Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Circulation ; 150(8): 642-650, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39159224

RESUMO

Intravenous infusion of sodium-channel blockers (SCB) with either ajmaline, flecainide, procainamide, or pilsicainide to unmask the ECG of Brugada syndrome is the drug challenge most commonly used for diagnostic purposes when investigating cases possibly related to inherited arrhythmia syndromes. For a patient undergoing an SCB challenge, the impact of a positive result goes well beyond its diagnostic implications. It is, therefore, appropriate to question who should undergo a SCB test to diagnose or exclude Brugada syndrome and, perhaps more importantly, who should not. We present a critical review of the benefits and drawbacks of the SCB challenge when performed in cardiac arrest survivors, patients presenting with syncope, family members of probands with confirmed Brugada syndrome, and asymptomatic patients with suspicious ECG.


Assuntos
Síndrome de Brugada , Eletrocardiografia , Bloqueadores dos Canais de Sódio , Humanos , Síndrome de Brugada/diagnóstico , Síndrome de Brugada/fisiopatologia , Síncope/diagnóstico , Síncope/etiologia
2.
Bioorg Chem ; 150: 107605, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38971095

RESUMO

The dorsal root ganglion (DRG) is the primary neuron responsible for transmitting peripheral pain signals to the central nervous system and plays a crucial role in pain transduction. Modulation of DRG excitability is considered a viable approach for pain management. Neuronal excitability is intricately linked to the ion channels on the neurons. The small and medium-sized DRG neurons are chiefly engaged in pain conduction and have high levels of TTX-S sodium channels, with Nav1.7 accounting for approximately 80% of the current. Voltage-gated sodium channel (VGSC or Nav) blockers are vital targets for the management of central nervous system diseases, particularly chronic pain. VGSCs play a key role in controlling cellular excitability. Clinical research has shown that Nav1.7 plays a crucial role in pain sensation, and there is strong genetic evidence linking Nav1.7 and its encoding gene SCN9A gene to painful disorders in humans. Many studies have shown that Nav1.7 plays an important role in pain management. The role of Nav1.7 in pain signaling pathways makes it an attractive target for the potential development of new pain drugs. Meanwhile, understanding the architecture of Nav1.7 may help to develop the next generation of painkillers. This review provides updates on the recently reported molecular inhibitors targeting the Nav1.7 pathway, summarizes their structure-activity relationships (SARs), and discusses their therapeutic effects on painful diseases. Pharmaceutical chemists are working to improve the therapeutic index of Nav1.7 inhibitors, achieve better analgesic effects, and reduce side effects. We hope that this review will contribute to the development of novel Nav1.7 inhibitors as potential drugs.


Assuntos
Canal de Sódio Disparado por Voltagem NAV1.7 , Bloqueadores do Canal de Sódio Disparado por Voltagem , Humanos , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia , Bloqueadores do Canal de Sódio Disparado por Voltagem/química , Bloqueadores do Canal de Sódio Disparado por Voltagem/uso terapêutico , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/uso terapêutico , Dor do Câncer/tratamento farmacológico , Dor do Câncer/metabolismo , Analgésicos/química , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Animais , Relação Estrutura-Atividade , Manejo da Dor/métodos , Estrutura Molecular , Neoplasias/tratamento farmacológico , Bloqueadores dos Canais de Sódio/farmacologia , Bloqueadores dos Canais de Sódio/química , Bloqueadores dos Canais de Sódio/uso terapêutico
3.
Comput Biol Med ; 178: 108737, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38879934

RESUMO

High-affinity ligand peptides for ion channels are essential for controlling the flow of ions across the plasma membrane. These peptides are now being investigated as possible therapeutic possibilities for a variety of illnesses, including cancer and cardiovascular disease. So, the identification and interpretation of ligand peptide inhibitors to control ion flow across cells become pivotal for exploration. In this work, we developed an ensemble-based model, NaII-Pred, for the identification of sodium ion inhibitors. The ensemble model was trained, tested, and evaluated on three different datasets. The NaII-Pred method employs six different descriptors and a hybrid feature set in conjunction with five conventional machine learning classifiers to create 35 baseline models. Through an ensemble approach, the top five baseline models trained on the hybrid feature set were integrated to yield the final predictive model, NaII-Pred. Our proposed model, NaII-Pred, outperforms the baseline models and the current predictors on both datasets. We believe NaII-Pred will play a critical role in screening and identifying potential sodium ion inhibitors and will be an invaluable tool.


Assuntos
Aprendizado de Máquina , Sódio/metabolismo , Sódio/química , Humanos , Bloqueadores dos Canais de Sódio/farmacologia
4.
Europace ; 26(6)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702961

RESUMO

AIMS: Clinical concerns exist about the potential proarrhythmic effects of the sodium channel blockers (SCBs) flecainide and propafenone in patients with cardiovascular disease. Sodium channel blockers were used to deliver early rhythm control (ERC) therapy in EAST-AFNET 4. METHODS AND RESULTS: We analysed the primary safety outcome (death, stroke, or serious adverse events related to rhythm control therapy) and primary efficacy outcome (cardiovascular death, stroke, and hospitalization for worsening of heart failure (HF) or acute coronary syndrome) during SCB intake for patients with ERC (n = 1395) in EAST-AFNET 4. The protocol discouraged flecainide and propafenone in patients with reduced left ventricular ejection fraction and suggested stopping therapy upon QRS prolongation >25% on therapy. Flecainide or propafenone was given to 689 patients [age 69 (8) years; CHA2DS2-VASc 3.2 (1); 177 with HF; 41 with prior myocardial infarction, coronary artery bypass graft, or percutaneous coronary intervention; 26 with left ventricular hypertrophy >15 mm; median therapy duration 1153 [237, 1828] days]. The primary efficacy outcome occurred less often in patients treated with SCB [3/100 (99/3316) patient-years] than in patients who never received SCB [SCBnever 4.9/100 (150/3083) patient-years, P < 0.001]. There were numerically fewer primary safety outcomes in patients receiving SCB [2.9/100 (96/3359) patient-years] than in SCBnever patients [4.2/100 (135/3220) patient-years, adjusted P = 0.015]. Sinus rhythm at 2 years was similar between groups [SCB 537/610 (88); SCBnever 472/579 (82)]. CONCLUSION: Long-term therapy with flecainide or propafenone appeared to be safe in the EAST-AFNET 4 trial to deliver effective ERC therapy, including in selected patients with stable cardiovascular disease such as coronary artery disease and stable HF. Clinical Trial Registration ISRCTN04708680, NCT01288352, EudraCT2010-021258-20, www.easttrial.org.


Assuntos
Antiarrítmicos , Flecainida , Bloqueadores dos Canais de Sódio , Humanos , Idoso , Masculino , Feminino , Resultado do Tratamento , Pessoa de Meia-Idade , Flecainida/uso terapêutico , Flecainida/efeitos adversos , Antiarrítmicos/uso terapêutico , Antiarrítmicos/efeitos adversos , Bloqueadores dos Canais de Sódio/uso terapêutico , Bloqueadores dos Canais de Sódio/efeitos adversos , Fibrilação Atrial/tratamento farmacológico , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/fisiopatologia , Fatores de Tempo , Frequência Cardíaca/efeitos dos fármacos , Acidente Vascular Cerebral
5.
J Physiol ; 602(14): 3505-3518, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38743485

RESUMO

NaV1.7 plays a crucial role in inducing and conducting action potentials in pain-transducing sensory nociceptor fibres, suggesting that NaV1.7 blockers could be effective non-opioid analgesics. While SCN9A is expressed in both sensory and autonomic neurons, its functional role in the autonomic system remains less established. Our single neuron rt-PCR analysis revealed that 82% of sympathetic neurons isolated from guinea-pig stellate ganglia expressed NaV1.7 mRNA, with NaV1.3 being the only other tetrodotoxin-sensitive channel expressed in approximately 50% of neurons. We investigated the role of NaV1.7 in conducting action potentials in postganglionic sympathetic nerves and in the sympathetic adrenergic contractions of blood vessels using selective NaV1.7 inhibitors. Two highly selective NaV1.7 blockers, GNE8493 and PF 05089771, significantly inhibited postganglionic compound action potentials by approximately 70% (P < 0.01), with residual activity being blocked by the NaV1.3 inhibitor, ICA 121431. Electrical field stimulation (EFS) induced rapid contractions in guinea-pig isolated aorta, pulmonary arteries, and human isolated pulmonary arteries via stimulation of intrinsic nerves, which were inhibited by prazosin or the NaV1 blocker tetrodotoxin. Our results demonstrated that blocking NaV1.7 with GNE8493, PF 05089771, or ST2262 abolished or strongly inhibited sympathetic adrenergic responses in guinea-pigs and human vascular smooth muscle. These findings support the hypothesis that pharmacologically inhibiting NaV1.7 could potentially reduce sympathetic and parasympathetic function in specific vascular beds and airways. KEY POINTS: 82% of sympathetic neurons isolated from the stellate ganglion predominantly express NaV1.7 mRNA. NaV1.7 blockers inhibit action potential conduction in postganglionic sympathetic nerves. NaV1.7 blockade substantially inhibits sympathetic nerve-mediated adrenergic contractions in human and guinea-pig blood vessels. Pharmacologically blocking NaV1.7 profoundly affects sympathetic and parasympathetic responses in addition to sensory fibres, prompting exploration into the broader physiological consequences of NaV1.7 mutations on autonomic nerve activity.


Assuntos
Canal de Sódio Disparado por Voltagem NAV1.7 , Animais , Cobaias , Canal de Sódio Disparado por Voltagem NAV1.7/genética , Canal de Sódio Disparado por Voltagem NAV1.7/fisiologia , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Humanos , Masculino , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Fibras Simpáticas Pós-Ganglionares/fisiologia , Fibras Simpáticas Pós-Ganglionares/efeitos dos fármacos , Feminino , Artérias/fisiologia , Artérias/efeitos dos fármacos , Artérias/inervação , Bloqueadores dos Canais de Sódio/farmacologia , Gânglio Estrelado/fisiologia , Sistema Nervoso Simpático/fisiologia , Sistema Nervoso Simpático/efeitos dos fármacos
6.
Biochem Biophys Res Commun ; 721: 150126, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-38776832

RESUMO

Voltage-gated sodium channel subtypes, Nav1.7, Nav1.8, and Nav1.9 are predominantly expressed in peripheral sensory neurons. Recent genetic studies have revealed that they are involved in pathological pain processing and that the blockade of Nav1.7, Nav1.8, or Nav1.9 will become a promising pharmacotherapy especially for neuropathic pain. A growing number of drug discovery programs have targeted either of the subtypes to obtain a selective inhibitor which can provide pain relief without affecting the cardiovascular and central nervous systems, though none of them has been approved yet. Here we describe the in vitro characteristics of ANP-230, a novel sodium channel blocker under clinical development. Surprisingly, ANP-230 was shown to block three pain-related subtypes, human Nav1.7, Nav1.8, and Nav1.9 with similar potency, but had only low inhibitory activity to human cardiac Nav1.5 channel and rat central Nav channels. The voltage clamp experiments using different step pulse protocols revealed that ANP-230 had a "tonic block" mode of action without state- and use-dependency. In addition, ANP-230 caused a depolarizing shift of the activation curve and decelerated gating kinetics in human Nav1.7-stably expressing cells. The depolarizing shift of activation curve was commonly observed in human Nav1.8-stably expressing cells as well as rat dorsal root ganglion neurons. These data suggested a quite unique mechanism of Nav channel inhibition by ANP-230. Finally, ANP-230 reduced excitability of rat dorsal root ganglion neurons in a concentration dependent manner. Collectively, these promising results indicate that ANP-230 could be a potent drug for neuropathic pain.


Assuntos
Canal de Sódio Disparado por Voltagem NAV1.7 , Canal de Sódio Disparado por Voltagem NAV1.8 , Canal de Sódio Disparado por Voltagem NAV1.9 , Bloqueadores dos Canais de Sódio , Humanos , Canal de Sódio Disparado por Voltagem NAV1.8/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.8/genética , Animais , Ratos , Canal de Sódio Disparado por Voltagem NAV1.9/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.9/genética , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.7/genética , Bloqueadores dos Canais de Sódio/farmacologia , Células HEK293 , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia , Gânglios Espinais/metabolismo , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/citologia
7.
Br J Pharmacol ; 181(17): 3160-3171, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38715413

RESUMO

BACKGROUND AND PURPOSE: The voltage-gated sodium channel isoform NaV1.7 is a high-interest target for the development of non-opioid analgesics due to its preferential expression in pain-sensing neurons. NaV1.7 is also expressed in autonomic neurons, yet its contribution to involuntary visceral reflexes has received limited attention. The small molecule inhibitor ST-2560 was advanced into pain behaviour and cardiovascular models to understand the pharmacodynamic effects of selective inhibition of NaV1.7. EXPERIMENTAL APPROACH: Potency of ST-2560 at NaV1.7 and off-target ion channels was evaluated by whole-cell patch-clamp electrophysiology. Effects on nocifensive reflexes were assessed in non-human primate (NHP) behavioural models, employing the chemical capsaicin and mechanical stimuli. Cardiovascular parameters were monitored continuously in freely-moving, telemetered NHPs following administration of vehicle and ST-2560. KEY RESULTS: ST-2560 is a potent inhibitor (IC50 = 39 nM) of NaV1.7 in primates with ≥1000-fold selectivity over other isoforms of the human NaV1.x family. Following systemic administration, ST-2560 (0.1-0.3 mg·kg-1, s.c.) suppressed noxious mechanical- and chemical-evoked reflexes at free plasma concentrations threefold to fivefold above NaV1.7 IC50. ST-2560 (0.1-1.0 mg·kg-1, s.c.) also produced changes in haemodynamic parameters, most notably a 10- to 20-mmHg reduction in systolic and diastolic arterial blood pressure, at similar exposures. CONCLUSIONS AND IMPLICATIONS: Acute pharmacological inhibition of NaV1.7 is antinociceptive, but also has the potential to impact the cardiovascular system. Further work is merited to understand the role of NaV1.7 in autonomic ganglia involved in the control of heart rate and blood pressure, and the effect of selective NaV1.7 inhibition on cardiovascular function.


Assuntos
Canal de Sódio Disparado por Voltagem NAV1.7 , Animais , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Masculino , Humanos , Feminino , Reflexo/efeitos dos fármacos , Bloqueadores dos Canais de Sódio/farmacologia , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia , Relação Dose-Resposta a Droga
8.
J Med Chem ; 67(15): 12676-12694, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-38757601

RESUMO

Late sodium current (INa) inhibitors are a new subclass of antiarrhythmic agents. To overcome the drawbacks, e.g., low efficacy and inhibition effect on K+ current, of the FDA-approved late INa inhibitor ranolazine, chain amide 6a-6q, 1,4-disubstituted piperazin-2-ones 7a-7s, and their derivatives 8a-8n were successively designed, synthesized, and evaluated in vitro on the NaV1.5-transfected HEK293T cells by the whole-cell patch clamp recording assay at the concentration of 40 µM. Among the new skeleton compounds, 7d showed the highest efficacy (IC50 = 2.7 µM) and good selectivity (peak/late ratio >30 folds), as well as excellent pharmacokinetics properties in mice (T1/2 of 3.5 h, F = 90%, 3 mg/kg, po). It exhibited low hERG inhibition and was able to reverse the ATX-II-induced augmentation of late INa phenotype of LQT3 model in isolated rabbit hearts. These results suggest the application potentials of 7d in the treatments of arrhythmias related to the enhancement of late INa.


Assuntos
Piperazinas , Animais , Coelhos , Células HEK293 , Humanos , Piperazinas/farmacologia , Piperazinas/química , Piperazinas/síntese química , Piperazinas/farmacocinética , Antiarrítmicos/farmacologia , Antiarrítmicos/química , Antiarrítmicos/farmacocinética , Antiarrítmicos/síntese química , Bloqueadores dos Canais de Sódio/farmacologia , Bloqueadores dos Canais de Sódio/química , Bloqueadores dos Canais de Sódio/síntese química , Bloqueadores dos Canais de Sódio/farmacocinética , Camundongos , Síndrome do QT Longo/induzido quimicamente , Relação Estrutura-Atividade , Masculino , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Coração/efeitos dos fármacos , Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Canais de Potássio Éter-A-Go-Go/metabolismo , Canal de Potássio ERG1/antagonistas & inibidores , Canal de Potássio ERG1/metabolismo , Doença do Sistema de Condução Cardíaco
9.
Biol Pharm Bull ; 47(4): 872-877, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38658360

RESUMO

The formalin test is one approach to studying acute pain in rodents. Similar to formalin, injection with glutamate and veratrine can also produce a nociceptive response. This study investigated whether opioid-related compounds could suppress glutamate- and veratrine-induced nociceptive responses in mice at the same dose. The administration of morphine (3 mg/kg), hydromorphone (0.4 mg/kg), or fentanyl (0.03 mg/kg) suppressed glutamate-induced nociceptive response, but not veratrine-induced nociceptive response at the same doses. However, high doses of morphine (10 mg/kg), hydromorphone (2 mg/kg), or fentanyl (0.1 mg/kg) produced a significant reduction in the veratrine-induced nociceptive response. These results indicate that high doses are required when using morphine, hydromorphone, or fentanyl for sodium channel-related neuropathic pain, such as ectopic activity. As a result, concerns have arisen about overdose and abuse if the dose of opioids is steadily increased to relieve pain. In contrast, trimebutine (100 mg/kg) and fentanyl analog isobutyrylfentanyl (iBF; 0.1 mg/kg) suppressed both glutamate- and veratrine-induced nociceptive response. Furthermore, nor-isobutyrylfentanyl (nor-iBF; 1 mg/kg), which is a metabolite of iBF, suppressed veratrine-induced nociceptive response. Besides, the optimal antinociceptive dose of iBF, unlike fentanyl, only slightly increased locomotor activity and did not slow gastrointestinal transit. Cancer pain is a complex condition driven by inflammatory, neuropathic, and cancer-specific mechanisms. Thus, iBF may have the potential to be a superior analgesic than fentanyl.


Assuntos
Analgésicos Opioides , Fentanila , Animais , Fentanila/farmacologia , Fentanila/análogos & derivados , Masculino , Camundongos , Analgésicos Opioides/farmacologia , Ácido Glutâmico/metabolismo , Bloqueadores dos Canais de Sódio/farmacologia , Bloqueadores dos Canais de Sódio/uso terapêutico , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Medição da Dor/efeitos dos fármacos , Medição da Dor/métodos , Morfina/farmacologia
11.
Clin Toxicol (Phila) ; 62(4): 213-218, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38597366

RESUMO

BACKGROUND: Hypertonic sodium bicarbonate is advocated for the treatment of sodium channel blocker poisoning, but its efficacy varies amongst different sodium channel blockers. This Commentary addresses common pitfalls and appropriate usage of hypertonic sodium bicarbonate therapy in cardiotoxic drug poisonings. SODIUM BICARBONATE WORKS SYNERGISTICALLY WITH HYPERVENTILATION: Serum alkalinization is best achieved by the synergistic effect of hypertonic sodium bicarbonate and hyperventilation (PCO2 ∼ 30-35 mmHg [0.47-0.6 kPa]). This reduces the dose of sodium bicarbonate required to achieve serum alkalinization (pH ∼ 7.45-7.55) and avoids adverse effects from excessive doses of hypertonic sodium bicarbonate. VARIABILITY IN RESPONSE TO SODIUM BICARBONATE TREATMENT: Tricyclic antidepressant poisoning responds well to sodium bicarbonate therapy, but many other sodium channel blockers may not. For instance, drugs that block the intercellular gap junctions, such as bupropion, do not respond well to alkalinization. For sodium channel blocker poisonings in which the expected response is unknown, a bolus of 1-2 mmol/kg sodium bicarbonate can be used to assess the response to alkalinization. SODIUM BICARBONATE CAN EXACERBATE TOXICITY FROM DRUGS ACTING ON MULTIPLE CARDIAC CHANNELS: Hypertonic sodium bicarbonate can cause electrolyte abnormalities such as hypokalaemia and hypocalcaemia, leading to QT interval prolongation and torsade de pointes in poisonings with drugs that have mixed sodium and potassium cardiac channel properties, such as hydroxychloroquine and flecainide. THE GOAL FOR HYPERTONIC SODIUM BICARBONATE IS TO ACHIEVE THE ALKALINIZATION TARGET (∼PH 7.5), NOT COMPLETE CORRECTION OF QRS COMPLEX PROLONGATION: Excessive doses of hypertonic sodium bicarbonate commonly occur if it is administered until the QRS complex duration is < 100 ms. A prolonged QRS complex duration is not specific for sodium channel blocker toxicity. Some sodium channel blockers do not respond, and even when there is a response, it takes a few hours for the QRS complex duration to return completely to normal. In addition, QRS complex prolongation can be due to a rate-dependent bundle branch block. So, no further doses should be given after achieving serum alkalinization (pH ∼ 7.45-7.55). MAXIMAL DOSING FOR HYPERTONIC SODIUM BICARBONATE: A further strategy to avoid overdosing patients with hypertonic sodium bicarbonate is to set maximum doses. Exceeding 6 mmol/kg is likely to cause hypernatremia, fluid overload, metabolic alkalosis, and cerebral oedema in many patients and potentially be lethal. RECOMMENDATION FOR THE USE OF HYPERTONIC SODIUM BICARBONATE IN SODIUM CHANNEL BLOCKER POISONING: We propose that hypertonic sodium bicarbonate therapy be used in patients with sodium channel blocker poisoning who have clinically significant toxicities such as seizures, shock (systolic blood pressure < 90 mmHg, mean arterial pressure <65 mmHg) or ventricular dysrhythmia. We recommend initial bolus dosing of hypertonic sodium bicarbonate of 1-2 mmol/kg, which can be repeated if the patient remains unstable, up to a maximum dose of 6 mmol/kg. This is recommended to be administered in conjunction with mechanical ventilation and hyperventilation to achieve serum alkalinization (PCO2∼30-35 mmHg [4-4.7 kPa]) and a pH of ∼7.45-7.55. With repeated bolus doses of hypertonic sodium bicarbonate, it is imperative to monitor and correct potassium and sodium abnormalities and observe changes in serum pH and on the electrocardiogram. CONCLUSIONS: Hypertonic sodium bicarbonate is an effective antidote for certain sodium channel blocker poisonings, such as tricyclic antidepressants, and when used in appropriate dosing, it works synergistically with hyperventilation to achieve serum alkalinization and to reduce sodium channel blockade. However, there are many pitfalls that can lead to excessive sodium bicarbonate therapy and severe adverse effects.


Assuntos
Bicarbonato de Sódio , Bloqueadores dos Canais de Sódio , Humanos , Bicarbonato de Sódio/uso terapêutico , Bicarbonato de Sódio/administração & dosagem , Bloqueadores dos Canais de Sódio/intoxicação , Soluções Hipertônicas , Hiperventilação/tratamento farmacológico , Cardiotoxicidade/etiologia , Cardiotoxicidade/tratamento farmacológico
12.
Proc Natl Acad Sci U S A ; 121(14): e2309000121, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38547067

RESUMO

Apneic events are frightening but largely benign events that often occur in infants. Here, we report apparent life-threatening apneic events in an infant with the homozygous SCN1AL263V missense mutation, which causes familial hemiplegic migraine type 3 in heterozygous family members, in the absence of epilepsy. Observations consistent with the events in the infant were made in an Scn1aL263V knock-in mouse model, in which apnea was preceded by a large brainstem DC-shift, indicative of profound brainstem depolarization. The L263V mutation caused gain of NaV1.1 function effects in transfected HEK293 cells. Sodium channel blockade mitigated the gain-of-function characteristics, rescued lethal apnea in Scn1aL263V mice, and decreased the frequency of severe apneic events in the patient. Hence, this study shows that SCN1AL263V can cause life-threatening apneic events, which in a mouse model were caused by profound brainstem depolarization. In addition to being potentially relevant to sudden infant death syndrome pathophysiology, these data indicate that sodium channel blockers may be considered therapeutic for apneic events in patients with these and other gain-of-function SCN1A mutations.


Assuntos
Apneia , Mutação com Ganho de Função , Bloqueadores dos Canais de Sódio , Animais , Humanos , Camundongos , Apneia/tratamento farmacológico , Apneia/genética , Tronco Encefálico , Células HEK293 , Enxaqueca com Aura/genética , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Bloqueadores dos Canais de Sódio/uso terapêutico , Lactente , Feminino
13.
Bioorg Med Chem Lett ; 101: 129655, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38350529

RESUMO

The NaV1.8 channel, mainly found in the peripheral nervous system, is recognized as one of the key factors in chronic pain. The molecule VX-150 was initially promising in targeting this channel, but the phase II trials of VX-150 did not show expected pain relief results. By analyzing the interaction mode of VX-150 and NaV1.8, we developed two series with a total of 19 molecules and examined their binding affinity to NaV1.8 in vitro and analgesic effect in vivo. One compound, named 2j, stood out with notable activity against the NaV1.8 channel and showed effective pain relief in models of chronic inflammatory pain and neuropathic pain. Our research points to 2j as a strong contender for developing safer pain-relief treatments.


Assuntos
Amidas , Neuralgia , Compostos Organotiofosforados , Humanos , Amidas/química , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Canal de Sódio Disparado por Voltagem NAV1.7 , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo , Bloqueadores dos Canais de Sódio/farmacologia , Piridonas/química , Piridonas/farmacologia
14.
Int J Mol Sci ; 25(3)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38338757

RESUMO

Tetrodotoxin (TTX) is a neurotoxic molecule used by many animals for defense and/or predation, as well as an important biomedical tool. Its ubiquity as a defensive agent has led to repeated independent evolution of tetrodotoxin resistance in animals. TTX binds to voltage-gated sodium channels (VGSC) consisting of α and ß subunits. Virtually all studies investigating the mechanisms behind TTX resistance have focused on the α subunit of voltage-gated sodium channels, where tetrodotoxin binds. However, the possibility of ß subunits also contributing to tetrodotoxin resistance was never explored, though these subunits act in concert. In this study, we present preliminary evidence suggesting a potential role of ß subunits in the evolution of TTX resistance. We gathered mRNA sequences for all ß subunit types found in vertebrates across 12 species (three TTX-resistant and nine TTX-sensitive) and tested for signatures of positive selection with a maximum likelihood approach. Our results revealed several sites experiencing positive selection in TTX-resistant taxa, though none were exclusive to those species in subunit ß1, which forms a complex with the main physiological target of TTX (VGSC Nav1.4). While experimental data validating these findings would be necessary, this work suggests that deeper investigation into ß subunits as potential players in tetrodotoxin resistance may be worthwhile.


Assuntos
Canais de Sódio Disparados por Voltagem , Animais , Tetrodotoxina/farmacologia , Funções Verossimilhança , Canais de Sódio Disparados por Voltagem/genética , Bloqueadores dos Canais de Sódio/farmacologia
15.
Curr Opin Pharmacol ; 75: 102433, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38277942

RESUMO

Neuronal electrochemical signals involve the flux of sodium ions through voltage-gated sodium channels (NaV) located in the neurolemma. Of the nine sodium channel subtypes, NaV-1.7, 1.8, and 1.9 are predominantly located on nociceptors, making them prime targets to control pain. This review highlights some of the latest discoveries targeting NaV channel activity, including: (1) charged local anaesthetic derivatives; (2) NaV channel toxins and associated small peptide blockers; (3) regulation of NaV channel accessory proteins; and (4) genetic manipulation of NaV channel function. While the translation of preclinical findings to a viable treatment in humans has remained a challenge, a greater understanding of NaV channel physiology could lead to the development of a new stream of therapies aimed at alleviating chronic pain.


Assuntos
Dor , Canais de Sódio Disparados por Voltagem , Humanos , Dor/tratamento farmacológico , Dor/metabolismo , Canais de Sódio Disparados por Voltagem/metabolismo , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Bloqueadores dos Canais de Sódio/farmacologia , Bloqueadores dos Canais de Sódio/uso terapêutico
16.
Mol Pharmacol ; 105(3): 233-249, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38195157

RESUMO

Discovery and development of new molecules directed against validated pain targets is required to advance the treatment of pain disorders. Voltage-gated sodium channels (NaVs) are responsible for action potential initiation and transmission of pain signals. NaV1.8 is specifically expressed in peripheral nociceptors and has been genetically and pharmacologically validated as a human pain target. Selective inhibition of NaV1.8 can ameliorate pain while minimizing effects on other NaV isoforms essential for cardiac, respiratory, and central nervous system physiology. Here we present the pharmacology, interaction site, and mechanism of action of LTGO-33, a novel NaV1.8 small molecule inhibitor. LTGO-33 inhibited NaV1.8 in the nM potency range and exhibited over 600-fold selectivity against human NaV1.1-NaV1.7 and NaV1.9. Unlike prior reported NaV1.8 inhibitors that preferentially interacted with an inactivated state via the pore region, LTGO-33 was state-independent with similar potencies against closed and inactivated channels. LTGO-33 displayed species specificity for primate NaV1.8 over dog and rodent NaV1.8 and inhibited action potential firing in human dorsal root ganglia neurons. Using chimeras combined with mutagenesis, the extracellular cleft of the second voltage-sensing domain was identified as the key site required for channel inhibition. Biophysical mechanism of action studies demonstrated that LTGO-33 inhibition was relieved by membrane depolarization, suggesting the molecule stabilized the deactivated state to prevent channel opening. LTGO-33 equally inhibited wild-type and multiple NaV1.8 variants associated with human pain disorders. These collective results illustrate LTGO-33 inhibition via both a novel interaction site and mechanism of action previously undescribed in NaV1.8 small molecule pharmacologic space. SIGNIFICANCE STATEMENT: NaV1.8 sodium channels primarily expressed in peripheral pain-sensing neurons represent a validated target for the development of novel analgesics. Here we present the selective small molecule NaV1.8 inhibitor LTGO-33 that interdicts a distinct site in a voltage-sensor domain to inhibit channel opening. These results inform the development of new analgesics for pain disorders.


Assuntos
Canais de Sódio Disparados por Voltagem , Humanos , Animais , Cães , Dor/tratamento farmacológico , Analgésicos/farmacologia , Neurônios , Potenciais de Ação , Gânglios Espinais , Canal de Sódio Disparado por Voltagem NAV1.7 , Bloqueadores dos Canais de Sódio/farmacologia
17.
Eur J Pain ; 28(1): 105-119, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37565715

RESUMO

BACKGROUND: Neuropathic pain is common and difficult to treat. The sodium channel blocker lacosamide is efficacious in animal models of pain, but its effect on neuropathic pain in humans is inconclusive. METHODS: In a multicentre, randomized, double-blinded placebo-controlled phenotype stratified trial, we examined if lacosamide produced better pain relief in patients with the irritable nociceptor phenotype compared to those without. The primary outcome was the change in daily average pain from baseline to last week of 12 weeks of treatment. Secondary and tertiary outcomes included pain relief, patient global impression of change and presence of 30% and 50% pain reduction. RESULTS: The study was prematurely closed with 93 patients included and 63 randomized to lacosamide or placebo in a 2:1 ratio, of which 49 fulfilled the per protocol criteria and was used for the primary objective. We did not find a better effect of lacosamide in patients with the irritable nociceptor phenotype, the 95% CI for the primary objective was 0.41 (-1.2 to 2.0). For all patients randomized, lacosamide had no effect on the primary outcome, but significantly more patients were responders to lacosamide than during placebo, with an NNT of 4.0 (95% CI 2.3-16.1) and 5.0 (95% CI 2.8-24.5) for 30% and 50% pain reduction respectively. We did not identify any predictors for response. Lacosamide was generally well tolerated. CONCLUSION: We could not confirm that lacosamide was more efficacious in patients with the irritable nociceptor type, but the study was prematurely closed, so we cannot exclude a small difference. SIGNIFICANCE: Treatment of neuropathic pain is often a trial and error process. Little is known about which patient benefit from which kind of medication. The sodium channel blocker lacosamide shows variable effect on neuropathic pain. Pain sensory phenotype, as defined by quantitative sensory testing, did not predict response to treatment with lacosamide.


Assuntos
Neuralgia , Humanos , Lacosamida/uso terapêutico , Medição da Dor , Neuralgia/tratamento farmacológico , Método Duplo-Cego , Resultado do Tratamento , Bloqueadores dos Canais de Sódio/uso terapêutico , Fenótipo
18.
Eur J Med Chem ; 265: 116038, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38157597

RESUMO

Lung selective inhibition of the endothelial sodium channel (ENaC) is a potential mutation agnostic treatment of Cystic Fibrosis (CF). We describe the discovery and development of BI 1265162, the first ENaC inhibitor devoid of the amiloride structural motif that entered clinical trials. The design of BI 1265162 focused on its suitability for inhalation via the Respimat® Soft Mist™ Inhaler and a long duration of action. A convergent and scalable route for the synthesis of BI 1265162 as dihydrogen phosphate salt is presented, that was applied to support clinical trials. A phase 2 study with BI 1265162 did not provide a clear sign of clinical benefit. Whether ENaC inhibition will be able to hold its promise for CF patients remains an open question.


Assuntos
Fibrose Cística , Humanos , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Bloqueadores dos Canais de Sódio/uso terapêutico , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Canais Epiteliais de Sódio/genética , Canais Epiteliais de Sódio/uso terapêutico , Amilorida/farmacologia , Amilorida/uso terapêutico , Sódio/metabolismo , Sódio/uso terapêutico
19.
Brain Nerve ; 75(12): 1331-1333, 2023 Dec.
Artigo em Japonês | MEDLINE | ID: mdl-38097223

RESUMO

A Pocket Full of Rye is a full-length novel featured in Agatha Christie's series, "Miss Marple." Taxine, used for murder in this novel, is an alkaloid compound isolated from parts of the yew tree other than the pulp and is based on a diterpene, with a nitrogen element incorporated as a side chain in one of its many skeletal structures. Taxine binds to sodium channels, resulting in unregulated muscle contraction and arrhythmias.


Assuntos
Alcaloides , Secale , Humanos , Canais de Cálcio , Bloqueadores dos Canais de Sódio , Cálcio
20.
EBioMedicine ; 98: 104855, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38251463

RESUMO

BACKGROUND: Variants in SCN8A are associated with a spectrum of epilepsies and neurodevelopmental disorders. Ataxia as a predominant symptom of SCN8A variation has not been well studied. We set out to investigate disease mechanisms and genotype-phenotype correlations of SCN8A-related ataxia. METHODS: We collected genetic and electro-clinical data of ten individuals from nine unrelated families carrying novel SCN8A variants associated with chronic progressive or episodic ataxia. Electrophysiological characterizations of these variants were performed in ND7/23 cells and cultured neurons. FINDINGS: Variants associated with chronic progressive ataxia either decreased Na+ current densities and shifted activation curves towards more depolarized potentials (p.Asn995Asp, p.Lys1498Glu and p.Trp1266Cys) or resulted in a premature stop codon (p.Trp937Ter). Three variants (p.Arg847Gln and biallelic p.Arg191Trp/p.Asp1525Tyr) were associated with episodic ataxia causing loss-of-function by decreasing Na+ current densities or a hyperpolarizing shift of the inactivation curve. Two additional episodic ataxia-associated variants caused mixed gain- and loss-of function effects in ND7/23 cells and were further examined in primary murine hippocampal neuronal cultures. Neuronal firing in excitatory neurons was increased by p.Arg1629His, but decreased by p.Glu1201Lys. Neuronal firing in inhibitory neurons was decreased for both variants. No functional effect was observed for p.Arg1913Trp. In four individuals, treatment with sodium channel blockers exacerbated symptoms. INTERPRETATION: We identified episodic or chronic ataxia as predominant phenotypes caused by variants in SCN8A. Genotype-phenotype correlations revealed a more pronounced loss-of-function effect for variants causing chronic ataxia. Sodium channel blockers should be avoided under these conditions. FUNDING: BMBF, DFG, the Italian Ministry of Health, University of Tuebingen.


Assuntos
Ataxia , Neurônios , Humanos , Animais , Camundongos , Ataxia/diagnóstico , Ataxia/genética , Códon sem Sentido , Bloqueadores dos Canais de Sódio , Canal de Sódio Disparado por Voltagem NAV1.6/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA