Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 14.200
Filtrar
1.
Appl Microbiol Biotechnol ; 108(1): 325, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38717668

RESUMO

Actinomycetota have been widely described as valuable sources for the acquisition of secondary metabolites. Most microbial metabolites are produced via metabolic pathways encoded by biosynthetic gene clusters (BGCs). Although many secondary metabolites are not essential for the survival of bacteria, they play an important role in their adaptation and interactions within microbial communities. This is how bacteria isolated from extreme environments such as Antarctica could facilitate the discovery of new BGCs with biotechnological potential. This study aimed to isolate rare Actinomycetota strains from Antarctic soil and sediment samples and identify their metabolic potential based on genome mining and exploration of biosynthetic gene clusters. To this end, the strains were sequenced using Illumina and Oxford Nanopore Technologies platforms. The assemblies were annotated and subjected to phylogenetic analysis. Finally, the BGCs present in each genome were identified using the antiSMASH tool, and the biosynthetic diversity of the Micrococcaceae family was evaluated. Taxonomic annotation revealed that seven strains were new and two were previously reported in the NCBI database. Additionally, BGCs encoding type III polyketide synthases (T3PKS), beta-lactones, siderophores, and non-ribosomal peptide synthetases (NRPS) have been identified, among others. In addition, the sequence similarity network showed a predominant type of BGCs in the family Micrococcaceae, and some genera were distinctly grouped. The BGCs identified in the isolated strains could be associated with applications such as antimicrobials, anticancer agents, and plant growth promoters, among others, positioning them as excellent candidates for future biotechnological applications and innovations. KEY POINTS: • Novel Antarctic rare Actinomycetota strains were isolated from soil and sediments • Genome-based taxonomic affiliation revealed seven potentially novel species • Genome mining showed metabolic potential for novel natural products.


Assuntos
Sedimentos Geológicos , Família Multigênica , Filogenia , Microbiologia do Solo , Regiões Antárticas , Sedimentos Geológicos/microbiologia , Metabolismo Secundário/genética , Actinobacteria/genética , Actinobacteria/metabolismo , Actinobacteria/classificação , Genoma Bacteriano , Biotecnologia/métodos , Vias Biossintéticas/genética , Peptídeo Sintases/genética , Peptídeo Sintases/metabolismo , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo
2.
World J Microbiol Biotechnol ; 40(7): 207, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38767733

RESUMO

Biological pretreatment of wood chips by fungi is a well-known approach prior to mechanical- or chemical pulp production. For this biological approach, a limited number of white-rot fungi with an ability to colonize and selectively degrade lignin are used to pretreat wood chips allowing the remaining cellulose to be processed for further applications. Biopulping is an environmentally friendly technology that can reduce the energy consumption of traditional pulping processes. Fungal pretreatment also reduces the pitch content in the wood chips and improves the pulp quality in terms of brightness, strength, and bleachability. The bleached biopulps are easier to refine compared to pulps produced by conventional methodology. In the last decades, biopulping has been scaled up with pilot trials towards industrial level, with optimization of several intermediate steps and improvement of economic feasibility. Nevertheless, fundamental knowledge on the biochemical mechanisms involved in biopulping is still lacking. Overall, biopulping technology has advanced rapidly during recent decades and pilot mill trials have been implemented. The use of fungi as pretreatment for pulp production is in line with modern circular economy strategies and can be implemented in existing production plants. In this review, we discuss some recent advances in biopulping technology, which can improve mechanical-, chemical-, and organosolv pulping processes along with their mechanisms.


Assuntos
Celulose , Fungos , Lignina , Madeira , Lignina/metabolismo , Fungos/metabolismo , Madeira/microbiologia , Celulose/metabolismo , Biotecnologia/métodos
3.
World J Microbiol Biotechnol ; 40(7): 201, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38736020

RESUMO

Cariogenic biofilms have a matrix rich in exopolysaccharides (EPS), mutans and dextrans, that contribute to caries development. Although several physical and chemical treatments can be employed to remove oral biofilms, those are only partly efficient and use of biofilm-degrading enzymes represents an exciting opportunity to improve the performance of oral hygiene products. In the present study, a member of a glycosyl hydrolase family 66 from Flavobacterium johnsoniae (FjGH66) was heterologously expressed and biochemically characterized. The recombinant FjGH66 showed a hydrolytic activity against an early EPS-containing S. mutans biofilm, and, when associated with a α-(1,3)-glucosyl hydrolase (mutanase) from GH87 family, displayed outstanding performance, removing more than 80% of the plate-adhered biofilm. The mixture containing FjGH66 and Prevotella melaninogenica GH87 α-1,3-mutanase was added to a commercial mouthwash liquid to synergistically remove the biofilm. Dental floss and polyethylene disks coated with biofilm-degrading enzymes also degraded plate-adhered biofilm with a high efficiency. The results presented in this study might be valuable for future development of novel oral hygiene products.


Assuntos
Biofilmes , Dextranase , Flavobacterium , Glicosídeo Hidrolases , Streptococcus mutans , Biofilmes/crescimento & desenvolvimento , Dextranase/metabolismo , Dextranase/genética , Flavobacterium/enzimologia , Flavobacterium/genética , Streptococcus mutans/enzimologia , Streptococcus mutans/genética , Glicosídeo Hidrolases/metabolismo , Glicosídeo Hidrolases/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Hidrólise , Biotecnologia/métodos
4.
World J Microbiol Biotechnol ; 40(7): 209, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38771414

RESUMO

Nanobodies are the smallest known antigen-binding molecules to date. Their small size, good tissue penetration, high stability and solubility, ease of expression, refolding ability, and negligible immunogenicity in the human body have granted them excellence over conventional antibodies. Those exceptional attributes of nanobodies make them promising candidates for various applications in biotechnology, medicine, protein engineering, structural biology, food, and agriculture. This review presents an overview of their structure, development methods, advantages, possible challenges, and applications with special emphasis on infectious diseases-related ones. A showcase of how nanobodies can be harnessed for applications including neutralization of viruses and combating antibiotic-resistant bacteria is detailed. Overall, the impact of nanobodies in vaccine design, rapid diagnostics, and targeted therapies, besides exploring their role in deciphering microbial structures and virulence mechanisms are highlighted. Indeed, nanobodies are reshaping the future of infectious disease prevention and treatment.


Assuntos
Doenças Transmissíveis , Anticorpos de Domínio Único , Anticorpos de Domínio Único/imunologia , Humanos , Doenças Transmissíveis/imunologia , Doenças Transmissíveis/terapia , Animais , Biotecnologia/métodos , Engenharia de Proteínas/métodos
5.
World J Microbiol Biotechnol ; 40(6): 189, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38702568

RESUMO

Rare Earth Elements (REEs) are indispensable in contemporary technologies, influencing various aspects of our daily lives and environmental solutions. The escalating demand for REEs has led to increased exploitation, resulting in the generation of diverse REE-bearing solid and liquid wastes. Recognizing the potential of these wastes as secondary sources of REEs, researchers are exploring microbial solutions for their recovery. This mini review provides insights into the utilization of microorganisms, with a particular focus on microalgae, for recovering REEs from sources such as ores, electronic waste, and industrial effluents. The review outlines the principles and distinctions of bioleaching, biosorption, and bioaccumulation, offering a comparative analysis of their potential and limitations. Specific examples of microorganisms demonstrating efficacy in REE recovery are highlighted, accompanied by successful methods, including advanced techniques for enhancing microbial strains to achieve higher REE recovery. Moreover, the review explores the environmental implications of bio-recovery, discussing the potential of these methods to mitigate REE pollution. By emphasizing microalgae as promising biotechnological candidates for REE recovery, this mini review not only presents current advances but also illuminates prospects in sustainable REE resource management and environmental remediation.


Assuntos
Biodegradação Ambiental , Metais Terras Raras , Microalgas , Microalgas/metabolismo , Metais Terras Raras/metabolismo , Bactérias/metabolismo , Bactérias/classificação , Recuperação e Remediação Ambiental/métodos , Biotecnologia/métodos , Resíduos Industriais/análise , Bioacumulação
6.
Proc Natl Acad Sci U S A ; 121(21): e2318690121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38739791

RESUMO

Cyanobacteria are photosynthetic bacteria whose gene expression patterns are globally regulated by their circadian (daily) clocks. Due to their ability to use sunlight as their energy source, they are also attractive hosts for "green" production of pharmaceuticals, renewable fuels, and chemicals. However, despite the application of traditional genetic tools such as the identification of strong promoters to enhance the expression of heterologous genes, cyanobacteria have lagged behind other microorganisms such as Escherichia coli and yeast as economically efficient cell factories. The previous approaches have ignored large-scale constraints within cyanobacterial metabolic networks on transcription, predominantly the pervasive control of gene expression by the circadian (daily) clock. Here, we show that reprogramming gene expression by releasing circadian repressor elements in the transcriptional regulatory pathways coupled with inactivation of the central oscillating mechanism enables a dramatic enhancement of expression in cyanobacteria of heterologous genes encoding both catalytically active enzymes and polypeptides of biomedical significance.


Assuntos
Regulação Bacteriana da Expressão Gênica , Fotossíntese , Fotossíntese/genética , Relógios Circadianos/genética , Biotecnologia/métodos , Cianobactérias/genética , Cianobactérias/metabolismo , Regiões Promotoras Genéticas , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética
7.
Microbiologyopen ; 13(2): e1406, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38556942

RESUMO

Microbial products are essential for developing various therapeutic agents, including antibiotics, anticancer drugs, vaccines, and therapeutic enzymes. Genetic engineering techniques, functional genomics, and synthetic biology unlock previously uncharacterized natural products. This review highlights major advances in microbial biotechnology, focusing on gene-based technologies for medical applications.


Assuntos
Biotecnologia , Engenharia Genética , Biotecnologia/métodos , Técnicas Genéticas , Genômica , Biologia Sintética
9.
J Am Chem Soc ; 146(15): 10293-10298, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38569597

RESUMO

Fractionating and characterizing target samples are fundamental to the analysis of biomolecules. Extracellular vesicles (EVs), containing information regarding the cellular birthplace, are promising targets for biology and medicine. However, the requirement for multiple-step purification in conventional methods hinders analysis of small samples. Here, we apply a DNA origami tripod with a defined aperture of binders (e.g., antibodies against EV biomarkers), which allows us to capture the target molecule. Using exosomes as a model, we show that our tripod nanodevice can capture a specific size range of EVs with cognate biomarkers from a broad distribution of crude EV mixtures. We further demonstrate that the size of captured EVs can be controlled by changing the aperture of the tripods. This simultaneous selection with the size and biomarker approach should simplify the EV purification process and contribute to the precise analysis of target biomolecules from small samples.


Assuntos
Biotecnologia , Fracionamento Celular , DNA , Exossomos , Nanotecnologia , DNA/química , Exossomos/química , Exossomos/imunologia , Nanotecnologia/métodos , Fracionamento Celular/métodos , Anticorpos/imunologia , Biomarcadores/análise , Biotecnologia/métodos , Microscopia de Fluorescência , Imagem Individual de Molécula
10.
Microb Biotechnol ; 17(5): e14450, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38683674

RESUMO

Microbial technologies constitute a huge and unique potential for confronting major humanitarian and biosphere challenges, especially in the realms of sustainability and providing basic goods and services where they are needed and particularly in low-resource settings. These technologies are evolving rapidly. Powerful approaches are being developed to create novel products, processes, and circular economies, including new prophylactics and therapies in healthcare, bioelectric systems, and whole-cell understanding of metabolism that provides novel insights into mechanisms and how they can be utilised for applications. The modulation of microbiomes promises to create important applications and mitigate problems in a number of spheres. Collectively, microbial technologies save millions of lives each year and have the potential, through increased deployment, to save many more. They help restore environmental health, improve soil fertility, enable regenerative agriculture, reduce biodiversity losses, reduce pollution, and mitigate polluted environments. Many microbial technologies may be considered to be 'healing' technologies - healing of humans, of other members of the biosphere, and of the environment. This is the Age of Microbial Technology. However, the current exploitation of microbial technologies in the service of humanity and planetary health is woefully inadequate and this failing unnecessarily costs many lives and biosphere deterioration. Microbiologists - the practitioners of these healing technologies - have a special, preordained responsibility to promote and increase their deployment for the good of humanity and the planet. To do this effectively - to actually make a difference - microbiologists will need to partner with key enablers and gatekeepers, players such as other scientists with essential complementary skills like bioengineering and bioinformatics, politicians, financiers, and captains of industry, international organisations, and the general public. Orchestration and coordination of the establishment and functioning of effective partnerships will best be accomplished by learned societies, their academies, and the international umbrella organisations of learned societies. Effective dedication of players to the tasks at hand will require unstinting support from employers, particularly the heads of institutes of higher education and of research establishments. Humanity and the biosphere are currently facing challenges to their survival not experienced for millennia. Effectively confronting these challenges is existential, and microbiologists and their learned societies have pivotal roles to play: they must step up and act now.


Assuntos
Microbiota , Humanos , Biotecnologia/métodos , Academias e Institutos
11.
Arch Virol ; 169(5): 108, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658418

RESUMO

The occlusion bodies of Autographa californica multiple nucleopolyhedrovirus are proteinaceous formations with significant biotechnological potential owing to their capacity to integrate foreign proteins through fusion with polyhedrin, their primary component. However, the strategy for successful heterologous protein inclusion still requires further refinement. In this study, we conducted a comparative assessment of various conditions to achieve the embedding of recombinant proteins within polyhedra. Two baculoviruses were constructed: AcPHGFP (polh+), with GFP as a fusion to wild type (wt) polyhedrin and AcΔPHGFP (polh+), with GFP fused to a fragment corresponding to amino acids 19 to 110 of polyhedrin. These baculoviruses were evaluated by infecting Sf9 cells and stably transformed Sf9, Sf9POLH, and Sf9POLHE44G cells. The stably transformed cells contributed another copy of wt or a mutant polyhedrin, respectively. Polyhedra of each type were isolated and characterized by classical methods. The fusion PHGFP showed more-efficient incorporation into polyhedra than ΔPHGFP in the three cell lines assayed. However, ΔPHGFP polyhedron yields were higher than those of PHGFP in Sf9 and Sf9POLH cells. Based on an integral analysis of the studied parameters, it can be concluded that, except for the AcΔPHGFP/Sf9POLHE44G combination, deficiencies in one factor can be offset by improved performance by another. The combinations AcPHGFP/Sf9POLHE44G and AcΔPHGFP/Sf9POLH stand out due to their high level of incorporation and the large number of recombinant polyhedra produced, respectively. Consequently, the choice between these approaches becomes dependent on the intended application.


Assuntos
Biotecnologia , Nucleopoliedrovírus , Spodoptera , Nucleopoliedrovírus/genética , Nucleopoliedrovírus/metabolismo , Animais , Células Sf9 , Biotecnologia/métodos , Spodoptera/virologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Matriz de Corpos de Inclusão , Corpos de Oclusão Virais/metabolismo , Corpos de Oclusão Virais/genética , Linhagem Celular , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
12.
Bioresour Technol ; 401: 130753, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38685516

RESUMO

This work proposes a process design and techno-economic assessment for the production of γ-valerolactone from lignocellulosic derived fructose at industrial scale, with the aim of exploring its feasibility, identifying potential obstacles, and suggesting improvements in the context of France. First, the conceptual process design is developed, the process modelled and optimized. Second, different potential scenarios for the energy supply to the process are analyzed by means of a set of economic key performance indicators, aimed at highlighting the best potential profitability scenario for the sustainable exploitation of waste biomass in the context analyzed. The lowest Minimum Selling Price for GVL is obtained at 10 kt/y plant fueled by biomass, i.e. 1.89 €/kg, along with the highest end-of-live revenue, i.e. 113 M€. Finally, a sensitivity and uncertainties analysis, based on Monte Carlo simulations, are carried out on the results in order to test their robustness with respect to key input parameters.


Assuntos
Biomassa , Frutose , Lactonas , Lactonas/química , Frutose/química , Biotecnologia/métodos , Biotecnologia/economia , Método de Monte Carlo
13.
Molecules ; 29(8)2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38675698

RESUMO

The increasing demand for sustainable alternatives underscores the critical need for a shift away from traditional hydrocarbon-dependent processes. In this landscape, biomanufacturing emerges as a compelling solution, offering a pathway to produce essential chemical materials with significantly reduced environmental impacts. By utilizing engineered microorganisms and biomass as raw materials, biomanufacturing seeks to achieve a carbon-neutral footprint, effectively counteracting the carbon dioxide emissions associated with fossil fuel use. The efficiency and specificity of biocatalysts further contribute to lowering energy consumption and enhancing the sustainability of the production process. Within this context, cell-free synthesis emerges as a promising approach to accelerate the shift towards biomanufacturing. Operating with cellular machinery in a controlled environment, cell-free synthesis offers multiple advantages: it enables the rapid evaluation of biosynthetic pathways and optimization of the conditions for the synthesis of specific chemicals. It also holds potential as an on-demand platform for the production of personalized and specialized products. This review explores recent progress in cell-free synthesis, highlighting its potential to expedite the transformation of chemical processes into more sustainable biomanufacturing practices. We discuss how cell-free techniques not only accelerate the development of new bioproducts but also broaden the horizons for sustainable chemical production. Additionally, we address the challenges of scaling these technologies for commercial use and ensuring their affordability, which are critical for cell-free systems to meet the future demands of industries and fully realize their potential.


Assuntos
Sistema Livre de Células , Vias Biossintéticas , Biotecnologia/métodos , Biomassa , Produtos Biológicos/química
14.
Bioresour Technol ; 401: 130718, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38641303

RESUMO

Recently, microalgae had received extensive attention for carbon capture and utilization. But its overall efficiency still could not reach a satisfactory degree. Artificial photosynthesis showed better efficiency in the conversion of carbon dioxide. However, artificial photosynthesis could generally only produce C1-C3 organic matters at present. Some studies showed that heterotrophic microalgae can efficiently synthesize high value organic matters by using simple organic matter such as acetate. Therefore, the combination of artificial photosynthesis with heterotrophic microalgae culture showed great potential for efficient carbon capture and high-value organic matter production. This article systematically analyzed the characteristics and challenges of carbon dioxide conversion by microalgae and artificial photosynthesis. On this basis, the coupling mode and development trend of artificial photosynthesis combined with microalgae culture were discussed. In summary, the combination of artificial photosynthesis and microalgae culture has great potential in the field of carbon capture and utilization, and deserves further study.


Assuntos
Dióxido de Carbono , Microalgas , Fotossíntese , Microalgas/metabolismo , Dióxido de Carbono/metabolismo , Biotecnologia/métodos , Carbono/metabolismo
15.
J Inorg Biochem ; 256: 112539, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38593609

RESUMO

Motivated by the ambition to establish an enzyme-driven bioleaching pathway for copper extraction, properties of the Type-1 copper protein rusticyanin from Acidithiobacillus ferrooxidans (AfR) were compared with those from an ancestral form of this enzyme (N0) and an archaeal enzyme identified in Ferroplasma acidiphilum (FaR). While both N0 and FaR show redox potentials similar to that of AfR their electron transport rates were significantly slower. The lack of a correlation between the redox potentials and electron transfer rates indicates that AfR and its associated electron transfer chain evolved to specifically facilitate the efficient conversion of the energy of iron oxidation to ATP formation. In F. acidiphilum this pathway is not as efficient unless it is up-regulated by an as of yet unknown mechanism. In addition, while the electrochemical properties of AfR were consistent with previous data, previously unreported behavior was found leading to a form that is associated with a partially unfolded form of the protein. The cyclic voltammetry (CV) response of AfR immobilized onto an electrode showed limited stability, which may be connected to the presence of the partially unfolded state of this protein. Insights gained in this study may thus inform the engineering of optimized rusticyanin variants for bioleaching processes as well as enzyme-catalyzed solubilization of copper-containing ores such as chalcopyrite.


Assuntos
Acidithiobacillus , Cinética , Acidithiobacillus/metabolismo , Acidithiobacillus/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Oxirredução , Cobre/química , Cobre/metabolismo , Metaloproteínas/química , Metaloproteínas/metabolismo , Biotecnologia/métodos , Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Técnicas Eletroquímicas/métodos , Transporte de Elétrons , Azurina
16.
ACS Synth Biol ; 13(5): 1412-1423, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38669097

RESUMO

Genetically engineered microorganisms (GEMs) represent a new paradigm in our ability to address the needs of a growing, changing world. GEMs are being used in agriculture, food production and additives, manufacturing, commodity and noncommodity products, environmental remediation, etc., with even more applications in the pipeline. Along with modern advances in genome-manipulating technologies, new manufacturing processes, markets, and attitudes are driving a boom in more products that contain or are derived from GEMs. Consequentially, researchers and developers are poised to interact with biotechnology regulatory policies that have been in effect for decades, but which are out of pace with rapidly changing scientific advances and knowledge. In the United States, biotechnology is regulated by multiple agencies with overlapping responsibilities. This poses a challenge for both developers and regulators to simultaneously allow new innovation and products into the market while also ensuring their safety and efficacy for the public and environment. This article attempts to highlight the various factors that interact between regulatory policy and development of GEMs in the United States, with perspectives from both regulators and developers. We present insights from a 2022 workshop hosted at the University of California, Berkeley that convened regulators from U.S. regulatory agencies and industry developers of various GEMs and GEM-derived products. We highlight several new biotechnologies and applications that are driving innovation in this space, and how regulatory agencies evaluate and assess these products according to current policies. Additionally, we describe recent updates to regulations that incorporate new technology and knowledge and how they can adapt further to effectively continue regulating for the future.


Assuntos
Biotecnologia , Engenharia Genética , Estados Unidos , Biotecnologia/métodos , Engenharia Genética/métodos , Engenharia Genética/legislação & jurisprudência , Microrganismos Geneticamente Modificados
17.
Microb Biotechnol ; 17(4): e14467, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38656876

RESUMO

Microorganisms known as psychrophiles/psychrotrophs, which survive in cold climates, constitute majority of the biosphere on Earth. Their capability to produce cold-active enzymes along with other distinguishing characteristics allows them to survive in the cold environments. Due to the relative ease of large-scale production compared to enzymes from plants and animals, commercial uses of microbial enzyme are alluring. The ocean depths, polar, and alpine regions, which make up over 85% of the planet, are inhabited to cold ecosystems. Microbes living in these regions are important for their metabolic contribution to the ecosphere as well as for their enzymes, which may have potential industrial applications. Cold-adapted microorganisms are a possible source of cold-active enzymes that have high catalytic efficacy at low and moderate temperatures at which homologous mesophilic enzymes are not active. Cold-active enzymes can be used in a variety of biotechnological processes, including food processing, additives in the detergent and food industries, textile industry, waste-water treatment, biopulping, environmental bioremediation in cold climates, biotransformation, and molecular biology applications with great potential for energy savings. Genetically manipulated strains that are suitable for producing a particular cold-active enzyme would be crucial in a variety of industrial and biotechnological applications. The potential advantage of cold-adapted enzymes will probably lead to a greater annual market than for thermo-stable enzymes in the near future. This review includes latest updates on various microbial source of cold-active enzymes and their biotechnological applications.


Assuntos
Bactérias , Biotecnologia , Temperatura Baixa , Enzimas , Biotecnologia/métodos , Bactérias/enzimologia , Bactérias/genética , Bactérias/metabolismo , Bactérias/classificação , Enzimas/metabolismo , Estabilidade Enzimática
18.
Bioresour Technol ; 400: 130675, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38608786

RESUMO

In this article we can observe the scanning by the literature for the pretreatment of steam explosion applied to lignocellulose biomass. A comparison of the chemical and physical characterization of potato peel as a lignocellulose biomass. Besides, the innovative design of a continuous reactor for the potato peel steam explosion process is shown, with specific temperature and pressure conditions on a pilot scale, detailing its parts. Finally, a finite element analysis was performed where stress results were obtained from the reactor material, severity factor, structural analysis and thermal analysis, providing a panorama of the reactor's behavior with the conditions specific.


Assuntos
Solanum tuberosum , Vapor , Solanum tuberosum/química , Lignina/química , Desenho de Equipamento , Temperatura , Biomassa , Análise de Elementos Finitos , Pressão , Biotecnologia/métodos , Reatores Biológicos
19.
Bioresour Technol ; 400: 130702, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38615968

RESUMO

The bioconversion of lignocellulosic biomass into novel bioproducts is crucial for sustainable biorefineries, providing an integrated solution for circular economy objectives. The current study investigated a novel microwave-assisted acidic deep eutectic solvent (DES) pretreatment of waste cocoa pod husk (CPH) biomass to extract xylooligosaccharides (XOS). The sequential DES (choline chloride/citric acid, molar ratio 1:1) and microwave (450W) pretreatment of CPH biomass was effective in 67.3% xylan removal with a 52% XOS yield from total xylan. Among different XOS of varying degrees of polymerization, a higher xylobiose content corresponding to 69.3% of the total XOS (68.22 mg/g CPH) from liquid fraction was observed. Enzymatic hydrolysis of residual xylan from pretreated CPH biomass with low commercial xylanase (10 IU/g) concentration yielded 24.2% XOS. The MW-ChCl/citric acid synergistic pretreatment approach holds great promise for developing a cost-effective and environmentally friendly method contributing to the sustainable production of XOS from agricultural waste streams.


Assuntos
Biomassa , Cacau , Solventes Eutéticos Profundos , Glucuronatos , Micro-Ondas , Oligossacarídeos , Oligossacarídeos/química , Cacau/química , Cacau/metabolismo , Hidrólise , Solventes Eutéticos Profundos/química , Xilanos , Biotecnologia/métodos , Ácidos/química , Solventes/química
20.
Sci Rep ; 14(1): 9562, 2024 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-38671070

RESUMO

The development of media for cell culture is a major issue in the biopharmaceutical industry, for the production of therapeutics, immune-modulating molecules and protein antigens. Chemically defined media offer several advantages, as they are free of animal-derived components and guarantee high purity and a consistency in their composition. Microorganisms of the genus Leishmania represent a promising cellular platform for production of recombinant proteins, but their maintenance requires supplements of animal origin, such as hemin and fetal bovine serum. In the present study, three chemically defined media were assayed for culturing Leishmania tarentolae, using both a wild-type strain and a strain engineered to produce a viral antigen. Among the three media, Schneider's Drosophila Medium supplemented with Horseradish Peroxidase proved to be effective for the maintenance of L. tarentolae promastigotes, also allowing the heterologous protein production by the engineered strain. Finally, the engineered strain was maintained in culture up to the 12th week without antibiotic, revealing its capability to produce the recombinant protein in the absence of selective pressure.


Assuntos
Meios de Cultura , Leishmania , Proteínas Recombinantes , Leishmania/genética , Leishmania/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Meios de Cultura/química , Biotecnologia/métodos , Técnicas de Cultura de Células/métodos , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA