês | MEDLINE | ID: mdl-32145638

RESUMO

Berberidis cortex, the dry bark of Berberis L., is used to treat diabetes and contains at least three bioactive components: berberine (BBR), berbamine (BBM) and magnoflorine (MGF). BBR in turn is metabolized into berberrubine (BRB). Although it is possible to quantify each of these components individually in serum, there are currently no methods for simultaneously quantifying all four. Here, we developed a specific and rapid method for simultaneously quantifying BBR, BBM, MGF and BRB in mouse serum using ultra high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Samples were pretreated by protein precipitation, separated using an ACQUITY UPLC® BEH C18 column and detected by a triple quadrupole mass spectrometer with electrospray ionization. The compound [9,10-(OC2H3)2]-BBR (d6-BBR) was used as internal standard for BBR and BRB, boldine (BOL) for MGF and tetrandrine (TET) for BBM. The m/z transitions for precursor/product ion pairs were 336.1/320.2 for BBR, 305.2/566.3 for BBM, 342.0/297.1 for MGF, 322.1/307.2 for BRB, 342.2/294.3 for d6-BBR, 312.2/580.3 for TET and 328.1/265.2 for BOL. We validated our method in terms of selectivity, linearity and lower limit of quantification, accuracy, precision, matrix effect and recovery, dilution integrity and stability. This method showed good linearity from 0.1 to 40 ng/mL for BBR, 8 to 3200 ng/mL for BBM, 5 to 2000 ng/mL for MGF and 0.2 to 80 ng/mL for BRB. The chromatographic run time was 3.9 min, and sample preparation took approximately 15 min per batch. Finally, we used our method to measure BBR, BBM, MGF and BRB in serum from diabetic mice after gavage administration of BBR hydrochloride, BBM hydrochloride, and MGF. This method is precise, accurate and suitable for high-throughput sample analysis.


Assuntos
Anti-Inflamatórios não Esteroides/sangue , Aporfinas/sangue , Benzilisoquinolinas/sangue , Berberina/sangue , Animais , Anti-Inflamatórios não Esteroides/metabolismo , Aporfinas/análise , Aporfinas/metabolismo , Benzilisoquinolinas/análise , Benzilisoquinolinas/metabolismo , Berberina/análogos & derivados , Berberina/metabolismo , Cromatografia Líquida de Alta Pressão , Diabetes Mellitus Experimental , Limite de Detecção , Camundongos , Padrões de Referência , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Espectrometria de Massas em Tandem
8.
J Pak Med Assoc ; 69(Suppl 3)(8): S83-S87, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31603884

RESUMO

OBJECTIVE: To assess the reno-protective effect of berberine on diclofenac-induced acute kidney injury in rats. METHODS: The experimental study was conducted at the College of Medicine, Mustansiriya University, Baghdad, Iraq, from January to March 2018, and comprised Sprague Dawley male rats which were divided into 3 equal groups. Group1 rats were treated with distilled water plus normal saline for 14 days, Group2 rats were treated with distilled water plus diclofenac for 14 days and Group3 rats were treated with berberine plus diclofenac for 14 days. Parameters measured were blood urea, serum creatinine, serum malondialdehyde, superoxide dismutase, glutathione reductase, neutrophil gelatinase associated lipocalin, kidney injury molecules-1, Interleukin-18and cystatin-c. Anthropometric measurements and estimated glomerular filtration rate were also noted. SPSS 20 was used for data analysis. RESULTS: Of the 30 rats, the three groups had 10(33.3%) each. Berberine reduced blood urea, serum creatinine, malondialdehyde, neutrophil gelatinase associated lipocalin, kidney injury molecules-1 and Interleukin-18 significantly compared to diclofenac-induced acute kidney injury (p<0.01 each). Berberine improved anti-oxidant capacity through significant elevation of superoxide dismutase and glutathione reductase sera levels (p<0.01 each). CONCLUSIONS: Berberine was found to be an effective agent in the attenuation of diclofenac-induced acute kidney injury through the modulation of pro-inflammatory and oxidative stress biomarkers.


Assuntos
Injúria Renal Aguda/tratamento farmacológico , Antioxidantes/uso terapêutico , Berberina/uso terapêutico , Injúria Renal Aguda/induzido quimicamente , Animais , Antioxidantes/farmacologia , Berberina/sangue , Berberina/farmacologia , Biomarcadores/sangue , Cistatina C/sangue , Diclofenaco , Taxa de Filtração Glomerular/efeitos dos fármacos , Masculino , Ratos , Ratos Sprague-Dawley
9.
Anal Bioanal Chem ; 411(23): 5963-5973, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31300859

RESUMO

A microscale highly fluorescent Eu metal-organic framework (Eu-MOF) was synthesized with terephthalic acid and 1H-1,2,4-triazole-3,5-diamine by one-pot hydrothermal method. And it was characterized by scanning electron microscope, Fourier transform infrared spectroscopy, powder X-ray diffraction, fluorescence spectroscopy, thermogravimetric analysis, and energy dispersive X-ray mapping. The prepared Eu-MOF has high quantum yield of 30.99%, excellent water dispersibility, good fluorescence stability, and favorable thermal stability. Based on the distinctly different fluorescence responses of different emission, the prepared Eu-MOF was used as dual-mode visual sensor for the sensitive detection of berberine hydrochloride and tetracycline. The limits of detection are 78 nM and 17 nM, respectively. The sensing mechanism was also discussed. Moreover, a filter paper sensor has been designed for sensing tetracycline with a notable fluorescence color change from blue to red. The prepared Eu-MOF is promising to be developed as a multi-mode luminescent sensor for visual detection in biochemical analysis. Graphical abstract Illustration of the synthesis of Eu-MOF and its sensing applications for berberine hydrochloride and tetracycline.


Assuntos
Antibacterianos/análise , Berberina/análise , Európio/química , Corantes Fluorescentes/química , Estruturas Metalorgânicas/química , Tetraciclinas/análise , Poluentes Químicos da Água/análise , Antibacterianos/sangue , Antibacterianos/urina , Berberina/sangue , Berberina/urina , Humanos , Limite de Detecção , Rios/química , Espectrometria de Fluorescência/métodos , Comprimidos , Tetraciclinas/sangue , Tetraciclinas/urina , Poluentes Químicos da Água/sangue , Poluentes Químicos da Água/urina
10.
Molecules ; 24(10)2019 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-31137649

RESUMO

In this study, a reliable and rapid method based on ultra high performance liquid chromatography combined with quadrupole time-of-flight tandem mass spectrometry (UHPLC-Q-TOF-MS) technology and MetabolitePilotMT software was developed for berberine metabolites identification in rat plasma. The chemical structures of the metabolites and their product ions were tentatively characterized or identified according to the molecular weights detected and MS/MS data. In all, nine metabolites, including M1 (demethyleneberberine, C19H18NO4, m/z 324), M2 (glucuronic acid-conjugated demethyleneberberine, C25H26NO10, m/z 500), M3 (diglucuronide-conjugated demethyleneberberine, C31H34NO16, m/z 676), M4 (glucuronic acid-conjugated jatrorrhizine or glucuronic acid-conjugated columbamine, C26H28NO10, m/z 514), M5 (berberrubine or thalifendine, C19H16NO4, m/z 322), M6 (glucuronic acid-conjugated berberrubine or glucuronic acid-conjugated thalifendine, C25H24NO10, m/z 498), M7 (sulfite-conjugated berberrubine or sulfite-conjugated thalifendine, C19H16NO7S, m/z 402), M8 (dihydroxy berberrubine or dihydroxy thalifendine, C19H16NO6, m/z 354) and M9 (dihydroxy berberine, C20H18NO6, m/z 368) were tentatively characterized or identified. Several new deposition patterns and three new metabolites (M7, M8 and M9) are reported in this paper for the first time. This work not only provides significant insights into the understanding of the metabolic pathways of berberine, but also contributes in identifying potential active drug candidates from the metabolites.


Assuntos
Berberina/sangue , Berberina/metabolismo , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas/métodos , Metaboloma , Animais , Berberina/química , Redes e Vias Metabólicas , Ratos
11.
Sci Rep ; 9(1): 1450, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30723253

RESUMO

Pro-inflammatory factors are important indicators for assessing inflammation severity and drug efficacy. Coptisine has been reported to inhibit LPS-induced TNF-α and NO production. In this study, we aim to build a pharmacokinetic-pharmacodynamic model to quantify the coptisine time course and potency of its anti-inflammatory effect in LPS-stimulated rats. The plasma and lung coptisine concentrations, plasma and lung TNF-α concentrations, plasma NO concentration, and lung iNOS expression were measured in LPS-stimulated rats after intravenous injection of three coptisine doses. The coptisine disposition kinetics were described by a two-compartment model. The coptisine distribution process from the plasma to the lung was described by first-order dynamics. The dynamics of plasma TNF-α generation and elimination followed zero-order kinetics and the Michaelis-Menten equation. A first-order kinetic model described the TNF-α diffusion process from the plasma to the lung. A precursor-pool indirect response model was used to describe the iNOS and NO generation induced by TNF-α. The inhibition rates of TNF-α production by coptisine (54.73%, 26.49%, and 13.25%) calculated from the simulation model were close to the decline rates of the plasma TNF-α AUC (57.27%, 40.33%, and 24.98%, respectively). Coptisine suppressed plasma TNF-α generation in a linear manner, resulting in a cascading reduction of iNOS and NO. The early term TNF-α response to stimulation is a key factor in the subsequent inflammatory cascade. In conclusion, this comprehensive PK-PD model provided a rational explanation for the interlocking relationship among TNF-α, iNOS and NO production triggered by LPS and a quantitative evaluation method for inhibition of TNF-α production by coptisine.


Assuntos
Anti-Inflamatórios/farmacocinética , Berberina/análogos & derivados , Animais , Anti-Inflamatórios/sangue , Berberina/sangue , Berberina/farmacocinética , Lipopolissacarídeos/toxicidade , Pulmão/metabolismo , Masculino , Modelos Biológicos , Óxido Nítrico/sangue , Óxido Nítrico Sintase Tipo II/metabolismo , Ratos , Ratos Sprague-Dawley , Fator de Necrose Tumoral alfa/sangue , Fator de Necrose Tumoral alfa/metabolismo
12.
Angew Chem Int Ed Engl ; 58(12): 3790-3794, 2019 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-30614157

RESUMO

An electrokinetic platform was developed for extracting small-molecule pharmaceuticals from a dried blood spot. Through the exclusion of liquid reagents and use of low field strength (6 V cm-1 ), the electroextraction of a drug from a dried blood spot, deposited on a polymer inclusion membrane (PIM), could be realised while in transit in the mail. In transit sample preparation provides a potential solution to in situ sample degradation and may accelerate the workflow upon arrival of a patient sample at the analytical facility. The electroextraction method was enabled through our discovery of the use of 15-20 µm thin PIMs as electrophoretic separation medium in absence of liquid reagents. Here, a PIM consisting of cellulose triacetate as polymer base, 2-nitrophenyl octyl ether as plasticizer and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide as carrier was used. The PIM, was packaged with two 12 V batteries to supply the separation voltage. A blood spot containing berberine chloride was deposited and dried before the applying the separation potential, allowing for the electroextraction while the packaged device was shipped in internal mail. Upon arrival in the analytical laboratory, the PIM was analysed using a fluorescence microscope with photon multiplier tube, quantifying the berberine extracted away from the sample matrix. This platform represents a new opportunity for processing clinical samples during transport to the laboratory, saving time and manual handling to accelerate the time to result.


Assuntos
Berberina/sangue , Eletroforese/métodos , Berberina/isolamento & purificação , Celulose/análogos & derivados , Celulose/química , Teste em Amostras de Sangue Seco , Humanos , Sistemas Automatizados de Assistência Junto ao Leito , Polímeros/química
13.
Acta Pharmacol Sin ; 40(1): 133-142, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30442987

RESUMO

Berberine, berberrubine, thalifendine, demethyleneberberine, jatrorrhizine, and columbamine are six natural protoberberine alkaloid (PA) compounds that display extensive pharmacological properties and share the same protoberberine molecular skeleton with only slight substitution differences. The oral delivery of most PAs is hindered by their poor bioavailability, which is largely caused by P-glycoprotein (P-gp)-mediated drug efflux. Meanwhile, P-gp undergoes large-scale conformational changes (from an inward-facing to an outward-facing state) when transporting substrates, and these changes might strongly affect the P-gp-binding specificity. To confirm whether these six compounds are substrates of P-gp, to investigate the differences in efflux capacity caused by their trivial structural differences and to reveal the key to increasing their binding affinity to P-gp, we conducted a series of in vivo, in vitro, and in silico assays. Here, we first confirmed that all six compounds were substrates of P-gp by comparing the drug concentrations in wild-type and P-gp-knockout mice in vivo. The efflux capacity (net efflux) ranked as berberrubine > berberine > columbamine ~ jatrorrhizine > thalifendine > demethyleneberberine based on in vitro transport studies in Caco-2 monolayers. Using molecular dynamics simulation and molecular docking techniques, we determined the transport pathways of the six compounds and their binding affinities to P-gp. The results suggested that at the early binding stage, different hydrophobic and electrostatic interactions collectively differentiate the binding affinities of the compounds to P-gp, whereas electrostatic interactions are the main determinant at the late release stage. In addition to hydrophobic interactions, hydrogen bonds play an important role in discriminating the binding affinities.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Berberina/análogos & derivados , Berberina/metabolismo , Animais , Berberina/sangue , Células CACO-2 , Humanos , Ligação de Hidrogênio , Fígado/química , Masculino , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Ligação Proteica
14.
Eur J Pharm Sci ; 127: 282-290, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30428337

RESUMO

Metformin and berberine are often combined for treating diabetes. In the present study, we evaluated the drug-drug pharmacokinetic interaction between metformin and berberine after oral co-administration in vivo and the underlying mechanism. As revealed by comparison with the metformin-only group, berberine significantly decreased the maximum plasma concentration (Cmax), area under the curve from 0 to 4 h (AUC0-4h), and urinary and bile excretion, and increased the kidney tissue concentration of metformin in rats. The non-everted intestinal sac study showed that berberine inhibited the absorption of metformin, and in transfected Madin-Darby canine kidney (MDCK)-rat organic cation transporter 1 (MDCK-rOCT1), MDCK-rat organic cation transporter 2 (MDCK-rOCT2), and MDCK-rat multidrug and toxin extrusion 1 (MDCK-rMATE1) cells, berberine significantly inhibited metformin transport mediated by OCT1, OCT2, and MATE1 in a concentration-dependent manner with half-maximal inhibitory concentration (IC50) values of 18.8, 1.02, and 10.7 µM, respectively. In contrast, co-administration of metformin increased the Cmax and AUC0-4h of berberine with no significant difference in pharmacokinetics parameters between co-administration and berberine-only groups. Furthermore, metformin increased kidney and liver concentrations and reduced the urinary and biliary excretion of berberine. Metformin (≥1 or ≥0.3 mM) decreased berberine transport in MDCK-rOCT1, MDCK-rOCT2, and MDCK-rMATE1 cells. However, metformin did not affect berberine concentration in MDCK-multidrug resistance protein 1 cells. These results suggest that the combination of metformin and berberine induced a pharmacokinetic interaction by cooperatively inhibiting OCT and MATE1-mediated transport.


Assuntos
Antiporters/metabolismo , Berberina/farmacocinética , Proteínas da Membrana Plasmática de Transporte de Catecolaminas/metabolismo , Hipoglicemiantes/farmacocinética , Metformina/farmacocinética , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Transportador 2 de Cátion Orgânico/metabolismo , Tecido Adiposo/metabolismo , Animais , Antiporters/genética , Berberina/sangue , Proteínas da Membrana Plasmática de Transporte de Catecolaminas/genética , Cães , Interações Medicamentosas , Feminino , Hipoglicemiantes/sangue , Mucosa Intestinal/metabolismo , Rim/metabolismo , Fígado/metabolismo , Células Madin Darby de Rim Canino , Masculino , Metformina/sangue , Músculo Esquelético/metabolismo , Proteínas de Transporte de Cátions Orgânicos/genética , Transportador 2 de Cátion Orgânico/genética , Ratos Sprague-Dawley
15.
Drug Des Devel Ther ; 13: 129-139, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30587933

RESUMO

PURPOSE: Fenofibrate (Fbt) is a prodrug that has been used to reduce low-density-lipoprotein cholesterol, triglycerides, and increase high-density-lipoprotein cholesterol. Simvastatin (Svt) is a classic lipid-lowering drug that is widely used in the treatment of hypercholesterolemia and hypertriglyceridemia, while berberine chloride (Bbr) is a novel hypolipidemic agent and its blood-lipid-reducing mechanism is distinct from traditional drugs. Currently, drug combination is the trend in treating hyperlipidemia to improve clinical efficacy. The purpose of this study was to evaluate drug interaction from the perspective of pharmacokinetics between Bbr and Fbt/Svt and the tolerability of combined administration in healthy Chinese subjects. METHODS: Healthy subjects (n=60) were randomly allocated to five treatment groups: Bbr alone, Fbt alone, Svt alone, Bbr plus Fbt, and Bbr plus Svt. The experiment was divided into two parts: single-dose administration and multiple-dose administration. Bbr, Fbt, and Svt were taken once every 8 hours, 24 hours, and 24 hours, respectively, over 7 days in the multidose group. Plasma samples were collected and liquid chromatography-mass spectrometry/mass spectrometry was used to detect drug concentrations. RESULTS: No serious adverse reactions or intolerance were observed throughout the trial. More importantly, the combined-administration groups did not show an increase in incidence of side effects. Coadministration of Fbt and Svt with Bbr had no significant effect on the pharmacokinetic parameters of Bbr, except time to maximum concentration, apparent volume of distribution, and apparent clearance. Concurrent coadministration of Bbr had no obvious impact on the pharmacokinetic behavior of Fbt or Svt. Additionally, there was no significant correlation between sex and pharmacokinetic results. CONCLUSION: All treatments were well tolerated. No clinically obvious pharmacokinetic interactions between Bbr and Fbt/Svt were observed with combined administration. The results demonstrated that Bbr can be coadministered safely with Fbt and Svt without dose adjustment.


Assuntos
Berberina/farmacocinética , Fenofibrato/farmacocinética , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacocinética , Hipolipemiantes/farmacocinética , Sinvastatina/farmacocinética , Adulto , Berberina/administração & dosagem , Berberina/efeitos adversos , Berberina/sangue , China , Cromatografia Líquida , Esquema de Medicação , Interações Medicamentosas , Feminino , Fenofibrato/administração & dosagem , Fenofibrato/efeitos adversos , Fenofibrato/sangue , Voluntários Saudáveis , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/administração & dosagem , Inibidores de Hidroximetilglutaril-CoA Redutases/efeitos adversos , Inibidores de Hidroximetilglutaril-CoA Redutases/sangue , Hipolipemiantes/administração & dosagem , Hipolipemiantes/efeitos adversos , Hipolipemiantes/sangue , Masculino , Sinvastatina/administração & dosagem , Sinvastatina/efeitos adversos , Sinvastatina/sangue , Espectrometria de Massas em Tandem , Adulto Jovem
16.
Int J Nanomedicine ; 13: 3781-3793, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29988733

RESUMO

INTRODUCTION: Berberine (BBR) is a plant-derived benzylisoquinoline alkaloid and has been demonstrated to be a potential treatment for various chronic diseases. The poor water solubility and P-glycoprotein (Pgp)-mediated drug efflux are the main challenges for its further application in a clinical setting. MATERIALS AND METHODS: In this study, a Brij-S20 (BS20)-modified nanocrystal formulation (BBR-BS20-NCs) has been developed and investigated with the purpose of improving the intestinal absorption of BBR. The physicochemical properties of the developed BBR-BS20-NCs were characterized and the enhancement of the BBR-BS20-NCs on BBR absorption were investigated both in vitro and in vivo. RESULTS: The results indicated that BS20 could significantly enhance the intracellular uptake of BBR in MDCK-MDR1 cells via a short-term and reversible modulation on the Pgp function, accompanied by a marked increase in Pgp mRNA expression but without significant influence on the Pgp protein expression. Moreover, the morphology of the prepared BBR-BS20-NCs was observed to be prism-like, with a smooth surface and an average diameter of 148.0 ± 3.2 nm. Compared to raw BBR and physical mixture, BBR-BS20-NCs facilitated the dissolution rate and extent of release of BBR in aqueous solution, and further increased the absorption of BBR in MDCK-MDR1 monolayer by overcoming the Pgp-mediated secretory transport (Papp[BL-AP] values of 2.85 ± 0.04 × 10-6 cm/s, 2.21 ± 0.14 × 10-6 cm/s, and 2.00 ± 0.07 × 10-6 cm/s for pure BBR, physical mixture, and BBR-BS20-NCs, respectively). Significant improvements in the maximum concentration observed (Cmax) and area under drug concentration-time curve (AUC0-t) of BBR-BS20-NCs were obtained in pharmacokinetic studies compared to pure BBR, and the relative bioavailability of BBR-BS20-NCs to pure BBR was 404.1%. CONCLUSION: The developed BBR-BS20-NCs combine the advantages of nanocrystal formulation and functional excipient. The novel pharmaceutical design provides a new strategy to improve the oral bioavailability of those drugs with both poor water solubility and Pgp-mediated efflux.


Assuntos
Berberina/farmacologia , Nanopartículas/química , Polietilenoglicóis/química , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Administração Oral , Animais , Berberina/sangue , Berberina/química , Berberina/farmacocinética , Disponibilidade Biológica , Transporte Biológico , Varredura Diferencial de Calorimetria , Química Farmacêutica , Ciclosporina/farmacologia , Cães , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Absorção Intestinal , Células Madin Darby de Rim Canino , Masculino , Nanopartículas/ultraestrutura , Ratos Sprague-Dawley , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Tensoativos/química , Verapamil/farmacologia , Difração de Raios X
17.
J Ethnopharmacol ; 221: 100-108, 2018 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-29679725

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Sanmiao Wan (SMW) has been a basic prescription employed for the treatment for gout in the clinic since Yuan dynasty. Achyranthis bidentatae radix (ABR) is designed as a lower-guiding drug in SMW to augment the articular accumulation of active ingredients and improve the anti-inflammatory effect. AIM OF THE STUDY: Present study was undertaken to investigate the dose-response relationship of berberine in SMW between the articular concentration and anti-inflammatory effect in the knee joint under the lower-guiding of ABR. MATERIALS AND METHODS: Rats were divided into control group, model group and SMW without or with low, medium and high doses of ABR groups. Rat model of acute gouty arthritis (AGA) was established by intra-articular injection of 0.2 mL monosodium urate crystal (20 mg/mL) inside knee joint cavity on day 2 during drug treatment slots. Knee joint swelling, synovial hyperplasia and inflammatory cell infiltration were investigated for anti-inflammatory study. The concentrations of berberine in rat plasma and tissues were determined by UPLC-MS/MS method. The effect of ABR on the expression levels of P-glycoprotein (P-gp) and MDR1 mRNA in the synovial tissues of knee joints in AGA rats was examined by Western blot and RT-qPCR assay, respectively. RESULTS: The distribution of berberine increased by 6.53%, 44.31% and 212.96% in the knee joint and 474.93%, 631.01% and 1063.3% in the ankle for SMW with low, medium and high doses of ABR groups, compared with SMW without ABR group. Similarly, the plasma level of berberine increased by 19.81%, 143.4% and 681.13%. On the contrary, the distribution of berberine evidently decreased 3.23, 10.61 and 46.21-fold in heart and 3.68, 6.74 and 24.78-fold in lung. SMW with different doses of ABR groups exhibited better efficiency than SMW without ABR group on ameliorating knee joint swelling, inhibiting synovial hyperplasia and alleviating inflammatory cell infiltration of AGA rats. The treatment with ABR could down-regulate the MDR1 mRNA and P-gp expressions of synovial tissues of knee joints in AGA rats. CONCLUSIONS: The enhanced articular distribution of berberine in SMW was attributed to the lower-guiding effect of ABR, which could evidently increase the plasma concentration of berberine, improve the supply of blood of inflamed joint, reduce the distribution of berberine in heart and lung and significantly inhibit the MDR1 mRNA and P-gp expression of synovial tissues of knee joints in AGA rats. The dose-response relationship of berberine between the enhanced articular concentration and improved anti-inflammatory effect in the knee joint under the lower-guiding of ABR was observed for the first time.


Assuntos
Achyranthes , Anti-Inflamatórios , Artrite Gotosa/tratamento farmacológico , Berberina , Medicamentos de Ervas Chinesas , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Animais , Anti-Inflamatórios/sangue , Anti-Inflamatórios/farmacocinética , Anti-Inflamatórios/uso terapêutico , Artrite Gotosa/induzido quimicamente , Artrite Gotosa/metabolismo , Artrite Gotosa/patologia , Berberina/sangue , Berberina/farmacocinética , Berberina/uso terapêutico , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/farmacocinética , Medicamentos de Ervas Chinesas/uso terapêutico , Articulação do Joelho/efeitos dos fármacos , Articulação do Joelho/metabolismo , Articulação do Joelho/patologia , Masculino , Fitoterapia , Raízes de Plantas , Ratos Sprague-Dawley , Distribuição Tecidual , Ácido Úrico
18.
PLoS One ; 13(3): e0194979, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29579096

RESUMO

The natural alkaloid berberine has been ascribed numerous health benefits including lipid and cholesterol reduction and improved insulin sensitivity in diabetics. However, oral (PO) administration of berberine is hindered by poor bioavailability and increasing dose often elicits gastro-intestinal side effects. To overcome the caveats associated with oral berberine, we developed transdermal (TD) formulations of berberine (BBR) and the berberine precursor dihydroberberine (DHB). These formulations were compared to oral BBR using pharmacokinetics, metabolism, and general safety studies in vivo. To complete this work, a sensitive quantitative LC-MS/MS method was developed and validated according the FDA guidelines for bioanalytical methods to simultaneously measure berberine, simvastatin, and simvastatin hydroxy acid with relative quantification used for the berberine metabolite demethylene berberine glucuronide (DBG). Acute pharmacokinetics in Sprague-Dawley rats demonstrated a statistically relevant ranking for berberine bioavailability based upon AUC0-8 as DHB TD > BBR TD >> BBR PO with similar ranking for the metabolite DBG, indicating that transdermal administration achieves BBR levels well above oral administration. Similarly, chronic administration (14 days) resulted in significantly higher levels of circulating BBR and DBG in DHB TD treated animals. Chronically treated rats were given a single dose of simvastatin with no observed change in the drugs bioavailability compared with control, suggesting the increased presence of BBR had no effect on simvastatin metabolism. This observation was further supported by consistent CYP3A4 expression across all treatment groups. Moreover, no changes in kidney and liver biomarkers, including alanine aminotransferase and alkaline phosphatase, were observed between treatment formats, and confirming previous reports that BBR has no effect on HMG-CoA expression. This study supports the safe use of transdermal compositions that improve on the poor bioavailability of oral berberine and have the potential to be more efficacious in the treatment of dyslipidemia or hypercholesterolemia.


Assuntos
Berberina/análogos & derivados , Berberina/farmacocinética , Administração Cutânea , Administração Oral , Alanina Transaminase/metabolismo , Fosfatase Alcalina/metabolismo , Animais , Berberina/sangue , Berberina/metabolismo , Berberina/normas , Calibragem , Cromatografia Líquida de Alta Pressão/normas , Citocromo P-450 CYP3A/metabolismo , Meia-Vida , Rim/efeitos dos fármacos , Rim/metabolismo , Limite de Detecção , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Sinvastatina/análogos & derivados , Sinvastatina/análise , Sinvastatina/sangue , Sinvastatina/metabolismo , Espectrometria de Massas em Tandem/normas
19.
Drug Des Devel Ther ; 12: 57-65, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29343943

RESUMO

Epiberberine (EPI) is a novel and potentially effective therapeutic and preventive agent for diabetes and cardiovascular disease. To evaluate its potential value for drug development, a specific, sensitive and robust high-performance liquid chromatography-tandem mass spectrometry assay for the determination of EPI in rat biological samples was established. This assay was used to study the pharmacokinetics, bioavailability and excretion of EPI in rats after oral administration. In addition, a cocktail method was used to compare the inhibition characteristics of EPI on cytochrome P450 (CYP450) isoforms in human liver microsomes (HLMs) and rat liver microsomes (RLMs). The results demonstrated that EPI was rapidly absorbed and metabolized after oral administration (10, 54 or 81 mg/kg) in rats, with Tmax of 0.37-0.42 h and T1/2 of 0.49-2.73 h. The Cmax and area under the curve values for EPI increased proportionally with the dose, and the oral absolute bioavailability was 14.46%. EPI was excreted mainly in bile and feces, and after its oral administration to rats, EPI was eliminated predominantly by the kidneys. A comparison of the current half-maximal inhibitory concentration and Ki values revealed that EPI demonstrated an obvious inhibitory effect on CYP2C9 and CYP2D6. Furthermore, its effect was stronger in HLM than in RLM, more likely to be a result of noncompetitive inhibition.


Assuntos
Berberina/análogos & derivados , Inibidores do Citocromo P-450 CYP2C9/administração & dosagem , Inibidores do Citocromo P-450 CYP2C9/farmacocinética , Inibidores do Citocromo P-450 CYP2D6/administração & dosagem , Inibidores do Citocromo P-450 CYP2D6/farmacocinética , Medicamentos de Ervas Chinesas/administração & dosagem , Medicamentos de Ervas Chinesas/farmacocinética , Eliminação Renal , Administração Oral , Animais , Berberina/administração & dosagem , Berberina/sangue , Berberina/farmacocinética , Disponibilidade Biológica , Cromatografia Líquida de Alta Pressão , Citocromo P-450 CYP2C9/metabolismo , Inibidores do Citocromo P-450 CYP2C9/sangue , Citocromo P-450 CYP2D6/metabolismo , Inibidores do Citocromo P-450 CYP2D6/sangue , Sistema Enzimático do Citocromo P-450/metabolismo , Eliminação Hepatobiliar , Humanos , Absorção Intestinal , Eliminação Intestinal , Masculino , Microssomos Hepáticos/enzimologia , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem
20.
Nat Prod Res ; 32(17): 2031-2036, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28871816

RESUMO

Shuanghua Baihe tablet is a traditional Chinese patent medicine which showed special advantages in the treatment of recurrent aphthous stomatitis. Scientists have improved and implemented the LC-MS/MS method, which is specific and sensitive, for comparative pharmacokinetics study of five alkaloids, including palmatine, berberine, epiberberine, jatrorrhizine and coptisine in rat plasma after oral administration of Rhizoma Coptidis extract and Shuanghua Baihe tablets. The results showed that Shuanghua Baihe tablets could promote the absorption of these five alkaloids and improved their bioavailability compared with R. Coptidis extract. To further investigate the related mechanism, everted intestinal sac model in vitro was used to indicate that alteration of in vivo pharmacokinetics of five alkaloids could be attributed to, at least in part, the absorption changes by coadministration of other herbs. These discoveries served as a theoretical basis for clinical use of Shuanghua Baihe tables.


Assuntos
Alcaloides/farmacocinética , Medicamentos de Ervas Chinesas/farmacocinética , Administração Oral , Alcaloides/sangue , Animais , Berberina/análogos & derivados , Berberina/sangue , Alcaloides de Berberina/sangue , Cromatografia Líquida/métodos , Medicamentos de Ervas Chinesas/administração & dosagem , Medicina Tradicional Chinesa , Ratos , Comprimidos/administração & dosagem , Comprimidos/farmacologia , Espectrometria de Massas em Tandem/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA