Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.024
Filtrar
1.
Cell Commun Signal ; 22(1): 258, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38711131

RESUMO

Although bortezomib (BTZ) is the cornerstone of anti-multiple myeloma (MM) therapy, the inevitable primary and secondary drug resistance still seriously affects the prognosis of patients. New treatment strategies are in need. Sodium-calcium exchanger 1 (NCX1) is a calcium-permeable ion transporter on the membrane, and our previous studies showed that low NCX1 confers inferior viability in MM cells and suppressed osteoclast differentiation. However, the effect of NCX1 on BTZ sensitivity of MM and its possible mechanism remain unclear. In this study, we investigated the effect of NCX1 on BTZ sensitivity in MM, focusing on cellular processes of autophagy and cell viability. Our results provide evidence that NCX1 expression correlates with MM disease progression and low NCX1 expression increases BTZ sensitivity. NCX1/Ca2+ triggered autophagic flux through non-canonical NFκB pathway in MM cells, leading to attenuated the sensitivity of BTZ. Knockdown or inhibition of NCX1 could potentiate the anti-MM activity of BTZ in vitro and vivo, and inhibition of autophagy sensitized NCX1-overexpressing MM cells to BTZ. In general, this work implicates NCX1 as a potential therapeutic target in MM with BTZ resistance and provides novel mechanistic insights into its vital role in combating BTZ resistance.


Assuntos
Autofagia , Bortezomib , Mieloma Múltiplo , Trocador de Sódio e Cálcio , Trocador de Sódio e Cálcio/metabolismo , Trocador de Sódio e Cálcio/genética , Humanos , Autofagia/efeitos dos fármacos , Animais , Bortezomib/farmacologia , Mieloma Múltiplo/patologia , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/genética , Linhagem Celular Tumoral , Camundongos , Cálcio/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , NF-kappa B/metabolismo , Sobrevivência Celular/efeitos dos fármacos
2.
Clin Transl Med ; 14(5): e1675, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38689424

RESUMO

INTRODUCTION: Intrahepatic cholangiocarcinoma (ICC) is characterized by a dismal prognosis with limited therapeutic alternatives. To explore phosphatase and tension homolog (PTEN) as a biomarker for proteasome inhibition in ICC, we conducted a phase II trial to assess the second-line efficacy of bortezomib in PTEN-deficient advanced ICC patients. METHODS: A total of 130 patients with advanced ICC in our centre were screened by PTEN immunohistochemical staining between 1 July 2017, and 31 December 2021, and 16 patients were ultimately enrolled and treated with single-agent bortezomib 1.3 mg/m2 on days 1, 4, 8 and 11 of a 21-day cycle. The primary endpoint was the objective response rate (ORR) according to Response Evaluation Criteria in Solid Tumors v1.1. RESULTS: The median follow-up was 6.55 months (95% confidence interval [CI]: 0.7-19.9 months). Among the 16 enrolled patients, the ORR was 18.75% (3/16) and the disease control rate was 43.75% (7/16). The median progress-free survival was 2.95 months (95% CI: 2.1-5.1 months) and the median overall survival (mOS) was 7.2 months (95% CI: 0.7-21.6 months) in the intent-to-treat-patients. Treatment-related adverse events of any grade were reported in 16 patients, with thrombopenia being the most common toxicity. Patients with PTEN staining scores of 0 were more likely to benefit from bortezomib than those with staining scores > 0. CONCLUSIONS: Bortezomib yielded an encouraging objective response and a favourable OS as a second-line agent in PTEN-deficient ICC patients. Our findings suggest bortezomib as a promising therapeutic option for patients with PTEN-deficient ICC. HIGHLIGHTS: There is a limited strategy for the second-line option of intrahepatic cholangiocarcinoma (ICC). This investigator-initiated phase 2 study evaluated bortezomib in ICC patients with phosphatase and tension homology deficiency. The overall response rate was 18.75% and the overall survival was 7.2 months in the intent-to-treat cohort. These results justify further developing bortezomib in ICC patients with PTEN deficiency.


Assuntos
Neoplasias dos Ductos Biliares , Bortezomib , Colangiocarcinoma , PTEN Fosfo-Hidrolase , Humanos , Colangiocarcinoma/tratamento farmacológico , Colangiocarcinoma/genética , Bortezomib/uso terapêutico , Bortezomib/farmacologia , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Estudos Prospectivos , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Neoplasias dos Ductos Biliares/tratamento farmacológico , Neoplasias dos Ductos Biliares/genética , Adulto , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia
3.
ACS Appl Mater Interfaces ; 16(19): 24295-24307, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38697643

RESUMO

Pyroptosis has garnered increasing attention because of its ability to trigger robust antitumor immunity. Pyroptosis is initiated by the activation of inflammasomes, which are regulated by various organelles. The collaboration among organelles offers several protective mechanisms to prevent activation of the inflammasome, thereby limiting the induction of efficient pyroptosis. Herein, a multiorganelle homeostasis disruptor (denoted BLL) is constructed by encapsulating liposomes and bortezomib (BTZ) within a layered double hydroxide (LDH) nanocage to continuously activate inflammasomes for inducing efficient pyroptosis. In lysosomes, the negatively charged liposomes are released to recruit the NLRP3 inflammasomes through electrostatic interactions. ER stress is induced by BTZ to enhance the activation of the NLRP3 inflammasome. Meanwhile, the BLL nanocage exhibited H+-scavenging ability due to the weak alkalinity of LDH, thus disrupting the homeostasis of the lysosome and alleviating the degradation of the NLRP3 inflammasome by lysosomal-associated autophagy. Our results suggest that the BLL nanocage induces homeostatic imbalance in various organelles and efficient pyroptosis. We hope this work can provide new insights into the design of an efficient pyroptosis inducer by disrupting the homeostatic balance of multiple organelles and promote the development of novel antineoplastic platforms.


Assuntos
Homeostase , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Piroptose , Piroptose/efeitos dos fármacos , Inflamassomos/metabolismo , Inflamassomos/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Humanos , Camundongos , Bortezomib/farmacologia , Bortezomib/química , Lipossomos/química , Animais , Lisossomos/metabolismo , Lisossomos/efeitos dos fármacos , Hidróxidos/química , Hidróxidos/farmacologia , Nanoestruturas/química , Nanopartículas/química
4.
JCI Insight ; 9(10)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38713510

RESUMO

Multiple myeloma is a largely incurable and life-threatening malignancy of antibody-secreting plasma cells. An effective and widely available animal model that recapitulates human myeloma and related plasma cell disorders is lacking. We show that busulfan-conditioned human IL-6-transgenic (hIL-6-transgenic) NSG (NSG+hIL6) mice reliably support the engraftment of malignant and premalignant human plasma cells, including from patients diagnosed with monoclonal gammopathy of undetermined significance, pre- and postrelapse myeloma, plasma cell leukemia, and amyloid light chain amyloidosis. Consistent with human disease, NSG+hIL6 mice engrafted with patient-derived myeloma cells developed serum M spikes, and a majority developed anemia, hypercalcemia, and/or bone lesions. Single-cell RNA sequencing showed nonmalignant and malignant cell engraftment, the latter expressing a wide array of mRNAs associated with myeloma cell survival and proliferation. Myeloma-engrafted mice given CAR T cells targeting plasma cells or bortezomib experienced reduced tumor burden. Our results establish NSG+hIL6 mice as an effective patient-derived xenograft model for study and preclinical drug development of multiple myeloma and related plasma cell disorders.


Assuntos
Modelos Animais de Doenças , Interleucina-6 , Mieloma Múltiplo , Animais , Mieloma Múltiplo/imunologia , Mieloma Múltiplo/patologia , Humanos , Camundongos , Interleucina-6/metabolismo , Camundongos Transgênicos , Bortezomib/farmacologia , Bortezomib/uso terapêutico , Masculino , Feminino , Plasmócitos/imunologia , Gamopatia Monoclonal de Significância Indeterminada/imunologia , Gamopatia Monoclonal de Significância Indeterminada/patologia
5.
J Am Heart Assoc ; 13(10): e030467, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38761081

RESUMO

BACKGROUND: Many cardiomyopathy-associated FLNC pathogenic variants are heterozygous truncations, and FLNC pathogenic variants are associated with arrhythmias. Arrhythmia triggers in filaminopathy are incompletely understood. METHODS AND RESULTS: We describe an individual with biallelic FLNC pathogenic variants, p.Arg650X and c.970-4A>G, with peripartum cardiomyopathy and ventricular arrhythmias. We also describe clinical findings in probands with FLNC variants including Val2715fs87X, Glu2458Serfs71X, Phe106Leu, and c.970-4A>G with hypertrophic and dilated cardiomyopathy, atrial fibrillation, and ventricular tachycardia. Induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) were generated. The FLNC truncation, Arg650X/c.970-4A>G, showed a marked reduction in filamin C protein consistent with biallelic loss of function mutations. To assess loss of filamin C, gene editing of a healthy control iPSC line was used to generate a homozygous FLNC disruption in the actin binding domain. Because filamin C has been linked to protein quality control, we assessed the necessity of filamin C in iPSC-CMs for response to the proteasome inhibitor bortezomib. After exposure to low-dose bortezomib, FLNC-null iPSC-CMs showed an increase in the chaperone proteins BAG3, HSP70 (heat shock protein 70), and HSPB8 (small heat shock protein B8) and in the autophagy marker LC3I/II. FLNC null iPSC-CMs had prolonged electric field potential, which was further prolonged in the presence of low-dose bortezomib. FLNC null engineered heart tissues had impaired function after low-dose bortezomib. CONCLUSIONS: FLNC pathogenic variants associate with a predisposition to arrhythmias, which can be modeled in iPSC-CMs. Reduction of filamin C prolonged field potential, a surrogate for action potential, and with bortezomib-induced proteasome inhibition, reduced filamin C led to greater arrhythmia potential and impaired function.


Assuntos
Filaminas , Proteostase , Filaminas/genética , Filaminas/metabolismo , Humanos , Feminino , Células-Tronco Pluripotentes Induzidas/metabolismo , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/fisiopatologia , Arritmias Cardíacas/etiologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Cardiomiopatias/genética , Cardiomiopatias/metabolismo , Cardiomiopatias/fisiopatologia , Masculino , Adulto , Mutação , Bortezomib/farmacologia
6.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732105

RESUMO

Multiple myeloma is an incurable plasma cell malignancy. Most patients end up relapsing and developing resistance to antineoplastic drugs, like bortezomib. Antibiotic tigecycline has activity against myeloma. This study analyzed tigecycline and bortezomib combination on cell lines and plasma cells from myeloma patients. Apoptosis, autophagic vesicles, mitochondrial mass, mitochondrial superoxide, cell cycle, and hydrogen peroxide were studied by flow cytometry. In addition, mitochondrial antioxidants and electron transport chain complexes were quantified by reverse transcription real-time PCR (RT-qPCR) or western blot. Cell metabolism and mitochondrial activity were characterized by Seahorse and RT-qPCR. We found that the addition of tigecycline to bortezomib reduces apoptosis in proportion to tigecycline concentration. Supporting this, the combination of both drugs counteracts bortezomib in vitro individual effects on the cell cycle, reduces autophagy and mitophagy markers, and reverts bortezomib-induced increase in mitochondrial superoxide. Changes in mitochondrial homeostasis and MYC upregulation may account for some of these findings. These data not only advise to avoid considering tigecycline and bortezomib combination for treating myeloma, but caution on the potential adverse impact of treating infections with this antibiotic in myeloma patients under bortezomib treatment.


Assuntos
Apoptose , Bortezomib , Mitocôndrias , Mieloma Múltiplo , Espécies Reativas de Oxigênio , Tigeciclina , Bortezomib/farmacologia , Humanos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/patologia , Tigeciclina/farmacologia , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Autofagia/efeitos dos fármacos , Mitofagia/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos
7.
Sci Rep ; 14(1): 7733, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565963

RESUMO

B-Myb has received considerable attention for its critical tumorigenic function of supporting DNA repair. However, its modulatory effects on chemotherapy and immunotherapy have rarely been reported in colorectal cancer. Bortezomib (BTZ) is a novel compound with chemotherapeutic and immunotherapeutic effects, but it fails to work in colorectal cancer with high B-Myb expression. The present study was designed to investigate whether B-Myb deletion in colorectal cancer could potentiate the immune efficacy of BTZ against colorectal cancer and to clarify the underlying mechanism. Stable B-Myb knockdown was induced in colorectal cancer cells, which increased apoptosis of the cancer cells relative to the control group in vitro and in vivo. We found that BTZ exhibited more favourable efficacy in B-Myb-defective colorectal cancer cells and tumor-bearing mice. BTZ treatment led to differential expression of genes enriched in the p53 signaling pathway promoted more powerful downstream DNA damage, and arrested cell cycle in B-Myb-defective colorectal cancer. In contrast, recovery of B-Myb in B-Myb-defective colorectal cancer cells abated BTZ-related DNA damage, cell cycle arrest, and anticancer efficacy. Moreover, BTZ promoted DNA damage-associated enhancement of immunogenicity, as indicated by potentiated expression of HMGB1 and HSP90 in B-Myb-defective cells, thereby driving M1 polarization of macrophages. Collectively, B-Myb deletion in colorectal cancer facilitates the immunogenic death of cancer cells, thereby further promoting the immune efficacy of BTZ by amplifying DNA damage. The present work provides an effective molecular target for colorectal cancer immunotherapy with BTZ.


Assuntos
Antineoplásicos , Neoplasias Colorretais , Animais , Camundongos , Bortezomib/farmacologia , Bortezomib/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Morte Celular Imunogênica , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Apoptose
8.
Int J Mol Sci ; 25(7)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38612788

RESUMO

Proteasome inhibitors are used in the therapy of several cancers, and clinical trials are underway for their use in the treatment of glioblastoma (GBM). However, GBM becomes resistant to chemotherapy relatively rapidly. Recently, the overexpression of ribonucleotide reductase (RNR) genes was found to mediate therapy resistance in GBM. The use of combinations of chemotherapeutic agents is considered a promising direction in cancer therapy. The present work aimed to evaluate the efficacy of the combination of proteasome and RNR inhibitors in yeast and GBM cell models. We have shown that impaired proteasome function results in increased levels of RNR subunits and increased enzyme activity in yeast. Co-administration of the proteasome inhibitor bortezomib and the RNR inhibitor hydroxyurea was found to significantly reduce the growth rate of S. cerevisiae yeast. Accordingly, the combination of bortezomib and another RNR inhibitor gemcitabine reduced the survival of DBTRG-05MG compared to the HEK293 cell line. Thus, yeast can be used as a simple model to evaluate the efficacy of combinations of proteasome and RNR inhibitors.


Assuntos
Glioblastoma , Saccharomyces cerevisiae , Humanos , Complexo de Endopeptidases do Proteassoma , Glioblastoma/tratamento farmacológico , Bortezomib/farmacologia , Células HEK293
9.
Circ Res ; 134(10): 1276-1291, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38623763

RESUMO

BACKGROUND: Hypertension is characterized by CD8+ (cluster differentiation 8) T cell activation and infiltration into peripheral tissues. CD8+ T cell activation requires proteasomal processing of antigenic proteins. It has become clear that isoLG (isolevuglandin)-adduced peptides are antigenic in hypertension; however, IsoLGs inhibit the constitutive proteasome. We hypothesized that immunoproteasomal processing of isoLG-adducts is essential for CD8+ T cell activation and inflammation in hypertension. METHODS: IsoLG adduct processing was studied in murine dendritic cells (DCs), endothelial cells (ECs), and B8 fibroblasts. The role of the proteasome and the immunoproteasome in Ang II (angiotensin II)-induced hypertension was studied in C57BL/6 mice treated with bortezomib or the immunoproteasome inhibitor PR-957 and by studying mice lacking 3 critical immunoproteasome subunits (triple knockout mouse). We also examined hypertension in mice lacking the critical immunoproteasome subunit LMP7 (large multifunctional peptidase 7) specifically in either DCs or ECs. RESULTS: We found that oxidant stress increases the presence of isoLG adducts within MHC-I (class I major histocompatibility complex), and immunoproteasome overexpression augments this. Pharmacological or genetic inhibition of the immunoproteasome attenuated hypertension and tissue inflammation. Conditional deletion of LMP7 in either DCs or ECs attenuated hypertension and vascular inflammation. Finally, we defined the role of the innate immune receptors STING (stimulator of interferon genes) and TLR7/8 (toll-like receptor 7/8) as drivers of LMP7 expression in ECs. CONCLUSIONS: These studies define a previously unknown role of the immunoproteasome in DCs and ECs in CD8+ T cell activation. The immunoproteasome in DCs and ECs is critical for isoLG-adduct presentation to CD8+ T cells, and in the endothelium, this guides homing and infiltration of T cells to specific tissues.


Assuntos
Bortezomib , Linfócitos T CD8-Positivos , Células Dendríticas , Hipertensão , Camundongos Endogâmicos C57BL , Camundongos Knockout , Complexo de Endopeptidases do Proteassoma , Animais , Complexo de Endopeptidases do Proteassoma/metabolismo , Hipertensão/metabolismo , Hipertensão/imunologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Camundongos , Linfócitos T CD8-Positivos/imunologia , Bortezomib/farmacologia , Angiotensina II , Masculino , Estresse Oxidativo , Inibidores de Proteassoma/farmacologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade Classe I/genética , Ativação Linfocitária , Células Cultivadas , Fibroblastos/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/imunologia , Oligopeptídeos
10.
J Cell Mol Med ; 28(8): e18333, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38652192

RESUMO

Acute myelogenous leukaemia (AML) originates and is maintained by leukaemic stem cells (LSCs) that are inherently resistant to antiproliferative therapies, indicating that a critical strategy for overcoming chemoresistance in AML therapy is to eradicate LSCs. In this work, we investigated the anti-AML activity of bortezomib (BTZ), emphasizing its anti-LSC potential, using KG-1a cells, an AML cell line with stem-like properties. BTZ presented potent cytotoxicity to both solid and haematological malignancy cells and reduced the stem-like features of KG-1a cells, as observed by the reduction in CD34- and CD123-positive cells. A reduction in NF-κB p65 nuclear staining was observed in BTZ-treated KG-1a cells, in addition to upregulation of the NF-κB inhibitor gene NFΚBIB. BTZ-induced DNA fragmentation, nuclear condensation, cell shrinkage and loss of transmembrane mitochondrial potential along with an increase in active caspase-3 and cleaved PARP-(Asp 214) level in KG-1a cells. Furthermore, BTZ-induced cell death was partially prevented by pretreatment with the pancaspase inhibitor Z-VAD-(OMe)-FMK, indicating that BTZ induces caspase-mediated apoptosis. BTZ also increased mitochondrial superoxide levels in KG-1a cells, and BTZ-induced apoptosis was partially prevented by pretreatment with the antioxidant N-acetylcysteine, indicating that BTZ induces oxidative stress-mediated apoptosis in KG-1a cells. At a dosage of 0.1 mg/kg every other day for 2 weeks, BTZ significantly reduced the percentage of hCD45-positive cells in the bone marrow and peripheral blood of NSG mice engrafted with KG-1a cells with tolerable toxicity. Taken together, these data indicate that the anti-LSC potential of BTZ appears to be an important strategy for AML treatment.


Assuntos
Bortezomib , Leucemia Mieloide Aguda , NF-kappa B , Células-Tronco Neoplásicas , Estresse Oxidativo , Bortezomib/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/patologia , Leucemia Mieloide Aguda/metabolismo , Animais , NF-kappa B/metabolismo , Linhagem Celular Tumoral , Camundongos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Apoptose/efeitos dos fármacos , Antineoplásicos/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos SCID
12.
Oncotarget ; 15: 159-174, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38441437

RESUMO

GZ17-6.02, a synthetically manufactured compound containing isovanillin, harmine and curcumin, has undergone phase I evaluation in patients with solid tumors (NCT03775525) with a recommended phase 2 dose (RP2D) of 375 mg PO BID. GZ17-6.02 was more efficacious as a single agent at killing multiple myeloma cells than had previously been observed in solid tumor cell types. GZ17-6.02 interacted with proteasome inhibitors in a greater than additive fashion to kill myeloma cells and alone it killed inhibitor-resistant cells to a similar extent. The drug combination of GZ17-6.02 and bortezomib activated ATM, the AMPK and PERK and inactivated ULK1, mTORC1, eIF2α, NFκB and the Hippo pathway. The combination increased ATG13 S318 phosphorylation and the expression of Beclin1, ATG5, BAK and BIM, and reduced the levels of BCL-XL and MCL1. GZ17-6.02 interacted with bortezomib to enhance autophagosome formation and autophagic flux, and knock down of ATM, AMPKα, ULK1, Beclin1 or ATG5 significantly reduced both autophagy and tumor cell killing. Knock down of BAK and BIM significantly reduced tumor cell killing. The expression of HDACs1/2/3 was significantly reduced beyond that previously observed in solid tumor cells and required autophagy. This was associated with increased acetylation and methylation of histone H3. Combined knock down of HDACs1/2/3 caused activation of ATM and the AMPK and caused inactivation of ULK1, mTORC1, NFκB and the Hippo pathway. HDAC knock down also enhanced ATG13 phosphorylation, increased BAK levels and reduced those of BCL-XL. Collectively, our present studies support performing additional in vivo studies with multiple myeloma cells.


Assuntos
Antineoplásicos , Mieloma Múltiplo , Humanos , Inibidores de Proteassoma/farmacologia , Mieloma Múltiplo/tratamento farmacológico , Bortezomib/farmacologia , Proteínas Quinases Ativadas por AMP , Proteína Beclina-1 , Antineoplásicos/farmacologia , Alvo Mecanístico do Complexo 1 de Rapamicina
13.
Leuk Res ; 139: 107469, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38479337

RESUMO

BACKGROUND: The proteasome inhibitor bortezomib is one of the primary therapies used for the haematological malignancy multiple myeloma (MM). However, intrinsic or acquired resistance to bortezomib, via mechanisms that are not fully elucidated, is a barrier to successful treatment in many patients. Our previous studies have shown that elevated expression of the chemokine receptor CCR1 in MM plasma cells in newly diagnosed MM patients is associated with poor prognosis. Here, we hypothesised that the poor prognosis conferred by CCR1 expression is, in part, due to a CCR1-mediated decrease in MM plasma cell sensitivity to bortezomib. METHODS: In order to investigate the role of CCR1 in MM cells, CCR1 was knocked out in human myeloma cell lines OPM2 and U266 using CRISPR-Cas9. Additionally, CCR1 was overexpressed in the mouse MM cell line 5TGM1. The effect of bortezomib on CCR1 knockout or CCR1-overexpressing cells was then assessed by WST-1 assay, with or without CCL3 siRNA knockdown or addition of recombinant human CCL3. NSG mice were inoculated intratibially with OPM2-CCR1KO cells and were treated with 0.7 mg/kg bortezomib or vehicle twice per week for 3 weeks and GFP+ tumour cells in the bone marrow were quantitated by flow cytometry. The effect of CCR1 overexpression or knockout on unfolded protein response pathways was assessed using qPCR for ATF4, HSPA5, XBP1, ERN1 and CHOP and Western blot for IRE1α and p-Jnk. RESULTS: Using CCR1 overexpression or CRIPSR-Cas9-mediated CCR1 knockout in MM cell lines, we found that CCR1 expression significantly decreases sensitivity to bortezomib in vitro, independent of the CCR1 ligand CCL3. In addition, CCR1 knockout rendered the human MM cell line OPM2 more sensitive to bortezomib in an intratibial MM model in NSG mice in vivo. Moreover, CCR1 expression negatively regulated the expression of the unfolded protein response receptor IRE1 and downstream target gene XBP1, suggesting this pathway may be responsible for the decreased bortezomib sensitivity of CCR1-expressing cells. CONCLUSIONS: Taken together, these studies suggest that CCR1 expression may be associated with decreased response to bortezomib in MM cell lines.


Assuntos
Mieloma Múltiplo , Humanos , Animais , Camundongos , Bortezomib/farmacologia , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Mieloma Múltiplo/metabolismo , Linhagem Celular Tumoral , Receptores de Quimiocinas , Endorribonucleases , Proteínas Serina-Treonina Quinases , Receptores CCR1/genética , Receptores CCR1/metabolismo
14.
Genes (Basel) ; 15(3)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38540446

RESUMO

BACKGROUND: Multiple myeloma (MM) is a malignancy derived from plasma cells. Bortezomib affects the concentration of reduced glutathione (GSH) and the activity of glutathione enzymes. The aim of our study was to analyze deletion (null/present) variants of GSTT1 and GSTM1 genes and their association with the levels of glutathione and its enzymes in bortezomib-treated cell cultures derived from MM patients. MATERIALS AND METHODS: This study included 180 individuals (80 MM patients and 100 healthy blood donors) who were genotyped via multiplex PCR (for the GSTT1/GSTM1 genes). Under in vitro conditions, MM bone marrow cells were treated with bortezomib (1-4 nM) to determine apoptosis (via fluorescence microscopy), GSH concentration, and activity of glutathione enzymes (via ELISA). RESULTS: Bortezomib increased the number of apoptotic cells and decreased the activity of S-glutathione transferase (GST) and glutathione peroxidase (GPx). We found significant differences in GST activity between 1 nM (GSTT1-null vs. GSTT1-present), 2 nM (GSTT1-null vs. GSTT1-present), and 4 nM (GSTM1-null vs. GSTM1-present) bortezomib: 0.07 vs. 0.12, p = 0.02; 0.06 vs. 0.10, p = 0.02; and 0.03 vs. 0.08, p = 0.01, respectively. CONCLUSIONS: Bortezomib affects the activities of GST and GPx. GST activity was associated with GSTT1 and GSTM1 variants but only at some bortezomib doses.


Assuntos
Mieloma Múltiplo , Polimorfismo Genético , Humanos , Bortezomib/farmacologia , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Glutationa Peroxidase/genética , Glutationa Transferase/genética , Glutationa , Apoptose
15.
Math Biosci Eng ; 21(3): 3876-3909, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38549312

RESUMO

Bortezomib and oncolytic virotherapy are two emerging targeted cancer therapies. Bortezomib, a proteasome inhibitor, disrupts protein degradation in cells, leading to the accumulation of unfolded proteins that induce apoptosis. On the other hand, virotherapy uses genetically modified oncolytic viruses (OVs) to infect cancer cells, trigger cell lysis, and activate anti-tumor response. Despite progress in cancer treatment, identifying administration protocols for therapeutic agents remains a significant concern, aiming to strike a balance between efficacy, minimizing toxicity, and administrative costs. In this work, optimal control theory was employed to design a cost-effective and efficient co-administration protocols for bortezomib and OVs that could significantly diminish the population of cancer cells via the cell death program with the NF$ \kappa $B-BAX-RIP1 signaling network. Both linear and quadratic control strategies were explored to obtain practical treatment approaches by adapting necroptosis protocols to efficient cell death programs. Our findings demonstrated that a combination therapy commencing with the administration of OVs followed by bortezomib infusions yields an effective tumor-killing outcome. These results could provide valuable guidance for the development of clinical administration protocols in cancer treatment.


Assuntos
Neoplasias , Terapia Viral Oncolítica , Vírus Oncolíticos , Humanos , Bortezomib/farmacologia , Bortezomib/uso terapêutico , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/fisiologia , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Morte Celular
16.
Front Biosci (Landmark Ed) ; 29(3): 106, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38538281

RESUMO

BACKGROUND: Bortezomib (BTZ) is a powerful proteasome inhibitor that has been approved for the treatment of haematologic malignancies. Its effectiveness has been assessed against different types of solid tumours. BTZ is ineffective in most solid tumours because of drug resistance, including cholangiocarcinoma, which is associated with a proteasome bounce-back effect. However, the mechanism through which proteasome inhibitors induce the proteasome bounce-back effect remains largely unknown. METHODS: Cholangiocarcinoma cells were treated with BTZ, cisplatin, or a combination of both. The mRNA levels of Nfe2l1 and proteasome subunit genes (PSMA1, PSMB7, PSMD1, PSMD11, PSMD14, and PSME4) were determined using quantitative real time polymerase chain reaction (qPCR). The protein levels of nuclear factor-erythroid 2-related factor 1 (Nfe2l1) and proteasome enzyme activity were evaluated using western blotting and proteasome activity assays, respectively. Transcriptome sequencing was performed to screen for potential transcription factors that regulate Nfe2l1 expression. The effect of zinc finger E-box-binding homeobox 1 (ZEB1) on the expression of Nfe2l1 and proteasome subunit genes, as well as proteasome enzyme activity, was evaluated after the knockdown of ZEB1 expression with siRNA before treatment with BTZ. The transcriptional activity of ZEB1 on the Nfe2l1 promoter was detected using dual-luciferase reporter gene and chromatin immunoprecipitation assays. Cell viability was measured using the cell counting kit-8 (CCK-8) assay and cell apoptosis was assessed using western blotting and flow cytometry. RESULTS: Cisplatin treatment of BTZ-treated human cholangiocarcinoma cell line (RBE) suppressed proteasome subunit gene expression (proteasome bounce-back) and proteasomal enzyme activity. This effect was achieved by reducing the levels of Nfe2l1 mRNA and protein. Our study utilised transcriptome sequencing to identify ZEB1 as an upstream transcription factor of Nfe2l1, which was confirmed using dual-luciferase reporter gene and chromatin immunoprecipitation assays. Notably, ZEB1 knockdown using siRNA (si-ZEB1) hindered the expression of proteasome subunit genes under both basal and BTZ-induced conditions, leading to the inhibition of proteasomal enzyme activity. Furthermore, the combination treatment with BTZ, cisplatin, and si-ZEB1 significantly reduced the viability of RBE cells. CONCLUSIONS: Our study uncovered a novel mechanism through which cisplatin disrupts the BTZ-induced proteasome bounce-back effect by suppressing the ZEB1/Nfe2l1 axis in cholangiocarcinoma. This finding provides a theoretical basis for developing proteasome inhibitor-based strategies for the clinical treatment of cholangiocarcinoma and other tumours.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Humanos , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/farmacologia , Cisplatino/farmacologia , Bortezomib/farmacologia , Colangiocarcinoma/tratamento farmacológico , Colangiocarcinoma/genética , RNA Interferente Pequeno , Ductos Biliares Intra-Hepáticos/metabolismo , Neoplasias dos Ductos Biliares/tratamento farmacológico , Neoplasias dos Ductos Biliares/genética , Luciferases , RNA Mensageiro , Linhagem Celular Tumoral , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Transativadores
17.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(1): 138-145, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38387912

RESUMO

OBJECTIVE: To investigate the mechanism and clinical value of nicotinamide phosphoribosyltransferase (NAMPT) in multiple myeloma (MM). METHODS: RT-qPCR and Western blot were used to detect the expression of NAMPT in MM cells and normal bone marrow mononuclear cells. The biological function of NAMPT was analyzed by cell proliferation and apoptosis assay, small interfering RNA silencing, overexpression assay and chromatin immunoprecipitation assay. RESULTS: The mRNA and protein expression levels of NAMPT in MM cell lines (MM1R, MM1S, U266 and RPMI-8226) were significantly higher than those in normal bone marrow mononuclear cells (P < 0.001), and were most obvious in U266 cells. Compared with Si-NC group, the proliferation of U266 cells in Si-NAMPT group was significantly inhibited at 24, 48 and 72 h after transfection (P =0.006, P < 0.001, P =0.001), and the apoptosis rate of U266 cells was significantly increased at 48 h after transfection (P < 0.001). Compared with Flag-NC group, U266 cell proliferation in Flag-NAMPT group was significantly increased (P =0.003, P =0.002, P < 0.001), while the apoptosis rate decreased significantly at 48 h after transfection. The expression of NAMPT in U266 cells was regulated by XBP1 at transcriptional level. The proliferation rate of U266 cells with XBP1 or NAMPT stable knockout or MKC3946 pretreated with bortezomib was significantly decreased, the levels of BCL-2 mRNA and protein were also significantly decreased, while the levels of BAX mRNA and protein were significantly increased, moreover, the cleavage degree of caspase-3 significantly decreased, while caspase-3/7 activity increased dramatically (P < 0.05). CONCLUSIONS: The high expression of NAMPT in MM cell line can promote MM cell proliferation and inhibit apoptosis. NAMPT is regulated by IRE1α-XBP1 signaling pathway in U266 cells. Stable knockdown of NAMPT or blocking of IRE1α-XBP1 pathway can significantly increase the sensitivity of U266 cells to bortezomib.


Assuntos
Mieloma Múltiplo , Humanos , Apoptose , Bortezomib/farmacologia , Caspase 3 , Linhagem Celular Tumoral , Proliferação de Células , Relevância Clínica , Endorribonucleases , Mieloma Múltiplo/genética , Nicotinamida Fosforribosiltransferase , Proteínas Serina-Treonina Quinases , RNA Mensageiro/genética
18.
Sci Rep ; 14(1): 3768, 2024 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355966

RESUMO

Neuroblastoma (NB) is the most common pediatric tumor and is currently treated by several types of therapies including chemotherapies, such as bortezomib treatment. However, resistance to bortezomib is frequently observed by mechanisms that remain to be deciphered. Bortezomib treatment leads to caspase activation and aggresome formation. Using models of patients-derived NB cell lines with different levels of sensitivity to bortezomib, we show that the activated form of caspase 3 accumulates within aggresomes of NB resistant cells leading to an impairment of bortezomib-induced apoptosis and increased cell survival. Our findings unveil a new mechanism of resistance to chemotherapy based on an altered subcellular distribution of the executioner caspase 3. This mechanism could explain the resistance developed in NB patients treated with bortezomib, emphasizing the potential of drugs targeting aggresomes.


Assuntos
Antineoplásicos , Neuroblastoma , Criança , Humanos , Bortezomib/farmacologia , Bortezomib/uso terapêutico , Caspase 3/farmacologia , Linhagem Celular Tumoral , Apoptose , Neuroblastoma/tratamento farmacológico , Neuroblastoma/patologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
19.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(1): 171-175, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38387917

RESUMO

OBJECTIVE: To study the incidence and risk factors of herpes zoster in patients with multiple myeloma and to evaluate the preventive effect of antiviral therapy. METHODS: The clinical features of multiple myeloma patients with herpes zoster were retrospectively analyzed, the risk factors of herpes zoster and the effect of antiviral prophylaxis were analyzed. RESULTS: Among 180 patients with multiple myeloma, 23 cases developed herpes zoster (12.8%). The incidence of herpes zoster was 19.1% in patients with renal dysfunction and 23.5% after autologous hematopoietic stem cell transplantation (ASCT). The incidence of herpes zoster was higher in patients receiving bortezomib-containing regimens (21/137, 15.3%) than that in those without bortezomib (2/43, 4.7%), but there was no statistical difference (P =0.067). Antiviral prophylaxis was associated with fewer zoster infections, 8/111(7.2%) developed herpes zoster in patients who received antiviral prophylaxis, and 15/69 (21.7%) in those receiving no prophylaxis(P =0.005). 65.2% of patients with herpes zoster did not receive antiviral prophylaxis. Multivariate analysis showed that bortezomib treatment, AHSCT and renal dysfunction were independent risk factors for multiple myeloma with herpes zoster, while antiviral prophylaxis was independently associated with reducing the risk of herpes zoster. Herpes zoster had no effect on OS in patients with multiple myeloma. CONCLUSION: The risk of herpes zoster in multiple myeloma patients was increased. Antiviral prophylaxis can reduce the risk of herpes zoster in patients on bortezomib-based therapy.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Herpes Zoster , Nefropatias , Mieloma Múltiplo , Humanos , Mieloma Múltiplo/tratamento farmacológico , Bortezomib/uso terapêutico , Bortezomib/farmacologia , Estudos Retrospectivos , Herpes Zoster/prevenção & controle , Herpesvirus Humano 3 , Fatores de Risco , Transplante Autólogo , Antivirais/uso terapêutico , Antivirais/farmacologia
20.
Nanoscale ; 16(10): 5280-5293, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38369899

RESUMO

Macrophage-driven inflammation is the central player in a range of pathological conditions, comprising autoimmune disorders, various cancers, as well as chronic inflammatory states like rheumatoid arthritis. Therapeutic strategies tailored to specifically target macrophage behavior have acquired substantial interest for their potential to alleviate chronic inflammation effectively. In this study, we introduce a pioneering therapeutic approach utilizing specialized CD44-targeted immunoliposomes carrying bortezomib to address inflammation at the cellular level and the significance of this strategy lies in its precision nature. Bortezomib's inhibition of the proteasome interferes with the finely-tuned mechanism that controls NFκB activation, ultimately leading to a downregulation of the inflammatory response. After performing computational docking demonstrating its strong binding affinity to the proteasome molecule, the resulting nano-construct displayed a hydrodynamic size of 144.26 ± 74.4 nm and a quasi-spherical morphology. Moreover, the nano-construct ensured a minimum shelf-life of 30 days, aiming for targeted delivery with practical longevity. Upon internalization of immunoliposomes, the interaction with CD44 receptors exhibited downstream signaling events. This included the activation of Jun amino-terminal kinases 1/2 (JNK1/2) and the extracellular-signal-regulated kinases (ERK) pathway. JNK1/2 activation may lead to the release of mitochondrial pro-apoptotic factors, triggering the intrinsic apoptotic pathway and activation of caspases, which was confirmed from the level of apoptotic gene and protein expression. The precise targeting and anti-inflammatory action of this therapy against macrophages hold promise for therapeutic interventions in a wide range of inflammatory conditions, offering a novel avenue for precision medicine in the battle against excessive inflammation.


Assuntos
Inflamação , Complexo de Endopeptidases do Proteassoma , Humanos , Bortezomib/farmacologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Complexo de Endopeptidases do Proteassoma/farmacologia , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Lipossomos/metabolismo , Macrófagos/metabolismo , Receptores de Hialuronatos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA