Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Mol Nutr Food Res ; 68(15): e2300888, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39094123

RESUMO

Folate, a vital water-soluble vitamin (B9), requires specific attention as its recommended daily intake frequently is not reached in countries without mandatory fortification. In this regard, biofortification with microorganisms like Bifidobacterium and Streptococcus offers a compelling approach for enhancing food with natural folates. A randomized, nonblinded, and monocentric human pilot study is conducted to assess the bioavailability of a folate-biofortified fermented whey beverage, comprising 3 intervention days and a controlled replenishment phase before and during the assay. Folate plasma concentration (5-CH3-H4folate) is determined using a stable isotope dilution assay and LC-MS/MS detection. Biokinetic parameters (cmax and tmax) are determined, and areas under the curve (AUC) normalized to the basal folate plasma concentration are calculated. An average bioavailability of 17.1% in relation to the 5-CH3-H4folate supplement, ranging from 0% to 39.8%, is obtained. These results reiterate the significance of additional research into folate bioavailability in general and dairy products. Further investigations are warranted into folate-binding proteins (FBP) and other potential limiting factors within the food and individual factors. In summary, biofortification via fermentation emerges as a promising avenue for enhancing the natural folate content in dairy and other food products.


Assuntos
Ácido Fólico , Humanos , Ácido Fólico/farmacocinética , Ácido Fólico/administração & dosagem , Ácido Fólico/sangue , Adulto , Feminino , Masculino , Soro do Leite/química , Alimentos Fortificados , Projetos Piloto , Fermentação , Disponibilidade Biológica , Adulto Jovem , Biofortificação/métodos , Tetra-Hidrofolatos/farmacocinética , Pessoa de Meia-Idade , Bebidas/análise
2.
BMC Plant Biol ; 24(1): 668, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39004715

RESUMO

BACKGROUND: Biofortification represents a promising and sustainable strategy for mitigating global nutrient deficiencies. However, its successful implementation poses significant challenges. Among staple crops, wheat emerges as a prime candidate to address these nutritional gaps. Wheat biofortification offers a robust approach to enhance wheat cultivars by elevating the micronutrient levels in grains, addressing one of the most crucial global concerns in the present era. MAIN TEXT: Biofortification is a promising, but complex avenue, with numerous limitations and challenges to face. Notably, micronutrients such as iron (Fe), zinc (Zn), selenium (Se), and copper (Cu) can significantly impact human health. Improving Fe, Zn, Se, and Cu contents in wheat could be therefore relevant to combat malnutrition. In this review, particular emphasis has been placed on understanding the extent of genetic variability of micronutrients in diverse Triticum species, along with their associated mechanisms of uptake, translocation, accumulation and different classical to advanced approaches for wheat biofortification. CONCLUSIONS: By delving into micronutrient variability in Triticum species and their associated mechanisms, this review underscores the potential for targeted wheat biofortification. By integrating various approaches, from conventional breeding to modern biotechnological interventions, the path is paved towards enhancing the nutritional value of this vital crop, promising a brighter and healthier future for global food security and human well-being.


Assuntos
Biofortificação , Desnutrição , Micronutrientes , Triticum , Triticum/metabolismo , Triticum/genética , Micronutrientes/metabolismo , Desnutrição/metabolismo , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Zinco/metabolismo , Valor Nutritivo
3.
Nutrients ; 16(14)2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39064724

RESUMO

This study aimed to investigate the effects of meat biofortified with antioxidants and canola oil on the health of older adults through blood parameters. Eighty institutionalized older persons were divided into four groups who received the following treatments: C-control meat with 46 µg/kg of meat with selenium, 3.80 g/kg of meat with vitamin E and 0.78 g/100 g of meat with conjugated linoleic acid (CLA); A-antioxidant meat with 422 µg/kg of meat with selenium, 7.65 g/kg of meat with vitamin E and 0.85 g/100 g of meat with CLA; O-oil meat with 57 µg/kg of meat with selenium, 3.98 g/kg of meat with vitamin E and 1.27 g/100 g of meat with CLA; OA-oil and antioxidant meat with 367 µg/kg of meat with selenium, 7.78 g/kg of meat with vitamin E and 1.08 g/100 g of meat with CLA. Blood samples were collected at 0, 45 and 90 days after the start of meat intake. Older adults who consumed ANT (A and AO) meat had higher concentrations of selenium (p = 0.039), vitamin E and HDL (higher concentrations of high-density lipoprotein, p = 0.048) in their blood. This study demonstrates that the consumption of Se- and vitamin E-biofortified meat increases the concentration of these metabolites in blood from older adults.


Assuntos
Antioxidantes , Alimentos Fortificados , Carne Vermelha , Selênio , Vitamina E , Humanos , Masculino , Selênio/sangue , Selênio/administração & dosagem , Idoso , Feminino , Vitamina E/sangue , Antioxidantes/análise , Idoso de 80 Anos ou mais , Óleo de Brassica napus , Animais , Ácidos Linoleicos Conjugados/sangue , Ácidos Linoleicos Conjugados/administração & dosagem , Bovinos , Biofortificação
4.
Food Res Int ; 191: 114706, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39059959

RESUMO

Selenium (Se) biofortification during the growth process of mung bean is an effective method to improve the Se content and quality. However, the effect of Se biofortification on the physicochemical properties of mung bean protein is unclear. The objective of this study was to clarify the changes in the composition, Se forms, particle structure, functional properties, thermal stability, and gel properties of mung bean protein at four Se application levels. The results showed that the Se content of mung bean protein increased in a dose-dependent manner, with 7.96-fold (P1) and 8.52-fold (P2) enhancement at the highest concentration. Exogenous Se application promotes the conversion of inorganic Se to organic Se. Among them, selenomethionine (SeMet) and methyl selenocysteine (MeSeCys) replaced Met and Cys through the S metabolic pathway and became the dominant organic Se forms in Se-enriched mung bean protein, accounting for more than 80 % of the total Se content. Exogenous Se at 30 g/hm2 significantly up-regulated protein content and promoted the synthesis of sulfur-containing protein components and hydrophobic amino acids in the presence of increased levels of SeMet and MeSeCys. Meanwhile, Cys and Met substitution altered the sulfhydryl groups (SH), ß-sheets, and ß-turns of protein. The particle size and microstructural characteristics depend on the protein itself and were not affected by exogenous Se. The Se-induced increase in the content of hydrophobic amino acids and ß-sheets synergistically increases the thermal stability of the protein. Moderate Se application altered the functional properties of mung bean protein, which was mainly reflected in the significant increase in oil holding capacity (OHC) and foaming capacity (FC). In addition, the increase in SH and ß-sheets induced by exogenous Se could alter the protein intermolecular network, contributing to the increase in storage modulus (G') and loss modulus (G″), which resulted in the formation of more highly elastic gels. This study further promotes the application of mung bean protein in the field of food processing and provides a theoretical basis for the extensive development of Se-enriched mung bean protein.


Assuntos
Proteínas de Plantas , Reologia , Selênio , Selenometionina , Vigna , Vigna/química , Vigna/crescimento & desenvolvimento , Selênio/química , Selenometionina/química , Proteínas de Plantas/química , Géis/química , Selenocisteína/química , Selenocisteína/análogos & derivados , Biofortificação , Interações Hidrofóbicas e Hidrofílicas , Temperatura Alta , Alimentos Fortificados/análise
5.
J Hazard Mater ; 476: 135243, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39029182

RESUMO

Cadmium (Cd) pollution poses significant threats to soil organisms and human health by contaminating the food chain. This study aimed to assess the impact of various concentrations (50, 250, and 500 mg·kg-1) of zinc oxide nanoparticles (ZnO NPs), bulk ZnO, and ZnSO4 on morphological changes and toxic effects of Cd in the presence of earthworms and spinach. The results showed that Zn application markedly improved spinach growth parameters (such as fresh weight, plant height, root length, and root-specific surface area) and root morphology while significantly reducing Cd concentration and Cd bioconcentration factors (BCF-Cd) in spinach and earthworms, with ZnO NPs exhibiting the most pronounced effects. Earthworm, spinach root, and shoot Cd concentration decreased by 82.3 %, 77.0 %, and 75.6 %, respectively, compared to CK. Sequential-step extraction (BCR) analysis revealed a shift in soil Cd from stable to available forms, consistent with the available Cd (DTPA-Cd) results. All Zn treatments significantly reduced Cd accumulation, alleviated Cd-induced stress, and promoted spinach growth, with ZnO NPs demonstrating the highest Cd reduction and Zn bioaugmentation efficiencies compared to bulk ZnO and ZnSO4 at equivalent concentrations. Therefore, ZnO NPs offer a safer and more effective option for agricultural production and soil heavy metal pollution management than other Zn fertilizers.


Assuntos
Cádmio , Oligoquetos , Poluentes do Solo , Spinacia oleracea , Óxido de Zinco , Spinacia oleracea/efeitos dos fármacos , Spinacia oleracea/crescimento & desenvolvimento , Spinacia oleracea/metabolismo , Cádmio/toxicidade , Animais , Poluentes do Solo/toxicidade , Poluentes do Solo/metabolismo , Oligoquetos/efeitos dos fármacos , Oligoquetos/metabolismo , Oligoquetos/crescimento & desenvolvimento , Óxido de Zinco/toxicidade , Óxido de Zinco/química , Biofortificação , Zinco/toxicidade , Sulfato de Zinco/toxicidade , Nanopartículas Metálicas/toxicidade , Nanopartículas Metálicas/química , Solo/química , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento
6.
Sci Rep ; 14(1): 15794, 2024 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982208

RESUMO

Iodine is an essential trace element in the human diet because it is involved in the synthesis of thyroid hormones. Iodine deficiency affects over 2.2 billion people worldwide, making it a significant challenge to find plant-based sources of iodine that meet the recommended daily intake of this trace element. In this study, cabbage plants were cultivated in a hydroponic system containing iodine at concentrations ranging from 0.01 to 1.0 mg/L in the form of potassium iodide or potassium iodate. During the experiments, plant physiological parameters, biomass production, and concentration changes of iodine and selected microelements in different plant parts were investigated. In addition, the oxidation state of the accumulated iodine in root samples was determined. Results showed that iodine addition had no effect on photosynthetic efficiency and chlorophyll content. Iodide treatment did not considerably stimulate biomass production but iodate treatment increased it at concentrations less than 0.5 mg/L. Increasing iodine concentrations in the nutrient solutions increased iodine content in all plant parts; however, the iodide treatment was 2-7 times more efficient than the iodate treatment. It was concluded, that iodide addition was more favourable on the target element accumulation, however, it should be highlighted that application of this chemical form in nutrient solution decreased the concetrations of selected micoelement concentration comparing with the control plants. It was established that iodate was reduced to iodide during its uptake in cabbage roots, which means that independently from the oxidation number of iodine (+ 5, - 1) applied in the nutrient solutions, the reduced form of target element was transported to the aerial and edible tissues.


Assuntos
Biofortificação , Brassica , Hidroponia , Iodatos , Iodo , Iodo/metabolismo , Iodo/análise , Brassica/metabolismo , Brassica/crescimento & desenvolvimento , Brassica/efeitos dos fármacos , Iodatos/metabolismo , Biomassa , Raízes de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Iodeto de Potássio/farmacologia , Compostos de Potássio/farmacologia , Compostos de Potássio/metabolismo , Clorofila/metabolismo
7.
Curr Opin Biotechnol ; 88: 103168, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38964080

RESUMO

Agricultural systems are under increasing pressure from declining environmental conditions, a growing population, and changes in consumer preferences, resulting in widespread malnutrition-related illnesses. Improving plant nutritional content through biotechnology techniques such as synthetic biology is a promising strategy to help combat hidden hunger caused by the lack of affordable and healthy foods in human diets. Production of compounds usually found in animal-rich diets, such as vitamin D or omega-3 fatty acids, has been recently demonstrated in planta. Here, we review recent biotechnological approaches to biofortifying plants with vitamins, minerals, and other metabolites, and summarise synthetic biology advances that offer the opportunity to build on these early biofortification efforts.


Assuntos
Biologia Sintética , Biologia Sintética/métodos , Humanos , Fome , Biofortificação/métodos , Plantas/metabolismo , Biotecnologia/métodos
8.
Food Chem ; 455: 139740, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38843715

RESUMO

Monascus species are functional fermentation fungi with great potential for selenium (Se) supplementation. This study investigated the effects of Se bio-fortification on the growth, morphology, and biosynthesis of Monascus ruber M7. The results demonstrated a significant increase in the yield of orange and red Monascus pigments (MPs) in red yeast rice (RYR) by 38.52% and 36.57%, respectively, under 20 µg/mL of selenite pressure. Meanwhile, the production of citrinin (CIT), a mycotoxin, decreased from 244.47 µg/g to 175.01 µg/g. Transcriptome analysis revealed significant upregulation of twelve genes involved in MPs biosynthesis, specifically MpigE, MpigF, and MpigN, and downregulation of four genes (mrr3, mrr4, mrr7, and mrr8) associated with CIT biosynthesis. Additionally, three genes encoding cysteine synthase cysK (Log2FC = 1.6), methionine synthase metH (Log2FC = 2.2), and methionyl-tRNA synthetase metG (Log2FC = 1.8) in selenocompound metabolism showed significantly upregulated. These findings provide insights into Se biotransformation and metabolism in filamentous fungi.


Assuntos
Biofortificação , Citrinina , Monascus , Ácido Selenioso , Selênio , Monascus/metabolismo , Monascus/genética , Monascus/crescimento & desenvolvimento , Selênio/metabolismo , Ácido Selenioso/metabolismo , Citrinina/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Pigmentos Biológicos/metabolismo , Fermentação , Produtos Biológicos
9.
Int J Biol Macromol ; 275(Pt 1): 133214, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38897526

RESUMO

The effects of selenium biofortification methods involving sodium selenite and selenium yeast on the structural characteristics, antioxidant activity and binding capacity of Pleurotus eryngii polysaccharides were investigated. Sodium selenite Se-enriched Pleurotus eryngii polysaccharides (Se-SPEP), selenium yeast Se-enriched Pleurotus eryngii polysaccharides (Se-YPEP), and Pleurotus eryngii polysaccharides (PEP) had Se contents of 20.548 ± 1.561, 19.822 ± 0.613, and 0.052 ± 0.016 µg/g, respectively. Compared with PEP, Se-SPEP and Se-YPEP had lower molecular weight and contained the same monosaccharides in varying molar ratios. The results of FT-IR, PS, ZP, and SEM indicated significant alterations in structural characteristics following selenium biofortification. Se-PEPs exhibited superior activity against ABTS, DPPH, and ·OH radicals, as well as the higher binding capacity for Cd2+ and Cu2+ compared to natural polysaccharides. The binding capacity of the polysaccharides for Cd2+ and Cu2+ was higher at pH 6.8 compared to pH 2.0, while the opposite was observed for Pb2+. Furthermore, Se-PEPs exhibited a significantly higher binding capacity for Cd2+ and Cu2+ at both pH levels compared to natural polysaccharides (P < 0.05). Se-YPEP displayed higher antioxidant activity than Se-SPEP, with their binding capacities reversed. These data indicated that selenium biofortification methods have different positive impacts on the structure and activity of polysaccharides compared to natural polysaccharides, making Se-PEPs promising dietary supplements for safeguarding the body against the risks posed by food-derived heavy metals.


Assuntos
Antioxidantes , Biofortificação , Pleurotus , Selênio , Pleurotus/química , Selênio/química , Selênio/farmacologia , Antioxidantes/farmacologia , Antioxidantes/química , Polissacarídeos Fúngicos/química , Polissacarídeos Fúngicos/farmacologia , Peso Molecular , Picratos/química , Compostos de Bifenilo/química , Compostos de Bifenilo/antagonistas & inibidores , Polissacarídeos/química , Polissacarídeos/farmacologia , Monossacarídeos/análise , Monossacarídeos/química
10.
J Nutr ; 154(8): 2575-2582, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38936549

RESUMO

BACKGROUND: South, East, and Southeast Asia are among the regions of the world with the highest estimated prevalence of inadequate zinc intake. Because populations in those regions eat rice as their main staple, zinc biofortification of rice can potentially improve zinc intake, especially among the most vulnerable. OBJECTIVES: We modeled the impact of the consumption of zinc-biofortified rice on zinc intake and inadequacy among women of childbearing age and young children nationally in Indonesia, the Philippines, and at a subnational level in Bangladesh. METHODS: We conducted an ex-ante analysis by applying increments of zinc content in rice, from a baseline level of 16 parts per million (ppm) to 100 ppm, and based on rice consumption data to substitute levels of conventional rice with zinc-biofortified rice varying between 10% and 70%. RESULTS: Among all datasets evaluated from these 3 countries, the prevalence of dietary zinc inadequacy at baseline was 94%-99% among women of childbearing age, 77%-100% among children 4-5 y old, and 27%-78% among children 1-3 y old. At the current breeding target of 28 ppm, zinc-biofortified rice has the potential to decrease zinc inadequacy by ≤50% among women and children in rural Bangladesh and among children in the Philippines where consumption of rice is higher compared with Indonesia. CONCLUSIONS: Our analysis shows that increasing zinc content in rice ≤45 ppm reduces the burden of zinc inadequacy substantially, after which we encourage programs to increase coverage to reach the highest number of beneficiaries.


Assuntos
Alimentos Fortificados , Oryza , Zinco , Oryza/química , Humanos , Filipinas , Bangladesh , Zinco/análise , Indonésia , Feminino , Pré-Escolar , Lactente , Adulto , Dieta , Masculino , Adulto Jovem , Biofortificação , Adolescente , Prevalência
11.
J Food Sci ; 89(8): 4730-4744, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38922885

RESUMO

The deterioration of the quality of raw liquor caused by the low content of ethyl hexanoate in Nongxiangxing baijiu has become a pervasive problem in the baijiu industry. Therefore, this study attempted to increase the synthesis of ethyl hexanoate by microorganisms with high esterase activity to increase Zaopei fermentation. The results showed that biofortification was a feasible and important way to improve the quality of the raw liquor and increase the ethyl hexanoate content. Adding Bacillus subtilis, Staphylococcus epidermidis, and Millerozyma farinosa for biofortified fermentation disturbed the microbial community structure of Zaopei and increased the abundance of Wickerhamomyces, Saccharomyces, and Thermoascus. The contents of ethyl hexanoate, ethyl valerate, ethyl caprylate, and ethyl heptanoate also increased noticeably in baijiu. The results of E-nose and sensory analysis tested and verified that the baijiu in the fortified group had better flavor characteristics.


Assuntos
Biofortificação , Caproatos , Fermentação , Paladar , Biofortificação/métodos , Caproatos/metabolismo , Aromatizantes , Humanos , Microbiota , Bactérias/metabolismo , Vinho/análise , Vinho/microbiologia
12.
Plant Physiol Biochem ; 212: 108772, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38801788

RESUMO

The agricultural industry is rapidly accepting daily changes and updates, and expanding to meet the basic demands of humanity. The main objective of modern agricultural practices is high profits with minimal investment, without upsetting any other form of life or abiotic factors. According to this principle, nanofertilizers are recommended for use in agriculture and are classified in different ways based on their nutritive value, functional role in the environment, chemical composition, and form of application to ensure their persistent availability in the required quantities. These nanofertilizers meet the global crop nutrient requirement of 191.8 million metric tons along with multitudes of added value, and which are highly endorsed in the agricultural field compared to other chemical fertilizers, or their usage can be reduced to less than 50% by the use of nanofertilizers. In this review, we discuss different types of nanofertilizers, their effects on crop yield, stress tolerance, and their impact on the environment. Furthermore, the different types of nanofertilizer delivery, modes of action, and toxic impacts of nanofertilizers have been discussed. Although a large number of commercially successful effects of nanofertilizers have been demonstrated, the effects of biomagnification and cellular transformation are still disputed. The effect of the biomagnification of nanofertilizers remains unclear. A suitable strategy must be developed to easily recycle nanofertilizers. It is the need of the hour to accept the use of nanofertilizers in parallel to addressing this issue.


Assuntos
Agricultura , Biofortificação , Produtos Agrícolas , Fertilizantes , Produtos Agrícolas/metabolismo , Produtos Agrícolas/crescimento & desenvolvimento , Biofortificação/métodos , Agricultura/métodos , Nutrientes/metabolismo
13.
Sci Rep ; 14(1): 12368, 2024 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-38811671

RESUMO

Iron, a crucial micronutrient, is an integral element of biotic vitality. The scarcity of iron in the soil creates agronomic challenges and has a detrimental impact on crop vigour and chlorophyll formation. Utilizing iron oxide nanoparticles (IONPs) via nanopriming emerges as an innovative method to enhance agricultural efficiency and crop health. The objective of this study was to synthesize biogenic IONPs from Glycyrrhiza glabra (G. glabra) plant extract using green chemistry and to evaluate their nanopriming effects on rice seed iron levels and growth. The synthesized IONPs were analyzed using UV-Vis spectroscopy, Fourier-transform infrared spectroscopy (FTIR), Scanning electron microscope (SEM), Transmission electron microscopy (TEM), and Energy-dispersive X-ray (EDX) techniques. The UV-Vis peak at 280 nm revealed the formation of IONPs. SEM and TEM showed that the nanoparticles were spherical and had an average diameter of 23.8 nm. Nanopriming resulted in a substantial enhancement in growth, as seen by a 9.25% and 22.8% increase in shoot lengths for the 50 ppm and 100 ppm treatments, respectively. The yield metrics showed a positive correlation with the concentrations of IONPs. The 1000-grain weight and spike length observed a maximum increase of 193.75% and 97.73%, respectively, at the highest concentration of IONPs. The study indicates that G. glabra synthesized IONPs as a nanopriming agent significantly increased rice seeds' growth and iron content. This suggests that there is a relationship between the dosage of IONPs and their potential for improving agricultural biofortification.


Assuntos
Biofortificação , Glycyrrhiza , Oryza , Sementes , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Sementes/química , Glycyrrhiza/química , Glycyrrhiza/crescimento & desenvolvimento , Glycyrrhiza/metabolismo , Extratos Vegetais/química , Nanopartículas Magnéticas de Óxido de Ferro/química , Química Verde/métodos , Ferro/metabolismo , Ferro/química , Compostos Férricos/química , Espectroscopia de Infravermelho com Transformada de Fourier
14.
Nutrients ; 16(10)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38794719

RESUMO

With a burgeoning global population, meeting the demand for increased food production presents challenges, particularly concerning mineral deficiencies in diets. Micronutrient shortages like iron, iodine, zinc, selenium, and magnesium carry severe health implications, especially in developing nations. Biofortification of plants and plant products emerges as a promising remedy to enhance micronutrient levels in food. Utilizing agronomic biofortification, conventional plant breeding, and genetic engineering yields raw materials with heightened micronutrient contents and improved bioavailability. A similar strategy extends to animal-derived foods by fortifying eggs, meat, and dairy products with micronutrients. Employing "dual" biofortification, utilizing previously enriched plant materials as a micronutrient source for livestock, proves an innovative solution. Amid biofortification research, conducting in vitro and in vivo experiments is essential to assess the bioactivity of micronutrients from enriched materials, emphasizing digestibility, bioavailability, and safety. Mineral deficiencies in human diets present a significant health challenge. Biofortification of plants and animal products emerges as a promising approach to alleviate micronutrient deficiencies, necessitating further research into the utilization of biofortified raw materials in the human diet, with a focus on bioavailability, digestibility, and safety.


Assuntos
Biofortificação , Alimentos Fortificados , Micronutrientes , Humanos , Animais , Micronutrientes/deficiência , Micronutrientes/análise , Disponibilidade Biológica , Ração Animal/análise , Oligoelementos/deficiência , Oligoelementos/análise , Deficiências Nutricionais/prevenção & controle
15.
Sci Total Environ ; 927: 172204, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38580128

RESUMO

Agriculture stands as a thriving enterprise in India, serving as both the bedrock of economy and vital source of nutrition. In response to the escalating demands for high-quality food for swiftly expanding population, agricultural endeavors are extending their reach into the elevated terrains of the Himalayas, tapping into abundant resources for bolstering food production. Nonetheless, these Himalayan agro-ecosystems encounter persistent challenges, leading to crop losses. These challenges stem from a combination of factors including prevailing frigid temperatures, suboptimal farming practices, unpredictable climatic shifts, subdivided land ownership, and limited resources. While the utilization of chemical fertilizers has been embraced to enhance the quality of food output, genuine concerns have arisen due to the potential hazards they pose. Consequently, the present investigation was initiated with the objective of formulating environmentally friendly and cold-tolerant broad ranged bioinoculants tailored to enhance the production of Kidney bean while concurrently enriching its nutrient content across entire hilly regions. The outcomes of this study unveiled noteworthy advancements in kidney bean yield, registering a substantial increase ranging from 12.51 ± 2.39 % to 14.15 ± 0.83 % in regions of lower elevation (Jeolikote) and an even more remarkable surge ranging from 20.60 ± 3.03 % to 29.97 ± 5.02 % in higher elevated areas (Chakrata) compared to the control group. Furthermore, these cold-tolerant bioinoculants exhibited a dual advantage by fostering the enhancement of essential nutrients within the grains and fostering a positive influence on the diversity and abundance of microbial life in the rhizosphere. As a result, to effectively tackle the issues associated with chemical fertilizers and to achieve sustainable improvements in both the yield and nutrient composition of kidney bean across varying elevations, the adoption of cold-tolerant Enterobacter hormaechei CHM16, and Pantoea agglomerans HRM 23, including the consortium, presents a promising avenue. Additionally, this study has contributed significant insights-into the role of organic acids like oxalic acid in the solubilization of nutrients, thereby expanding the existing knowledge in this specialized field.


Assuntos
Biofortificação , Temperatura Baixa , Rizosfera , Índia , Phaseolus/fisiologia , Agricultura/métodos , Altitude , Microbiologia do Solo , Produtos Agrícolas
16.
J Nutr ; 154(6): 1815-1826, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38599385

RESUMO

BACKGROUND: Evidence of the effectiveness of biofortified maize with higher provitamin A (PVA) to address vitamin A deficiency in rural Africa remains scant. OBJECTIVES: This study projects the impact of adopting PVA maize for a diversity of households in an area typical of rural Zimbabwe and models the cost and composition of diets adequate in vitamin A. METHODS: Household-level weighed food records were generated from 30 rural households during a week in April and November 2021. Weekly household intakes were calculated, as well as indicative costs of diets using data from market surveys. The impact of PVA maize adoption was modeled assuming all maize products contained observed vitamin A concentrations. The composition and cost of the least expensive indicative diets adequate in vitamin A were calculated using linear programming. RESULTS: Very few households would reach adequate intake of vitamin A with the consumption of PVA maize. However, from a current situation of 33%, 50%-70% of households were projected to reach ≥50% of their requirements (the target of PVA), even with the modest vitamin A concentrations achieved on-farm (mean of 28.3 µg RAE per 100 g). This proportion would increase if higher concentrations recorded on-station were achieved. The estimated daily costs of current diets (mean ± standard deviation) were USD 1.43 ± 0.59 in the wet season and USD 0.96 ± 0.40 in the dry season. By comparison, optimization models suggest that diets adequate in vitamin A could be achieved at daily costs of USD 0.97 and USD 0.79 in the wet and dry seasons, respectively. CONCLUSIONS: The adoption of PVA maize would bring a substantial improvement in vitamin A intake in rural Zimbabwe but should be combined with other interventions (e.g., diet diversification) to fully address vitamin A deficiency.


Assuntos
Biofortificação , Dieta , População Rural , Vitamina A , Zea mays , Zea mays/química , Zimbábue , Vitamina A/administração & dosagem , Humanos , Deficiência de Vitamina A/prevenção & controle , Deficiência de Vitamina A/dietoterapia , Provitaminas , Alimentos Fortificados , Estado Nutricional , Feminino , Masculino
17.
Curr Opin Biotechnol ; 87: 103132, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38669731

RESUMO

In the post-Green Revolution era, disparities in dietary access, rising obesity rates, demographic shifts, adoption of plant-based diets, and the impact of climate change collectively contribute to a progressive decline in dietary nutritional value, exacerbating B vitamin deficiencies across both low- and high-income countries. While the prevailing focus of biofortification has been on three micronutrients - provitamin A, iron, and zinc - utilizing conventional breeding, it is imperative to diversify biofortification strategies to combat micronutrient malnutrition. Metabolic engineering, facilitated by biotechnological tools, presents a promising avenue, contingent upon advances in fundamental knowledge, technological innovation, regulatory updates, and sustained public funding. Recognizing the intricate metabolic interplay of B vitamins in plants and humans, a comprehensive 'from metabolism to metabolism' approach is crucial for designing effective biofortification strategies that target multiple vitamins. This holistic perspective also extends beyond individual crops to encompass the entire food chain, a complex socioeconomic ecosystem that necessitates a paradigm shift, prioritizing quality over quantity.


Assuntos
Biofortificação , Biofortificação/métodos , Humanos , Complexo Vitamínico B/metabolismo , Engenharia Metabólica/métodos , Deficiência de Vitaminas do Complexo B/metabolismo
18.
Food Funct ; 15(7): 3433-3445, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38436090

RESUMO

Bananas (Musa spp.) are a target crop for provitamin A carotenoids (pVACs) biofortification programs aiming at reducing the negative impact on health caused by vitamin A deficiency in vulnerable populations. However, studies to understand the effect of ripening methods and stages and the genotype on carotenoid content and bioaccessibility in the banana germplasm are scarce. This study evaluated carotenoid content and bioaccessibility in 27 different banana accessions at three maturation stages and two ripening methods (natural ripening and ethylene ripening). Across most accessions, total carotenoid content (TCC) increased from unripe to ripe fruit; only two accessions showed a marginal decrease. The ripening method affected carotenoid accumulation; 18 accessions had lower TCC when naturally ripened compared with the ethylene ripening group, while nine accessions showed higher TCC when ripened with exogenous ethylene, suggesting that treating bananas with exogenous ethylene might directly affect TCC accumulation, but the response is accession dependent. Additionally, carotenoid bioaccessibility varied across genotypes and was correlated with the amount of soluble starch and resistant starch. These findings highlight the importance of ripening methods and genotypes in maximizing banana carotenoid content and bioaccessibility, which could contribute to improving pVACs delivery in biofortification programs.


Assuntos
Musa , Musa/genética , Carotenoides , Biofortificação , Frutas/genética , Genótipo , Etilenos , Proteínas de Plantas/genética
19.
Sci Total Environ ; 926: 171772, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38499106

RESUMO

The application of soil amendment (SA) and the cultivation of low Cd-accumulating varieties have been a widely favored strategy to enable the safe utilization of Cd-contaminated arable land. However, little has been reported on the reciprocal effects of SA on the Cd mitigation and nutritional quality of different wheat varieties. In this study, we evaluated the impact of an SA on agronomic traits, Cd accumulation, translocation and mineral nutrition of 12 wheat varieties in an acidic field with a Cd concentration of 0.46 mg/kg. The results showed that the SA significantly reduced soil DTPA Cd (42.3 %) and resulted in a slight decrease in wheat grain yield (4.24-9.72 %, average 7.62 %). Similarly, the SA significantly reduced grain Cd concentrations (average 61.65 %) while increased the concentrations of beneficial elements such as Mo and Se in all wheat varieties. However, this intervention also led to a reduction in the concentration of essential mineral elements (such as Ca, Fe, and Mn) in whole wheat grain and starchy endosperm, as well as a reduction in their proportion in the bran. Based on genotypic differences, Huaimai 33, Zhenmai 168, Sumai 188 and Yangmai 28 were considered to be the relatively most promising wheat varieties for achieving a balance among food safety, nutritional quality, and economic yield in this region. Taken together, this study highlights the varietal differences in Cd mitigation and mineral accumulation in different wheat varieties in response to the SA, offering new perspectives for phytoremediation and biofortification strategies for Cd-contaminated farmland.


Assuntos
Cádmio , Poluentes do Solo , Cádmio/análise , Solo , Triticum , Biofortificação , Poluentes do Solo/análise , Minerais , Grão Comestível/química
20.
Food Chem ; 448: 139123, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38552461

RESUMO

In the present work, liposomes have been used as nanocarriers in the biofortification of wheat plants with selenium (Se) through foliar application. Liposomal formulations were prepared using 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and Phospholipon®90H (P90H) (average size <100 nm), loaded with different concentrations of inorganic Se (selenite and selenate) and applied twice to the plants in the stage of vegetative growth. Liposomes enhanced Se uptake by wheat plants compared to direct application. The highest Se enrichment was achieved using the phospholipid DPPC and a concentration of 1000 µmol·L-1 of Se without affecting the biomass, chlorophylls, carotenoids, and the concentration of mineral nutrients of the plants. The chemical speciation of Se in the plants was further investigated by X-ray absorption spectroscopy (XAS). The results from XAS spectra revealed that most of the inorganic Se was transformed to organic Se and that the use of liposomes influenced the proportion of C-Se-C over C-Se-Se-C species.


Assuntos
Biofortificação , Lipossomos , Folhas de Planta , Selênio , Triticum , Triticum/química , Triticum/crescimento & desenvolvimento , Triticum/metabolismo , Lipossomos/química , Selênio/química , Selênio/metabolismo , Selênio/análise , Folhas de Planta/química , Folhas de Planta/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Nanopartículas/química , Portadores de Fármacos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA