RESUMO
The hybrid composite sample based on Prosopis Juliflora (PJ) bark and ramie fibre with different length, weight percentage, and curing temperature were created for the first time in this work. Totally, 120 hybrid composite samples were tested in this study. There were five different fibre lengths: 10 mm, 15 mm, 20 mm, 25 mm, and 30 mm, weight percentages 10 %, 20 %, 30 %, 40 %, and 50 %, and different curing temperatures 80 °C, 90 °C, 100 °C, 110 °C, and 120 °C used to produce the hybrid composite samples. Due to the cross-linking ability with the epoxy matrix, the hybrid composite specimen shows high resistance up to 98 Shore D hardness. The high polarity of the epoxy matrix and the hydrogen bond strengthening effect, increased the composite sample flexural strength by 12 %. The curing temperature of 100 °C, 20 mm fibre length, and 30 % of the hybrid composite sample achieved the highest tensile strength (28.76 MPa), flexural strength (46.54 MPa), impact strength (4.5 J), and hardness strength properties (98 shore D). Thermo gravimetric analysis (TGA) revealed the composite samples initial decomposition temperature (Ti) at 98 °C, maximum decomposition temperature (Tmax) at 320 °C, and the final decomposition temperature (Tf) at 466 °C.
Assuntos
Boehmeria , Casca de Planta , Prosopis , Temperatura , Resistência à Tração , Prosopis/química , Boehmeria/química , Casca de Planta/química , Dureza , Extratos Vegetais/químicaRESUMO
Pectin is one of the main components of bast fiber including ramie fiber, and must be removed before use. Enzymatic degumming is the preferred process as it is an environment-friendly, simple and controllable process for ramie degumming. However, an important problem limiting wide application of this process is the high cost due to the low efficiency of enzymatic degumming. In this study, pectin samples were extracted from raw ramie fiber and degummed ramie fiber, respectively, and their structures were characterized and compared to allow tailoring of an enzyme cocktail for degrading the pectin. It was elucidated that pectin from ramie fiber is composed of low esterified homogalacturonan (HG) and low branched rhamnogalacturonan I (RG-I), and the ratio of HG/RG-I is 1.72:1. Based on the pectin structure, potential enzymes to be used for enzymatic degumming of ramie fiber were proposed and an enzyme cocktail was customized. Degumming experiments confirmed that the customized enzyme cocktail can effectively remove pectin from ramie fiber. To our knowledge, this is the first time the structural characteristics of pectin in ramie fiber have been clarified, and it also provides an example of tailoring a specific enzyme system to achieve high-efficiency degumming for biomass containing pectin.
Assuntos
Boehmeria , Boehmeria/química , Polissacarídeo-Liases/química , Pectinas/químicaRESUMO
Widely used for soil amendment, carbon sequestration, and remediation of contaminated soils, biochars (BCs) inevitably produce a large number of nanoparticles with relatively high mobility. Geochemical aging alters chemical structure of these nanoparticles and thus affect their colloidal aggregation and transport behavior. In this study, the transport of ramie derived nano-BCs (after ball-milling) was investigated by different aging treatments (i.e., photo (PBC) and chemical aging (NBC)) as well as the managing BC under different physicochemical factors (i.e., flow rates, ionic strengths (IS), pH, and coexisting cations). Consequences of the column experiments indicated aging promoted the mobility of the nano-BCs. Compared to the nonaging BC, consequences of spectroscopic analysis demonstrated the aging BCs exhibited a number of tiny corrosion pores. Both of these aging treatments contribute to a more negative zeta potential and a higher dispersion stability of the nano-BCs, which is caused by the abundance of O-functional groups. Also the specific surface area and mesoporous volume of both aging BCs increased significantly, with the increase being more pronounced for NBC. The breakthrough curves (BTCs) obtained for the three nano-BCs were modelled by the advection-dispersion equation (ADE), which included first-order deposition and release terms. The ADE revealed high mobility of aging BCs, which meant their retention in saturated porous media was reduced. This work contributes to a comprehensive understanding of the transport of aging nano-BCs in the environment.
Assuntos
Nanopartículas , Solo , Boehmeria/química , Nanopartículas/química , Nanopartículas/ultraestrutura , Espectroscopia de Infravermelho com Transformada de Fourier , Espectrometria por Raios X , Concentração de Íons de Hidrogênio , Movimento , Cátions/química , Meio Ambiente , Solo/química , Fatores de Tempo , Modelos TeóricosRESUMO
The leaf and stem extracts of Boehmeria nivea (BN) collected from three different regions in Korea were screened for their antioxidant, neuroprotective, estrogenic, insulin secretion, and α-glucosidase inhibitory activity. We also examined whether BN extracts regulate cancer cell growth, inflammatory-related gene expression, and lipid accumulation in cellular system. Leaf extracts possessed greater antioxidant, anti-proliferative in cancer cells, neuroprotective, estrogenic activity, and inhibitory effect on pro-inflammatory gene expression than stem extracts. Leaf and stem extracts inhibited lipid accumulation in three T3-L1 adipocytes but did not affect glucose-stimulated insulin secretion in INS-1 cells. We isolated and identified the phytochemical constituents in the n-butanol and ethyl acetate fractions of BN leaves by combining silica gel column chromatography with mass spectrometry and 1 H- and 13 C-NMR analysis. The active compounds (caffeic acid, isoquercitrin, p-coumaric acid, and rutin) exhibited ABTS and DPPH radical scavenging activity, which may contribute to the biological activities of BN leaf extract. An analytical method was developed to quantify marker compounds for the discrimination of BN collected from different regions. Our results support the use of this analysis method for accurate identification and quantification of marker compounds in BN for the development of functional foods. PRACTICAL APPLICATIONS: Boehmeria nivea (BN) has been used as a raw material for the textile industry or traditional herbal medicine. The current study established the biological activities and active components of BN. Our results showed that BN leaf and stem extracts exhibit antioxidant, neuroprotective, and estrogenic activity. BN leaf extract also inhibited cancer cell growth, inflammatory mediators and cytokines production, and lipid accumulation in vitro. Moreover, the bioactive compounds, such as caffeic acid, isoquercitrin, p-coumaric acid, and rutin, exert ABTS and DPPH radical scavenging activities. Therefore, BN could potentially be a promising source of bioactive phytochemicals for the development of functional foods or drugs.
Assuntos
Antioxidantes , Boehmeria , Antioxidantes/farmacologia , Antioxidantes/química , Boehmeria/química , Rutina , Extratos Vegetais/química , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/análise , LipídeosRESUMO
Alkaline pectate lyases have biotechnological applications in plant fiber processing, such as ramie degumming. Previously, we characterized an alkaline pectate lyase from Bacillus clausii S10, named BacPelA, which showed potential for enzymatic ramie degumming because of its high cleavage activity toward methylated pectins in alkaline conditions. However, BacPelA displayed poor thermo-alkaline stability. Here, we report the 1.78 Å resolution crystal structure of BacPelA in apo form. The enzyme has the characteristic right-handed ß-helix fold of members of the polysaccharide lyase 1 family and shows overall structural similarity to them, but it displays some differences in the details of the secondary structure and Ca2+-binding site. On the basis of the structure, 10 sites located in flexible regions and showing high B-factor and positive ΔTm values were selected for mutation, aiming to improve the thermo-alkaline stability of the enzyme. Following site-directed saturation mutagenesis and screening, mutants A238C, R150G, and R216H showed an increase in the T5015 value at pH 10.0 of 3.0 °C, 6.5 °C, and 7.0 °C, respectively, compared with the wild-type enzyme, interestingly accompanied by a 24.5%, 46.6%, and 61.9% increase in activity. The combined mutant R150G/R216H/A238C showed an 8.5 °C increase in the T5015 value at pH 10.0, and an 86.1% increase in the specific activity at 60 °C, with approximately doubled catalytic efficiency, compared with the wild-type enzyme. Moreover, this mutant retained 86.2% activity after incubation in ramie degumming conditions (4 h, 60 °C, pH 10.0), compared with only 3.4% for wild-type BacPelA. The combined mutant increased the weight loss of ramie fibers in degumming by 30.2% compared with wild-type BacPelA. This work provides a thermo-alkaline stable, highly active pectate lyase with great potential for application in the textile industry, and also illustrates an effective strategy for rational design and improvement of pectate lyases.
Assuntos
Boehmeria , Boehmeria/química , Polissacarídeo-Liases/genética , Polissacarídeo-Liases/química , Pectinas/química , Biotecnologia , Concentração de Íons de HidrogênioRESUMO
Ramie root is an underutilized starch source. In this study, eight ramie varieties were investigated for starch properties. Starch content ranged from 18.6% to 50.1% in dry root. Starches from different varieties showed similar morphology including ellipsoidal, spherical and truncated granules with size D[4,3] from 10.1 to 14.1 µm. Starch had amylose content from 20.8% to 28.5%. All ramie varieties had B-type starches with relative crystallinity from 24.8% to 27.1%, ordered degree from 0.724 to 0.897 and lamellar thickness from 9.1 to 9.6 nm. Starches had gelatinization peak temperature from 70.5 to 73.8 °C and enthalpy from 14.9 to 15.8 J/g. Starches had swelling power and water solubility from 27.9 to 31.9 g/g and from 11.7% to 15.5%, respectively, at 95 °C, and exhibited different pasting properties with breakdown viscosity from 36 to 377 mPa s and setback viscosities from 1295 to 1863 mPa s. Starch pastes exhibited pseudoplastic behavior and different rheological properties. Native, gelatinized and retrograded starches had resistant starch from 81.7% to 83.9%, from 1.7% to 5.1% and from 5.6% to 13.3%, respectively. The eight varieties were divided into 3 groups according to starch properties. This study is helpful for selecting suitable ramie variety as starch source.
Assuntos
Boehmeria/química , Amido/química , China , Análise de Componente PrincipalRESUMO
This study explores the effect of plasticisers (lotader AX8900, polyethylene glycol and triethyl citrate) on biodegradability of polylactic acid (PLA) and its composites with halloysite nanotubes and ramie fabric by soil burial method. Changes in surface morphology and mechanical properties were evaluated to quantify the degradation behaviour of all samples. The results showed that the relative loss in tensile strength of ramie-PLA composites was more than that of neat PLA or plasticised PLA films. Also, ramie-PLA composite, where ramie fabric was treated with diammonium orthophosphate, had degraded entirely after 60 days of soil burial. It was also confirmed by Fourier transform infrared spectroscopy that the chemical structures of neat PLA and plasticised PLA films changed after the soil burial test. The use of these additives not only reduces the brittleness of PLA but also accelerates the biodegradation rate of PLA. Thus, PLA, along with additives, can help in reduction of carbon footprint and other environmental issues customarily associated with petro based polymers. Therefore, the finding supports the notion of PLA usage as a viable alternative to fossil fuel-based materials.
Assuntos
Biodegradação Ambiental , Boehmeria/química , Nanotubos/química , Solo/química , Citratos/química , Ácido Láctico/química , Plastificantes/química , Plastificantes/toxicidade , Poliésteres/química , Polietilenoglicóis/química , Polímeros/química , Resistência à Tração/efeitos dos fármacos , Água/químicaRESUMO
A new starch was isolated from ramie root, and its physicochemical properties were investigated. Ramie dry root contained 45.9% starch. Starch had truncated, ellipsoidal, and spherical granule shapes with size from 7 to 30 µm and D[4,3] about 14.1 µm. Starch contained 38.9% apparent amylose content and 22.4% true amylose content, exhibited B-type crystallinity, and had 26.6% relative crystallinity, 0.82 ordered degree, and 9.2 nm lamellar thickness. Starch had 71.8 °C gelatinization peak temperature and 15.6 J/g gelatinization enthalpy, and exhibited 31.4 g/g swelling power and 17.1% water solubility at 95 °C. Starch had peak, hot, breakdown, final, and setback viscosities at 3048, 2768, 279, 4165, and 1397 mPa s, respectively, and showed peak time at 4.36 min and pasting temperature at 75.0 °C. The native, gelatinized, and retrograded starches contained 15.1%, 94.0%, and 86.5% rapidly digestible starch and 83.3%, 4.0%, and 10.7% resistant starch, respectively. Compared with potato and rice starches, ramie starch was somewhat similar to potato starch but significantly different from rice starch in starch component, crystalline structure, and functional properties. Therefore, ramie starch exhibited the potential to be used as a thickening agent, resistant-digesting food additive, and alternative to potato starch in food and nonfood industries.
Assuntos
Boehmeria/química , Amido/química , Indústria Alimentícia , Estrutura Molecular , Oryza/química , Raízes de Plantas/química , Solanum tuberosum/química , Amido/isolamento & purificação , Difração de Raios XRESUMO
Hydrothermal degradation was used to pretreat terylene with an aim of noticeably improving the yield of fermentable monomers: terephthalic acid (TPA), mono (2- hydroxyethyl) terephthalic acid (MHET), bis-hydroxyethyl terephthalate (BHET), and ethylene glycol (EG). After 0.5 h of reaction time at 180 °C, hydrothermal degradation with ammonia led to almost complete conversion of the terylene to TPA, MHET, BHET and EG, which were then transformed by Taonella mepensis WT-6 to bacterial cellulose (BC). Furthermore, the optimum fermentation conditions with the maximum BC yield were 5.0 g/L yeast extract, 30.0 °C, pH 9.0, 8.0% inoculum, and hydrolysate TOC (5.02 g/L). Additionally, mechanical and thermal analysis revealed that the properties of BC produced from TAH medium were similar to those of BC produced with HS medium. Considering the substantial amount of global terylene waste being produced, this study provides an alternative solution for the biosynthesis of BC.
Assuntos
Celulose/biossíntese , Polietilenotereftalatos/metabolismo , Rhodospirillaceae/metabolismo , Compostos de Amônio/química , Biodegradação Ambiental , Boehmeria/química , Fermentação , Hidrólise , Microbiologia Industrial/métodos , Resíduos Industriais , Polietilenotereftalatos/químicaRESUMO
The structure determination of cellulose represents a significant part in the history of polymer science. On one side, cellulose as a natural and renewable material has valuable physical properties which can be improved with detailed knowledge of the structure. On the other side, it is produced by nature as fibers, e.g. ramie, cotton etc., most suitable for structural studies by X-ray diffraction after their discovery in 1912 and was regarded by scientists as predestined for such an undertaking. The progress utilizing appropriate methods and models will be pursued in this investigation from the beginning of the structural research in 1913 till the proposal of realistic structures of cellulose in the 1970s. Different basic units of the crystal structure are discussed. Many structural models for native cellulose have been suggested over times with parallel or antiparallel running chains in the fibers and supported or abandoned. In this historical review on order in cellulosics, the crystal structure research throughout the times will be critically evaluated and the improvements in experiments and methods discussed. This subject is not restricted to cellulose rather can be extended to further polymer fibers.
Assuntos
Boehmeria/química , Celulose/química , Cristalização , Gossypium/química , Extratos Vegetais/química , Configuração de Carboidratos , Hidrólise , Madeira/química , Difração de Raios XRESUMO
In the context of the cancer-inflammation relationship and the use of natural products as potential antitumor and anti-inflammatory agents, the alkaloid-enriched fraction of Boehmeriacaudata (BcAEF) aerial parts was evaluated. In vitro antiproliferative studies with human tumor cell lines showed high activity at low concentrations. Further investigation on NCI-H460 cells showed an irreversible effect on cell proliferation, with cell cycle arrest at G2/M phase and programmed cell death induction. Molecular docking studies of four alkaloids identified in BcAEF with colchicine's binding site on ß-tubulin were performed, suggesting (-)-C (15R)-hydroxycryptopleurine as the main inductor of the observed mitotic death. In vivo studies showed that BcAEF was able to reduce Ehrlich tumor volume progression by 30 to 40%. Checking myeloperoxidase activity, BcAEF reduced neutrophils migration towards the tumor. The in vivo anti-inflammatory activity was evaluated by chemically induced edema models. In croton oil-induced ear edema and carrageenan (CG)-induced paw edema models, BcAEF reduced edema around 70 to 80% together with inhibition of activation and/or migration of neutrophils to the inflammatory area. All together the results presented herein show BcAEF as a potent antitumor agent combining antiproliferative and anti-inflammatory properties, which could be further explored in (pre)clinical studies.
Assuntos
Alcaloides/química , Anti-Inflamatórios/farmacologia , Antineoplásicos/farmacologia , Boehmeria/química , Simulação por Computador , Extratos Vegetais/farmacologia , Animais , Apoptose/efeitos dos fármacos , Caspases/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Clonais , Modelos Animais de Doenças , Orelha/patologia , Edema/patologia , Ativação Enzimática/efeitos dos fármacos , Exocitose , Humanos , Simulação de Acoplamento Molecular , Paclitaxel/farmacologia , Peroxidase/metabolismo , Fosfatidilserinas/metabolismo , Padrões de Referência , Testes de Toxicidade AgudaRESUMO
Mast cells are effector cells that initiate allergic inflammatory immune responses by inducing inflammatory mediators. Boehmeria nivea (Linn.) Gaudich is a natural herb in the nettle family Urticaceae that possesses numerous pharmacological properties. Despite the various pharmacological benefits of Boehmeria nivea, its effects on allergic inflammation have not yet been determined. Here, we investigated the effect of the ethanol extract of Boehmeria nivea (BNE) on degranulation rat basophilic leukemia (RBL)-2H3 mast cells stimulated with anti-dinitrophenyl (anti-DNP) and bovine serum albumin (BSA) during immunoglobulin E (IgE)-mediated allergic immune response. The results showed inhibition of the release of ß-hexosaminidase and histamine from the cells. BNE suppressed pro-inflammatory cytokines (Tumor necrosis factor (TNF)-α, Interleukin (IL)-1ß, and IL-6) and reduced T helper (Th)2 cytokine IL-4 expression and/or secretion correlated with the downregulation of p38, extracellular signal-regulated kinases (ERK) mitogen-activated protein kinase (MAPK), and nuclear factor-κB (NF-κB) signaling pathways in treated RBL-2H3 mast cells. In passive cutaneous anaphylaxis, treatment with BNE during IgE-mediated local allergic reaction triggered a reduction in mouse ear pigmentation and thickness. Taken together, these results indicated that BNE suppressed mast cell-mediated inflammation, suggesting that BNE might be a candidate for the treatment of various allergic disorders.
Assuntos
Boehmeria/química , Hipersensibilidade/tratamento farmacológico , Inflamação/tratamento farmacológico , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Mastócitos/efeitos dos fármacos , NF-kappa B/efeitos dos fármacos , Extratos Vegetais/farmacologia , Anafilaxia/metabolismo , Animais , Antialérgicos/farmacologia , Linhagem Celular Tumoral , Citocinas/metabolismo , Histamina/química , Liberação de Histamina/efeitos dos fármacos , Imunoglobulina E/química , Mediadores da Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Anafilaxia Cutânea Passiva/efeitos dos fármacos , Pigmentação , Folhas de Planta/química , Ratos , Soroalbumina Bovina/química , beta-N-Acetil-Hexosaminidases/químicaRESUMO
The bioactive form of thermostable and alkali stable pectinase of Bacillus pumilus dcsr1 is a homodimer of the molecular mass of 60 kDa with a pI of 4.6. The enzyme is optimally active at 50 °C and pH 10.5, and its Michaelis constant (Km), maximum rate of reaction (Vmax), activation energy (Ea), and temperature quotient (Q10) values (for citrus pectin) are 0.29 mg mL-1, 116 µmole mg-1 min-1, 74.73 KJmol-1 and 1.57, respectively. The enzyme has a shelf life of one and a half years at room temperature as well as 4 °C. The activity of the enzyme is stimulated by Mn2+ and Ca2+ and inhibited by Hg+, Cd2+, Co2+, Zn2+, Fe2+, Pb2+, EDTA and urea to a varied extent. The conformational studies of the enzyme revealed a high ß-sheet content in the bioactive dimer, and high α-helix in the inactive monomer. The Circular Dichroism (CD) spectra of the dimer in the presence of inhibitors suggested a marked decrease in ß-sheet, and a significant increase in α-helix, suggesting a key role of ß-sheets in the enzyme catalysis. Based on the end product analysis, the enzyme is an exopolygalacturonase with a unique ability of transglycosylation. When ramie fibers were treated with the enzyme, removal of gummy material (pectin) was visible, confirming its applicability in the degumming process.
Assuntos
Bacillus pumilus/enzimologia , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/isolamento & purificação , Bacillus/enzimologia , Bacillus pumilus/metabolismo , Proteínas de Bactérias/química , Boehmeria/química , Boehmeria/metabolismo , Cisteína Endopeptidases/química , Cisteína Endopeptidases/isolamento & purificação , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Cinética , Peso Molecular , Pectinas/química , Poligalacturonase/química , Polissacarídeo-Liases/química , Especificidade por Substrato , TemperaturaRESUMO
Lignocellulosic biomass is receiving growing interest as a renewable source of biofuels, chemicals and materials. Lignocellulosic polymers and cellulose nanocrystals (CNCs) present high added-value potential in the nanocomposite field, but some issues have to be solved before large-scale applications. Among them, the interaction between polymers at the nanoscale and the effect of the external parameters on the mechanical properties have to be more precisely investigated. The present study aims at evaluating how the relative humidity affects the reduced Young's modulus of lignocellulosic films prepared with crystalline cellulose, glucomannan, xylan and lignin and how relative humidity changes their nanoscale adhesion properties with CNCs. Using atomic force microscopy and force volume experiments with CNC-functionalized levers, increasing the relative humidity is shown to decrease the Young's modulus values of the different films and promote their adhesion forces with CNCs. In particular, CNCs more strongly interact with glucomannan and lignin than xylan, and in the case of lignin, the oxidation of the film promotes strong variations in the adhesion force. Such results allow to better understand the lignocellulosic film properties at the nanoscale, which should lead to an improvement in the production of new highly added-value composites.
Assuntos
Celulose/química , Módulo de Elasticidade , Umidade , Lignina/química , Microscopia de Força Atômica , Polímeros/química , Boehmeria/química , Concentração de Íons de Hidrogênio , Mananas/química , Nanocompostos/química , Nanotecnologia/métodos , Oxigênio/química , Distribuição de Poisson , Polissacarídeos/química , Temperatura , Xilanos/química , Zea mays/químicaRESUMO
Tropical and subtropical regions were quite short of high-quality protein forage. Ramie (Boehmeria nivea L. Gaud) leaves as crop by products, are rich in protein and widely cultivated in tropical and subtropical regions. Thence, the development and utilization of ramie is of great significance to animal production in these regions. But it contained high level of tannins and total phenols, which may produce potentially adverse effect. It is very essential to evaluate the safety of ramie leaves before they are used as feed supplements. To evaluate potential toxic level of ramie leaf, control group, low dose and high dose (0, 1, 2 g/kg·BW) groups of ramie leaf were conducted orally in Sprague-Dawley rats (SD rats). Body weight, hematology, and histopathology was assessed during 28 d of treatment and 14 d of recovery period. The results showed that there were no toxic symptoms appeared in the treated and control groups. There were a few individual indicators showed abnormal, but most indices of body weight, organ weight ratios and hematology were normal. And compared to control group, it showed no significant differences (P>0.05). Histopathological examination of the high dose group and control group showed that there was no lesions related to ramie administration. The pathological changes appeared in the liver, and lungs of rats in individual rat of both groups were common and spontaneous, and had no significant differences (P>0.05). These results suggest that under this experimental condition, up to 2 g/kg·BW intragastric administration of ramie leaf did not produce adverse effect to SD rats. These findings would provide available information for ramie leaf to utilize as a feed supplement, particularly in P.R. China.
Assuntos
Ração Animal/análise , Boehmeria/química , Suplementos Nutricionais/análise , Folhas de Planta/química , Ração Animal/efeitos adversos , Animais , China , Suplementos Nutricionais/efeitos adversos , Feminino , Masculino , Distribuição Aleatória , Ratos , Ratos Sprague-DawleyRESUMO
Ramie is an important natural fiber crop, and the fiber yield and its related traits are the most valuable traits in ramie production. However, the genetic basis for these traits is still poorly understood, which has dramatically hindered the breeding of high yield in this fiber crop. Herein, a high-density genetic map with 6,433 markers spanning 2476.5 cM was constructed using a population derived from two parents, cultivated ramie Zhongsizhu 1 (ZSZ1) and its wild progenitor B. nivea var. tenacissima (BNT). The fiber yield (FY) and its four related traits-stem diameter (SD) and length (SL), stem bark weight (BW) and thickness (BT)-were performed for quantitative trait locus (QTL) analysis, resulting in a total of 47 QTLs identified. Forty QTLs were mapped into 12 genomic regions, thus forming 12 QTL clusters. Among 47 QTLs, there were 14 QTLs whose wild allele from BNT was beneficial. Interestingly, all QTLs in Cluster 10 displayed overdominance, indicating that the region of this cluster was likely heterotic loci. In addition, four fiber yield-related genes underwent positive selection were found either to fall into the FY-related QTL regions or to be near to the identified QTLs. The dissection of FY and FY-related traits not only improved our understanding to the genetic basis of these traits, but also provided new insights into the domestication of FY in ramie. The identification of many QTLs and the discovery of beneficial alleles from wild species provided a basis for the improvement of yield traits in ramie breeding.
Assuntos
Boehmeria/genética , Mapeamento Cromossômico/estatística & dados numéricos , Produtos Agrícolas , Caules de Planta/genética , Locos de Características Quantitativas , Característica Quantitativa Herdável , Boehmeria/anatomia & histologia , Boehmeria/química , Boehmeria/crescimento & desenvolvimento , Cruzamentos Genéticos , Fibras na Dieta/análise , Ligação Genética , Genoma de Planta , Humanos , Melhoramento Vegetal/métodos , Caules de Planta/anatomia & histologia , Caules de Planta/química , Caules de Planta/crescimento & desenvolvimentoRESUMO
Ramie (Boehmeria nivea) is a perennial herb that is highly tolerant of heavy metals. In the present study, we cloned a novel metallothionein-like gene from ramie; this gene, termed BnMTL, encodes a putative 46 amino acid protein with a molecular mass of 4.38 kDa. Analysis using quantitative RT-PCR revealed that cadmium (Cd2+ ) treatment results in elevated expression of BnMTL in the roots. We heterologously overexpressed BnMTL in Escherichia coli cells to examine its binding to Cd2+ and its possible role in homeostasis. Recombinant E. coli cells expressing BnMTL exhibited a high tolerance of Cd2+ stress up to a concentration of 1 mm, and the observed accumulation of Cd2+ was almost eight-fold higher than the control. These results demonstrate that BnMTL (i) is highly expressed in the root following exposure to Cd2+ and (ii) encodes a typical metallothionein-like protein with high cadmium-binding activity.
Assuntos
Boehmeria/química , Metalotioneína/genética , Boehmeria/efeitos dos fármacos , Boehmeria/crescimento & desenvolvimento , Cádmio/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/genética , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Reação em Cadeia da Polimerase Via Transcriptase ReversaRESUMO
Hexafluoroisopropanol (HFIP) was used as a phase-separation solvent to develop novel alcohol-salt aqueous two-phase systems (ATPSs) with various salts. Phase diagram and effective excluded volume (EEV) study proved that HFIP has much better phase-separation ability compared to traditional small molecule alcohols (ethanol, isopropanol and n-propanol). Then, the HFIP-NaCl ATPS was applied for the extraction and purification of chlorogenic acid (CGA) from ramie leaves. Under the optimum conditions (2 M NaCl solution with pH 3.0, the volume ratio of NaCl solution to HFIP at 6, vortex time 5 s and centrifugation time 7 min), the extraction efficiency of CGA in the salt-rich phase was 99.3%, meanwhile the HFIP-rich phase could extract a large amount of impurities. Furthermore, the CGA product with the purity of 91.0% was obtained from the salt-rich phase by semi-preparative liquid chromatography and salt removal, and its chemical structure was identified. Compared with other ATPSs, the HFIP-NaCl ATPS consumed much less organic solvent and salt, but acquired much higher extraction efficiency and obvious impurity-removal effect. Therefore, the HFIP-based alcohol-salt ATPSs are promising in the extraction and purification of CGA and other polar compounds as well.
Assuntos
Boehmeria/química , Ácido Clorogênico/isolamento & purificação , Cromatografia Líquida , Extratos Vegetais/isolamento & purificação , Folhas de Planta/química , Propanóis/química , Cloreto de Sódio/química , Álcoois/química , Solventes/química , Água/químicaRESUMO
Recently, two-way oil/water separation materials bearing both "water-removing" and "oil-removing" functions are of great interest for treating environmental water pollution. Despite having switchable surface wettability, these materials are generally designed to possess superhydrophilicity in air, which, standing on the viewpoint of thermodynamics, is unstable and easy to lose the superwetting property. Concerning the full exploitation of sustainable biomass resources, herein, we use soy protein and ramie fiber to fabricate a cross-linked biocomposite whose amphiphilicity can be tuned by introducing a low surface-energy agent, octadecylamine. The resultant composite can be used as a coating for stainless steel meshes, preparing stably hydrophobic surface in air as well as achieving dual superlyophobicity under liquid that is required for efficiently separating light and heavy oils from water. Furthermore, a high separation efficiency is acquired for both light oil/water and heavy oil/water mixtures during cyclicusage. Notably, the fully bio-based coating displays high resistance against mechanical abrasion and harsh chemical corrosions (acid, alkaline, and salt) without losing high separation efficiency, indicating the potential application of such material in oily wastewater treatment.
Assuntos
Materiais Biocompatíveis/química , Reagentes de Ligações Cruzadas/química , Óleos/química , Água/química , Boehmeria/química , Materiais Revestidos Biocompatíveis/química , Interações Hidrofóbicas e Hidrofílicas , Proteínas de Soja/química , Aço Inoxidável/química , Propriedades de Superfície , Águas Residuárias , Purificação da Água/métodos , MolhabilidadeRESUMO
Ramie (Boehmeria nivea L.) is usually cultivated as a fiber crop, but it is also well known for its potential use in animal feeding with viable commercial applications. In this study, the phenolics profile as well as cellular antioxidant and antiproliferative activities were investigated in free and bound fractions of six different vegetative parts from Boehmeria nivea L. The highest total phenolic content was observed in bud (4585 ± 320 mg GAE/100 g DW), whereas root and petiole had the lowest total phenolic contents, 442.8 ± 9.8 and 630.9 ± 27.0 mg GAE/100 g DW, respectively. Likewise, phloem had the most abundant total flavonoids (2755 ± 184 mg CE/100 g DW), whereas the lowest flavonoid contents was found in root and petiole, 636.9 ± 44.2 and 797.4 ± 87.6 mg CE/100 g DW, respectively. Xylem and bud depicted remarkable antioxidant and antiproliferative activities, which could be explained by their diverse phenolic composition, especially chlorogenic acid and epicatechin. The Boehmeria nivea L. plant might be a valuable resource for high value-added phenolic compounds used in food and non-food industries.