Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 861
Filtrar
1.
Commun Biol ; 7(1): 786, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38951579

RESUMO

Fibroins' transition from liquid to solid is fundamental to spinning and underpins the impressive native properties of silk. Herein, we establish a fibroin heavy chain fold for the Silk-I polymorph, which could be relevant for other similar proteins, and explains mechanistically the liquid-to-solid transition of this silk, driven by pH reduction and flow stress. Combining spectroscopy and modelling we propose that the liquid Silk-I fibroin heavy chain (FibH) from the silkworm, Bombyx mori, adopts a newly reported ß-solenoid structure. Similarly, using rheology we propose that FibH N-terminal domain (NTD) templates reversible higher-order oligomerization driven by pH reduction. Our integrated approach bridges the gap in understanding FibH structure and provides insight into the spatial and temporal hierarchical self-assembly across length scales. Our findings elucidate the complex rheological behaviour of Silk-I, solutions and gels, and the observed liquid crystalline textures within the silk gland. We also find that the NTD undergoes hydrolysis during standard regeneration, explaining key differences between native and regenerated silk feedstocks. In general, in this study we emphasize the unique characteristics of native and native-like silks, offering a fresh perspective on our fundamental understanding of silk-fibre production and applications.


Assuntos
Bombyx , Fibroínas , Bombyx/metabolismo , Bombyx/química , Animais , Fibroínas/química , Fibroínas/metabolismo , Reologia , Seda/química , Seda/metabolismo , Concentração de Íons de Hidrogênio
2.
J Mater Chem B ; 12(26): 6351-6370, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38864220

RESUMO

Surface wrinkling provides an approach to modify the surfaces of biomedical devices to better mimic features of the extracellular matrix and guide cell attachment, proliferation, and differentiation. Biopolymer wrinkling on active materials holds promise but is poorly explored. Here we report a mechanically actuated assembly process to generate uniaxial micro-and nanosized silk fibroin (SF) wrinkles on a thermo-responsive shape-memory polymer (SMP) substrate, with wrinkling demonstrated under both dry and hydrated (cell compatible) conditions. By systematically investigating the influence of SMP programmed strain magnitude, film thickness, and aqueous media on wrinkle stability and morphology, we reveal how to control the wrinkle sizes on the micron and sub-micron length scale. Furthermore, as a parameter fundamental to SMPs, we demonstrate that the temperature during the recovery process can also affect the wrinkle characteristics and the secondary structures in the silk network. We find that with increasing SMP programmed strain magnitude, silk wrinkled topographies with increasing wavelengths and amplitudes are achieved. Furthermore, silk wrinkling is found to increase ß-sheet content, with spectroscopic analysis suggesting that the effect may be due primarily to tensile (e.g., Poisson effect and high-curvature wrinkle) loading modes in the SF, despite the compressive bulk deformation (uniaxial contraction) used to produce wrinkles. Silk wrinkles fabricated from sufficiently thick films (roughly 250 nm) persist after 24 h in cell culture medium. Using a fibroblast cell line, analysis of cellular response to the wrinkled topographies reveals high viability and attachment. These findings demonstrate use of wrinkled SF films under physiologically relevant conditions and suggest the potential for biopolymer wrinkles on biomaterials surfaces to find application in cell mechanobiology, wound healing, and tissue engineering.


Assuntos
Fibroínas , Fibroínas/química , Animais , Biopolímeros/química , Camundongos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Estrutura Secundária de Proteína , Bombyx/química , Propriedades de Superfície , Seda/química , Fibroblastos/citologia , Materiais Inteligentes/química
3.
ACS Biomater Sci Eng ; 10(7): 4552-4561, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38922676

RESUMO

Silkworms have provided valuable byproducts (spanning from high-quality textiles to health supplements) to humans for millennia. Despite their importance in sericultural economy and biotechnology, manifold possibilities inherent in the myriad natural or artificially generated silk varieties have been underestimated. In this paper, we report that the Yeonnokjam silk strain, which shows light-green color, contains quercetin fluorochrome (QueF) in sericin, and QueF can be used as a fluorescence dye with a large Stokes shift and high sensitivity to environmental temperature and pH, thus functioning as an environmental sensing material. A Stokes shift exceeding 180 nm, a quantum efficiency of 1.28%, and a rapid fluorescence decay of 0.67 ns are obtained, which are influenced by solvent polarities. Moreover, QueF can be used as a UV blocker as well, and its low cytotoxicity and biocompatibility further suggest promising prospects for diverse application in cosmetics and medical materials in the future.


Assuntos
Bombyx , Corantes Fluorescentes , Sericinas , Seda , Corantes Fluorescentes/química , Animais , Seda/química , Bombyx/química , Humanos , Sericinas/química , Quercetina/química , Concentração de Íons de Hidrogênio , Temperatura , Materiais Biocompatíveis/química
4.
PeerJ ; 12: e17490, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38903886

RESUMO

Background: Pathogenic bacteria are the cause of most skin diseases, but issues such as resistance and environmental degradation drive the need to research alternative treatments. It is reported that silk cocoon extract possesses antioxidant properties. During silk processing, the degumming of silk cocoons creates a byproduct that contains natural active substances. These substances were found to have inhibitory effects on bacterial growth, DNA synthesis, the pathogenesis of hemolysis, and biofilm formation. Thus, silk cocoon extracts can be used in therapeutic applications for the prevention and treatment of skin pathogenic bacterial infections. Methods: The extract of silk cocoons with pupae (SCP) and silk cocoons without pupae (SCWP) were obtained by boiling with distilled water for 9 h and 12 h, and were compared to silkworm pupae (SP) extract that was boiled for 1 h. The active compounds in the extracts, including gallic acid and quercetin, were determined using high-performance liquid chromatography (HPLC). Furthermore, the total phenolic and flavonoid content in the extracts were investigated using the Folin-Ciocalteu method and the aluminum chloride colorimetric method, respectively. To assess antioxidant activity, the extracts were evaluated using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay. Additionally, the minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of silk extracts and phytochemical compounds were determined against skin pathogenic bacteria. This study assessed the effects of the extracts and phytochemical compounds on growth inhibition, biofilm formation, hemolysis protection, and DNA synthesis of bacteria. Results: The HPLC characterization of the silk extracts showed gallic acid levels to be the highest, especially in SCP (8.638-31.605 mg/g extract) and SP (64.530 mg/g extract); whereas quercetin compound was only detected in SCWP (0.021-0.031 mg/g extract). The total phenolics and flavonoids in silk extracts exhibited antioxidant and antimicrobial activity. Additionally, SCP at 9 h and 12 h revealed the highest anti-bacterial activity, with the lowest MIC and MBC of 50-100 mg/mL against skin pathogenic bacteria including Staphylococcus aureus, methicillin-resistant S. aureus (MRSA), Cutibacterium acnes and Pseudomonas aeruginosa. Hence, SCP extract and non-sericin compounds containing gallic acid and quercetin exhibited the strongest inhibition of both growth and DNA synthesis on skin pathogenic bacteria. The suppression of bacterial pathogenesis, including preformed and matured biofilms, and hemolysis activity, were also revealed in SCP extract and non-sericin compounds. The results show that the byproduct of silk processing can serve as an alternative source of natural phenolic and flavonoid antioxidants that can be used in therapeutic applications for the prevention and treatment of pathogenic bacterial skin infections.


Assuntos
Antibacterianos , Antioxidantes , Bombyx , Seda , Animais , Bombyx/química , Antioxidantes/farmacologia , Antioxidantes/química , Seda/química , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/isolamento & purificação , Biofilmes/efeitos dos fármacos , Pupa/efeitos dos fármacos , Radicais Livres/metabolismo , Testes de Sensibilidade Microbiana , Hemólise/efeitos dos fármacos
5.
Int J Mol Sci ; 25(11)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38892315

RESUMO

The traditional production mode of the sericulture industry is no longer suitable for the development requirements of modern agriculture; to facilitate the sustainable development of the sericulture industry, factory all-age artificial diet feeding came into being. Understanding the structural characteristics and properties of silk fibers obtained from factory all-age artificial diet feeding is an important prerequisite for application in the fields of textiles, clothing, biomedicine, and others. However, there have been no reports so far. In this paper, by feeding silkworms with factory all-age artificial diets (AD group) and mulberry leaves (ML group), silk fibers were obtained via two different feeding methods. The structure, mechanical properties, hygroscopic properties, and degradation properties were studied by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). Structurally, no new functional groups appeared in the AD group. Compared with the ML group, the structure of the two groups was similar, and there was no significant difference in mechanical properties and moisture absorption. The structure of degummed silk fibers is dominated by crystalline regions, but α-chymotrypsin hydrolyzes the amorphous regions of silk proteins, so that after 28 d of degradation, the weight loss of both is very small. This provides further justification for the feasibility of factory all-age artificial diets for silkworms.


Assuntos
Bombyx , Seda , Animais , Seda/química , Bombyx/química , Difração de Raios X , Espectroscopia de Infravermelho com Transformada de Fourier , Termogravimetria , Morus/química
6.
Biomed Chromatogr ; 38(8): e5906, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38807034

RESUMO

The application of traditional Chinese medicine dispensing granules is becoming increasingly prevalent. However, the consistency of dispensing granules with traditional decoction remains controversial. In this study, the consistency of peptide composition and pharmacodynamics between dispensing granules and traditional decoction of Bombyx batryticatus (BB) were assessed. A peptidomics method based on LC-tandem mass spectrometry technology was used to evaluate peptide composition similarity between BB traditional decoction and dispensing granules. The results revealed notable differences in peptide sequences between the two dosage forms, with only 8.55% of peptides shared between them. To evaluate the potential pharmacodynamic effects of the two dosage forms on epilepsy, virtual screening was used to identify potential active peptides, including blood-brain barrier permeability, toxicity prediction, and molecular docking. BB traditional decoction demonstrated a higher number and greater abundance of potential active peptides than BB dispensing granules, suggesting that BB traditional decoction may have a more favorable effect in treating epilepsy compared with BB dispensing granules. Moreover, molecular docking and molecular dynamics simulation studies confirmed the mechanism of action of active peptides to γ-aminobutyric acid transporter 1 (GAT-1). This study provides a scientific basis for the evaluation of quality consistency between BB traditional decoction and dispensing granules.


Assuntos
Bombyx , Simulação de Acoplamento Molecular , Espectrometria de Massas em Tandem , Animais , Espectrometria de Massas em Tandem/métodos , Bombyx/química , Medicina Tradicional Chinesa , Peptídeos/química , Peptídeos/análise , Proteômica/métodos , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/análise , Medicamentos de Ervas Chinesas/farmacologia , Simulação por Computador , Cromatografia Líquida/métodos , Simulação de Dinâmica Molecular
7.
Int J Biol Macromol ; 272(Pt 1): 132702, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38810851

RESUMO

Fibroin is a structural protein derived from silk cocoons, which may be used in a variety of biomedical applications due to its high biocompatibility and controllable material properties. Conversely, fibroin solution is inherently unstable in solution, which limits its potential utility. Fibroin hydrolysates possess enhanced aqueous solubility and stability, with known anti-inflammatory bioactivity. Here, silk-derived protein (SDP) was produced through controlled time, temperature, and pressure conditions to generate a novel and reproducible hydrolysate population. Both regenerated fibroin and SDP solution stability were characterized for MWD, amino acid content, solubility, viscosity, surface interaction, secondary structure formation, and in vitro assessment of NF-kB pathway activity. Mechanistic studies indicate that hydrolysis processing is required to enhance material stability by abolishing fibroin's ability to self-associate. In vitro assays using HCLE cells indicate SDP has dose dependent potency for inhibiting NF-kB driven gene expression of TNF-α and MMP-9. Collectively, the results support SDP's use as an anti-inflammatory wetting agent compatible with a wide range of both biomedical and industrial applications. Furthermore, the conditions used to generate SDP hydrolysates are readily accessible, produce a highly consistent material from batch-to-batch, and permit widespread investigation of this novel population for these purposes.


Assuntos
Fibroínas , NF-kappa B , Fibroínas/química , NF-kappa B/metabolismo , Hidrólise , Cinética , Animais , Humanos , Géis/química , Solubilidade , Viscosidade , Bombyx/química , Bombyx/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
8.
Poult Sci ; 103(7): 103812, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38735098

RESUMO

The present experiment was conducted to test the effect of a 4% defatted silkworm (Bombyx mori) pupae meal (SWM) incorporation into chickens' diets at different growth phases on meat quality characteristics and sensory traits. Ninety ROSS 308 day-old male broiler chickens were randomly assigned to 3 dietary groups, with 5 replicated pens/diet: the first group received a control (C) diet throughout the growing period of 42 d, the second group received a diet with 4% SWM (SWM1) during the starter phase (1-10 d) and the C diet up to slaughter, whereas the third group was fed the C diet during the starter phase and 4% SWM during the grower and finisher phases (SWM2). Diets were isonitrogenous and isoenergy, and birds had free access to feed and water throughout the experimental trial. At 42 d of age, 15 chickens/treatment were slaughtered at a commercial abattoir. Fatty acid (FA) and amino acid (AA) profiles and contents of meat, as well as its oxidative status, were determined in both breast and leg meat cuts. Also, a descriptive sensory analysis was performed on breast meat by trained panelists. Results highlighted that the SWM2 treatment increased the n-3 proportion and content in both breast and leg meat, thereby improving the omega-6/omega-3 (n-6/n-3) ratio in both cuts (P < 0.001). However, the dietary treatment had no significant effect on the oxidative status of either breast or leg meat (P > 0.05). The SWM had a limited impact on overall sensory traits of breast meat, but it contributed to improve meat tenderness in SWM-fed chickens (P < 0.01). Furthermore, SWM1 meat exhibited higher juiciness (P < 0.05) and off flavor intensity (P < 0.05) compared to the control meat. Overall, the present experiment indicated that defatted SWM holds promise as an alternative ingredient in chicken rations, ensuring satisfactory meat quality. Furthermore, administering SWM during the grower-finisher phase demonstrated beneficial effects on meat healthiness, ultimately enhancing n-3 fatty acids content and reducing the n-6/n-3 ratio.


Assuntos
Ração Animal , Bombyx , Galinhas , Dieta , Carne , Animais , Galinhas/fisiologia , Galinhas/crescimento & desenvolvimento , Ração Animal/análise , Dieta/veterinária , Masculino , Carne/análise , Bombyx/química , Distribuição Aleatória , Pupa/crescimento & desenvolvimento , Fenômenos Fisiológicos da Nutrição Animal , Ácidos Graxos/análise , Ácidos Graxos/metabolismo
9.
Ultrason Sonochem ; 107: 106927, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38820934

RESUMO

A novel technique was proposed for processing silkworm pupae by combining plasma- activated water (PAW) with ultrasound (US). The microbial diversity and quality characteristics of the silkworm pupae were also evaluated. The results of the microbial diversity analysis indicated that PAW combined with US treatment significantly reduced the relative abundance of Streptococcaceae, Leuconostocaceae, and Acetobacteraceae from 32%, 18% and 16% to 27%, 11% and 11%, respectively. Microstructural analysis demonstrated that the collapse of the internal structure of chitin in silkworm pupae facilitated the release of nutrients and flavour compounds including fatty acids, water-soluble proteins (WSP), amino acids, phenolics, and volatile compounds. Furthermore, the increase in antioxidant capacity and the decrease in catalase activity and malondialdehyde content confirmed the mechanism of quality change. These findings provide new insights into the possible mechanism of PAW combined with US to improve the quality of edible insects.


Assuntos
Bombyx , Pupa , Água , Animais , Pupa/microbiologia , Água/química , Bombyx/química , Ondas Ultrassônicas , Fenômenos Químicos , Antioxidantes/química , Antioxidantes/farmacologia , Biodiversidade
10.
Molecules ; 29(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38731405

RESUMO

Chitin, a ubiquitous biopolymer, holds paramount scientific and economic significance. Historically, it has been primarily isolated from marine crustaceans. However, the surge in demand for chitin and the burgeoning interest in biopolymers have necessitated the exploration of alternative sources. Among these methods, the mulberry silkworm (Bombyx mori) has emerged as a particularly intriguing prospect. To isolate chitin from Bombyx mori, a chemical extraction methodology was employed. This process involved a series of meticulously orchestrated steps, including Folch extraction, demineralization, deproteinization, and decolorization. The resultant chitin was subjected to comprehensive analysis utilizing techniques such as attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), 13C nuclear magnetic resonance (NMR) spectroscopy, and wide-angle X-ray scattering (WAXS). The obtained results allow us to conclude that the Bombyx mori represents an attractive alternative source of α-chitin.


Assuntos
Bombyx , Quitina , Bombyx/química , Animais , Quitina/química , Quitina/isolamento & purificação , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X , Espectroscopia de Ressonância Magnética , Morus/química
11.
Int J Biol Macromol ; 269(Pt 1): 131748, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38670194

RESUMO

Bio-based shape memory materials have attracted wide attention due to their biocompatibility, degradability and safety. However, designing and manufacturing wearable bio-based shape memory films with excellent flexibility and toughness is still a challenge. In this work, silk fibroin substrate with a ß-sheet structure was combined with a tri-block shape memory copolymer to prepare a transparent composited shape memory film. The silk fibroin-based film showed a dual-responsive shape memory function, which can respond to both temperature and water stimuli. This film has a sensitive water-responsive shape memory, which starts deforming after exposure to water for 3 s and fully recovers in 30 s. In addition, the composite film shows highly stretchable (>300 %) and could maintain its high tensile properties after 5 cycles of regeneration. The films also exhibited rapid degradation ability. This study provides new insights for the design of dual-responsive shape memory materials by combining biocompatible matrix and multi-block SMP to simultaneously enhance the mechanical properties, which can be used for intelligent packaging, medical supplies, soft actuators and wearable devices.


Assuntos
Materiais Biocompatíveis , Fibroínas , Fibroínas/química , Materiais Biocompatíveis/química , Materiais Inteligentes/química , Resistência à Tração , Temperatura , Água/química , Bombyx/química
12.
Nature ; 629(8010): 228-234, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38447670

RESUMO

Animals crave sugars because of their energy potential and the pleasurable sensation of tasting sweetness. Yet all sugars are not metabolically equivalent, requiring mechanisms to detect and differentiate between chemically similar sweet substances. Insects use a family of ionotropic gustatory receptors to discriminate sugars1, each of which is selectively activated by specific sweet molecules2-6. Here, to gain insight into the molecular basis of sugar selectivity, we determined structures of Gr9, a gustatory receptor from the silkworm Bombyx mori (BmGr9), in the absence and presence of its sole activating ligand, D-fructose. These structures, along with structure-guided mutagenesis and functional assays, illustrate how D-fructose is enveloped by a ligand-binding pocket that precisely matches the overall shape and pattern of chemical groups in D-fructose. However, our computational docking and experimental binding assays revealed that other sugars also bind BmGr9, yet they are unable to activate the receptor. We determined the structure of BmGr9 in complex with one such non-activating sugar, L-sorbose. Although both sugars bind a similar position, only D-fructose is capable of engaging a bridge of two conserved aromatic residues that connects the pocket to the pore helix, inducing a conformational change that allows the ion-conducting pore to open. Thus, chemical specificity does not depend solely on the selectivity of the ligand-binding pocket, but it is an emergent property arising from a combination of receptor-ligand interactions and allosteric coupling. Our results support a model whereby coarse receptor tuning is derived from the size and chemical characteristics of the pocket, whereas fine-tuning of receptor activation is achieved through the selective engagement of an allosteric pathway that regulates ion conduction.


Assuntos
Bombyx , Proteínas de Insetos , Receptores Acoplados a Proteínas G , Açúcares , Paladar , Animais , Regulação Alostérica , Sítios de Ligação , Bombyx/metabolismo , Bombyx/química , Microscopia Crioeletrônica , Frutose/metabolismo , Frutose/química , Proteínas de Insetos/química , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Proteínas de Insetos/ultraestrutura , Ligantes , Modelos Moleculares , Simulação de Acoplamento Molecular , Ligação Proteica , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/ultraestrutura , Sorbose/química , Sorbose/metabolismo , Especificidade por Substrato , Açúcares/metabolismo , Açúcares/química , Paladar/fisiologia
13.
Int J Biol Macromol ; 264(Pt 2): 130687, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38462112

RESUMO

Silk fibroin derived from silkworm cocoons exhibits excellent mechanical properties, good biocompatibility, and low immunogenicity. Previous studies showed that silk fibroin had an inhibitory effect on cells, suppressing proliferation and inducing apoptosis. However, the source of the toxicity and the mechanism of apoptosis induction are still unclear. In this study, we hypothesized that the toxicity of silk fibroin might originate from the crystalline region of the heavy chain of silk fibroin. We then verified the hypothesis and the specific induction mechanism. A target peptide segment was obtained from α-chymotrypsin. The potentially toxic mixture of silk fibroin peptides (SFPs) was separated by ion exchange, and the toxicity was tested by an MTT assay. The results showed that SFPs obtained after 4 h of enzymatic hydrolysis had significant cytotoxicity, and SFPs with isoelectric points of 4.0-6.8 (SFPα II) had a significant inhibitory effect on cell growth. LC-MS/MS analysis showed that SFPα II contained a large number of glycine-rich and alanine-rich repetitive sequence polypeptides from the heavy-chain crystallization region. A series of experiments showed that SFPα II mediated cell death through the apoptotic pathway by decreasing the expression of Bcl-2 protein and increasing the expression of Bax protein. SFPα II mainly affected the p53 pathway and the AMPK signaling pathway in HepG2 cells. SFPα II may indirectly increase the expression of Cers2 by inhibiting the phosphorylation of EGFR, which activated apoptotic signaling in the cellular mitochondrial pathway and inhibited the Akt/NF-κB pathway by increasing the expression of PPP2R2A.


Assuntos
Bombyx , Fibroínas , Animais , Fibroínas/farmacologia , Fibroínas/química , Cromatografia Líquida , Espectrometria de Massas em Tandem , Peptídeos/farmacologia , Peptídeos/química , Bombyx/química , Apoptose , Seda/química
14.
J Sci Food Agric ; 104(9): 5407-5418, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38345737

RESUMO

BACKGROUND: Silkworm (Bombyx moil L.) Pupa protein (SPP) is a high-quality insect protein and is considered a sustainable alternative source for traditional animal food protein. However, the utilization of SPP is limited because of its low solubility and emulsifying ability. In the present study, the synergistic effect of hydration and pulsed ultrasound on the physicochemical properties of SPP and SPP-stabilized Pickering emulsions was evaluated. RESULTS: Pulsed ultrasound changed the particle size of SPP and its conformation. As the pulsed ultrasound increased from 0 s to 5 s, the α-helix and SS contents of SPP decreased, whereas the ß-sheet and SH contents increased, which in turn improved its solubility and amphiphilicity. As a result, the SPP treated by a combination of 12 h of hydration and 3 s of ultrasound exhibited a contact angle of 74.95°, hydrophobicity of 904.83, EAI of 6.66 m2 g-1 and ESI of 190.69 min. Compared with the combination of 1 h of hydration and 5 s of ultrasound, the combination of 12 h of hydration and 3 s of ultrasound exerted more soluble and hydrophobic SPP, whereas the EAI and ESI of the samples were higher. Notably, the ultrasound-treated SPP can form a stable gel-like emulsion (oil fraction ranging from 70% to 80%). CONCLUSION: The combination of hydration and ultrasound can effectively improve the physicochemical characteristics of SPP as well as its emulsion stability. Sufficient hydration is a cost-effective method for facilitating the modification of proteins by ultrasound treatment. © 2024 Society of Chemical Industry.


Assuntos
Bombyx , Emulsões , Interações Hidrofóbicas e Hidrofílicas , Proteínas de Insetos , Tamanho da Partícula , Pupa , Solubilidade , Animais , Emulsões/química , Bombyx/química , Proteínas de Insetos/química , Pupa/química , Ondas Ultrassônicas , Emulsificantes/química , Água/química
15.
Food Chem ; 445: 138761, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38367561

RESUMO

The silkworm (Bombyx mori) has long been valued food and feed in East Asia for its abundant nutritional and medicinal attributes, conversely, it can elicit allergic responses in susceptible individuals. Therefore, the development of silkworm detection method is required to avert allergenic incidents. In this study, two methodologies, tandem mass spectrometry (LC-MS/MS) and real-time PCR, were developed to achieve effective silkworm detection. These methods exhibited exceptional sensitivity in identifying silkworm presence in processed foods. Furthermore, model cookies spiked with silkworm were used to validate the sensitivities of LC-MS/MS (0.0005%) and real-time PCR (0.001%). Overall, these techniques were useful for trace silkworm detection in food products; therefore, they may help prevent allergic reactions. To the best of our knowledge, this study represents the first comparison of LC-MS/MS and real-time PCR methods for silkworm detection, marking an important contribution to the field. Data are available from ProteomeXchange under identifier PXD042494.


Assuntos
Bombyx , Hipersensibilidade , Animais , Humanos , Bombyx/genética , Bombyx/química , Espectrometria de Massa com Cromatografia Líquida , Espectrometria de Massas em Tandem , Cromatografia Líquida , Reação em Cadeia da Polimerase em Tempo Real , Alérgenos/genética
16.
Int J Biol Macromol ; 264(Pt 1): 130374, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38408575

RESUMO

Silk is a natural engineering material with a unique set of properties. The major constituent of silk is fibroin, a protein widely used in the biomedical field because of its mechanical strength, toughness and elasticity, as well as its biocompatibility and biodegradability. The domestication of silkworms allows large amounts of fibroin to be extracted inexpensively from silk cocoons. However, the industrial extraction process has drawbacks in terms of sustainability and the quality of the final medical product. The heterologous production of fibroin using recombinant DNA technology is a promising approach to address these issues, but the production of such recombinant proteins is challenging and further optimization is required due to the large size and repetitive structure of fibroin's DNA and amino acid sequence. In this review, we describe the structure-function relationship of fibroin, the current extraction process, and some insights into the sustainability of silk production for biomedical applications. We focus on recent advances in molecular biotechnology underpinning the production of recombinant fibroin, working toward a standardized, successful and sustainable process.


Assuntos
Bombyx , Fibroínas , Animais , Bombyx/química , Fibroínas/química , Materiais Biocompatíveis/química , Biotecnologia , Seda/química
17.
Int J Biol Macromol ; 261(Pt 2): 129746, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38302025

RESUMO

In the development of small-diameter vascular grafts, it is crucial to achieve early-stage endothelialization to prevent thrombus formation and intimal hyperplasia. Silk fibroin (SF) from Bombyx mori is commonly used for such grafts. However, there is a need to expedite endothelialization post-implantation. In this study, we functionalized SF with Arg-Glu-Asp-Val (REDV) (SF + REDV) using cyanuric chloride to enhance endothelialization. The immobilization of REDV onto SF was confirmed and the amount of immobilized REDV could be calculated by 1H NMR. Furthermore, the conformational changes in Tyr, Ser, and Ala residues in [3-13C]Tyr- and [3-13C]Ser-SF due to REDV immobilization were monitored using 13C solid-state NMR. The REDV immobilized onto the SF film was found to be exposed on the film's surface, as confirmed by biotin-avidin system. Cell culture experiments, including adhesiveness, proliferation, and extensibility, were conducted using normal human umbilical vein endothelial cells (HUVEC) and normal human aortic smooth muscle cells (HAoSMC) on both SF and SF + REDV films to evaluate the impact of REDV on endothelialization. The results indicated a trend towards promoting HUVEC proliferation while inhibiting HAoSMC proliferation. Therefore, these findings suggest that SF + REDV may be more suitable than SF alone for coating small-diameter SF knitted tubes made of SF threads.


Assuntos
Bombyx , Fibroínas , Animais , Humanos , Fibroínas/química , Bombyx/química , Células Endoteliais , Peptídeos/química , Espectroscopia de Ressonância Magnética/métodos , Seda
18.
Protein Sci ; 33(3): e4907, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38380732

RESUMO

Understanding how native silk spinning occurs is crucial for designing artificial spinning systems. One often overlooked factor in Bombyx mori is the secretion of sericin proteins. Herein, we investigate the variation in amino acid content at different locations in the middle silk gland (MSG) of B. mori. This variation corresponds to an increase in sericin content when moving towards the anterior region of the MSG, while the posterior region predominantly contains fibroin. We estimate the mass ratio of sericin to fibroin to be ~25/75 wt% in the anterior MSG, depending on the fitting method. Then, we demonstrate that the improvement in the extensional behavior of the silk dope in the MSG correlates with the increase in sericin content. The addition of sericin may decrease the viscosity of the silk dope, a factor associated with an increase in the spinnability of silk. We further discuss whether this effect could also result from other known physicochemical changes within the MSG.


Assuntos
Bombyx , Fibroínas , Sericinas , Animais , Seda/química , Seda/metabolismo , Bombyx/química , Bombyx/metabolismo , Sericinas/química , Sericinas/metabolismo , Fibroínas/química , Fibroínas/metabolismo
19.
Int J Biol Macromol ; 264(Pt 1): 129780, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38290638

RESUMO

Silkworm silk exhibits excellent mechanical properties, biocompatibility, and has potential applications in the biomedical sector. This study focused on enhancing the mechanical properties of Bombyx mori silk by overexpressing three bond-forming active proteins (BFAPs): AFP, HSP, and CRP in the silk glands of silkworms. Rheological tests confirmed increased viscoelasticity in the liquid fibroin stock solution of transgenic silkworms, and dynamic mechanical thermal analysis (DMTA) indicated that all three BFAPs participated in the interactions between fibroin molecular networks in transgenic silk. The mechanical property assay indicated that all three BFAPs improved the mechanical characteristics of transgenic silk, with AFP and HSP having the most significant effects. A synchrotron radiation Fourier transform infrared spectroscopy assay showed that all three BFAPs increased the ß-sheet content of transgenic silk. Synchrotron radiation wide-angle X-ray diffraction assay showed that all three BFAPs changed the crystallinity, crystal size, and orientation factor of the silk. AFP and HSP significantly improved the mechanical attributes of transgenic silk through increased crystallinity, refined crystal size, and a slight decrease in orientation. This study opens new possibilities for modifying silk and other fiber materials.


Assuntos
Bombyx , Fibroínas , Animais , Seda/química , Bombyx/química , Fibroínas/química , alfa-Fetoproteínas/metabolismo , Animais Geneticamente Modificados
20.
Sci Bull (Beijing) ; 69(6): 792-802, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38245448

RESUMO

Silk is one of the toughest fibrous materials known despite spun at ambient temperature and pressure with water as a solvent. It is a great challenge to reproduce high-performance artificial fibers comparable to natural silk by bionic for the incomplete understanding of silkworm spinning in vivo. Here, we found that amphipol and digitonin stabilized the structure of natural silk fibroin (NSF) by a large-scale screening in vitro, and then studied the close-to-native ultrastructure and hierarchical assembly of NSF in the silk gland lumen. Our study showed that NSF formed reversible flexible nanofibrils mainly composed of random coils with a sedimentation coefficient of 5.8 S and a diameter of about 4 nm, rather than a micellar or rod-like structure assembled by the aggregation of globular NSF molecules. Metal ions were required for NSF nanofibril formation. The successive pH decrease from posterior silk gland (PSG) to anterior silk gland (ASG) resulted in a gradual increase in NSF hydrophobicity, thus inducing the sol-gelation transition of NSF nanofibrils. NSF nanofibrils were randomly dispersed from PSG to ASG-1, and self-assembled into anisotropic herringbone patterns at ASG-2 near the spinneret ready for silkworm spinning. Our findings reveal the controlled self-assembly mechanism of the multi-scale hierarchical architecture of NSF from nanofibrils to herringbone patterns programmed by metal ions and pH gradient, which provides novel insights into the spinning mechanism of silk-secreting animals and bioinspired design of high-performance fibers.


Assuntos
Bombyx , Fibroínas , Animais , Bombyx/química , Seda/química , Fibroínas/química , Solventes , Metais , Concentração de Íons de Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA