Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.666
Filtrar
1.
J Agric Food Chem ; 72(38): 20831-20841, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39284582

RESUMO

This research adopted the Fischer indole synthesis method to continue constructing a novel drug-like chemical entity based on the guidance of isocryptolepine and obtained four series of derivatives: Y, Da, Db, and Dc. The antimicrobial activity of these derivatives against plant pathogens was further evaluated. The results showed that Dc-2 had the best antifungal effect against Botrytis cinerea, and its EC50 value was up to 1.29 µg/mL. In addition, an in vivo activity test showed that the protective effect of Dc-2 on apples was 82.2% at 200 µg/mL, which was better than that of Pyrimethanil (45.4%). Meanwhile, it was found by scanning electron microscopy and transmission electron microscopy that the compound Dc-2 affected the morphology of mycelia. The compound Dc-2 was found to damage the cell membrane by PI and ROS staining. Through experiments such as leakage of cell contents, it was found that the compound Dc-2 changed the permeability of the cell membrane and caused the leakage of substances in the cell. According to the above studies, compound Dc-2 can be used as a candidate lead compound for further structural optimization and development.


Assuntos
Botrytis , Desenho de Fármacos , Fungicidas Industriais , Doenças das Plantas , Botrytis/efeitos dos fármacos , Botrytis/crescimento & desenvolvimento , Doenças das Plantas/microbiologia , Fungicidas Industriais/farmacologia , Fungicidas Industriais/síntese química , Fungicidas Industriais/química , Relação Estrutura-Atividade , Antibacterianos/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Testes de Sensibilidade Microbiana , Malus/química , Malus/microbiologia , Bactérias/efeitos dos fármacos , Estrutura Molecular
2.
J Agric Food Chem ; 72(38): 20816-20830, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39261294

RESUMO

Zn(II)2Cys6 proteins constitute the largest group of fungal-specific transcription factors. However, little is known about their functions in the crop killer Botrytis cinerea. In this work, a T-DNA insertion strain M13448 was identified which was inserted into the Zn(II)2Cys6 TF-encoding gene BcTBS1. Knockout of BcTBS1 did not affect mycelia growth, appressorium formation, and sclerotium germination, but impaired fungal conidiation, conidial morphogenesis, conidial germination, infection cushion development, and sclerotial formation. Accordingly, ΔBctbs1 mutants showed reduced virulence in its host plants. Further study proved that BcTBS1, BCIN_15g03870, and BCIN_12g06630 were induced by cellulose. Subsequent cellulase activity assays revealed that the loss of BcTBS1 significantly decreased cellulase activity. In addition, we verified that the BCIN_15g03870 and BCIN_12g06630 genes were positive regulated by BcTBS1 by quantitative real-time reverse-transcription-polymerase chain reaction (qRT-PCR). Taken together, these results suggested that BcTBS1 can promote pathogenicity by modulating cellulase-encoding genes that participate in host cellulose degradation.


Assuntos
Botrytis , Celulose , Proteínas Fúngicas , Regulação Fúngica da Expressão Gênica , Doenças das Plantas , Fatores de Transcrição , Botrytis/genética , Botrytis/patogenicidade , Botrytis/metabolismo , Celulose/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Doenças das Plantas/microbiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Virulência/genética , Esporos Fúngicos/genética , Esporos Fúngicos/crescimento & desenvolvimento , Esporos Fúngicos/metabolismo
3.
J Agric Food Chem ; 72(38): 20882-20891, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39262056

RESUMO

Naturally derived compounds show promise as treatments for microbial infections. Polyphenols, abundantly found in various plants, fruits, and vegetables, are noted for their physiological benefits including antimicrobial effects. This study introduced a new set of acylated phloroglucinol derivatives, synthesized and tested for their antifungal activity in vitro against seven different pathogenic fungi. The standout compound, 3-methyl-1-(2,4,6-trihydroxyphenyl) butan-1-one (2b), exhibited remarkable fungicidal strength, with EC50 values of 1.39 µg/mL against Botrytis cinerea and 1.18 µg/mL against Monilinia fructicola, outperforming previously screened phenolic compounds. When tested in vivo, 2b demonstrated effective antifungal properties, with cure rates of 76.26% for brown rot and 83.35% for gray mold at a concentration of 200 µg/mL, rivaling the commercial fungicide Pyrimethanil in its efficacy against B. cinerea. Preliminary research suggests that 2b's antifungal mechanism may involve the disruption of spore germination, damage to the fungal cell membrane, and leakage of cellular contents. These results indicate that compound 2b has excellent fungicidal properties against B. cinerea and holds potential as a treatment for gray mold.


Assuntos
Ascomicetos , Botrytis , Fungicidas Industriais , Floroglucinol , Doenças das Plantas , Botrytis/efeitos dos fármacos , Botrytis/crescimento & desenvolvimento , Floroglucinol/farmacologia , Floroglucinol/química , Fungicidas Industriais/farmacologia , Fungicidas Industriais/química , Ascomicetos/efeitos dos fármacos , Doenças das Plantas/microbiologia , Testes de Sensibilidade Microbiana
4.
Mol Plant Pathol ; 25(9): e70004, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39244735

RESUMO

Botrytis cinerea is a notorious pathogen causing pre- and post-harvest spoilage in many economically important crops. Excessive application of site-specific fungicides to control the pathogen has led to the selection of strains possessing target site alterations associated with resistance to these fungicides and/or strains overexpressing efflux transporters associated with multidrug resistance (MDR). MDR in B. cinerea has been correlated with the overexpression of atrB and mfsM2, encoding an ATP-binding cassette (ABC) and a major facilitator superfamily (MFS) transporter, respectively. However, it remains unknown whether other transporters may also contribute to the MDR phenotype. In the current study, the transcriptome of a B. cinerea multidrug-resistant (MDR) field strain was analysed upon exposure to the fungicide fludioxonil, and compared to the B05.10 reference strain. The transcriptome of this field strain displayed significant differences as compared to B05.10, including genes involved in sugar membrane transport, toxin production and virulence. Among the induced genes in the field strain, even before exposure to fludioxonil, were several putatively encoding ABC and MFS transmembrane transporters. Overexpression of a highly induced MFS transporter gene in the B05.10 strain led to an increased tolerance to the fungicides fluopyram and boscalid, indicating an involvement in efflux transport of these compounds. Overall, the data from this study give insights towards better understanding the molecular mechanisms involved in MDR and fitness cost, contributing to the development of more efficient control strategies against this pathogen.


Assuntos
Botrytis , Dioxóis , Fungicidas Industriais , Transcriptoma , Botrytis/efeitos dos fármacos , Botrytis/genética , Botrytis/patogenicidade , Transcriptoma/genética , Fungicidas Industriais/farmacologia , Dioxóis/farmacologia , Pirróis/farmacologia , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Perfilação da Expressão Gênica , Farmacorresistência Fúngica Múltipla/genética , Farmacorresistência Fúngica/genética , Farmacorresistência Fúngica/efeitos dos fármacos , Aptidão Genética
5.
Virulence ; 15(1): 2401978, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39263889

RESUMO

Mycoviruses can alter the biological characteristics of host fungi, including change virulence or pathogenicity of phytopathogens and entomopathogenic fungi (EPF). However, most studies on the mycoviruses found in EPF have focused on the effects of the viruses on the virulence of host fungi towards insect pests, with relatively few reports on the effects to the host fungi with regard to plant disease resistance in hosts. The present study investigated the effects of the mycovirus Beauveria bassiana chrysovirus 2 (BbCV2) virus infection on host biological characteristics, evaluated antagonistic activity of BbCV2 against two phytopathogenic fungi (Sclerotinia sclerotiorum and Botrytis cinerea), and transcriptome analysis was used to reveal the interactions between viruses and hosts. Our results showed that BbCV2 virus infection increased B. bassiana's growth rate, spore production, and biomass, it also enhanced the capacity of host fungi and their metabolic products to inhibit phytopathogenic fungi. BbCV2 virus infection reduced the contents of the two pathogens in tomato plants significantly, and transcriptome analysis revealed that the genes related to competition for ecological niches and nutrition, mycoparasitism and secondary metabolites in B. bassiana were significantly up-regulated after viral infection. These findings indicated that the mycovirus infection is an important factor to enhance the ability of B. bassiana against plant disease after endophytic colonization. We suggest that mycovirus infection causes a positive effect on B. bassiana against phytopathogens, which should be considered as a potential strategy to promote the plant disease resistance of EPF.


Assuntos
Botrytis , Resistência à Doença , Micovírus , Doenças das Plantas , Solanum lycopersicum , Micovírus/fisiologia , Micovírus/genética , Doenças das Plantas/microbiologia , Botrytis/patogenicidade , Botrytis/virologia , Animais , Solanum lycopersicum/microbiologia , Solanum lycopersicum/virologia , Ascomicetos/virologia , Ascomicetos/patogenicidade , Ascomicetos/genética , Virulência , Insetos/microbiologia , Insetos/virologia , Beauveria/patogenicidade , Beauveria/genética , Beauveria/fisiologia , Perfilação da Expressão Gênica
6.
Int J Mol Sci ; 25(17)2024 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-39273159

RESUMO

Southern root-knot nematodes are among the most pernicious phytoparasites; they are responsible for substantial yield losses in agricultural crops worldwide. The limited availability of nematicides for the prevention and control of plant-parasitic nematodes necessitates the urgent development of novel nematicides. Natural products have always been a key source for the discovery of pesticides. Waltherione A, an alkaloid, exhibits potent nematocidal activity. In this study, we designed and synthesized a series of quinoline and quinolone derivatives from Waltherione A, leveraging a strategy of structural simplification. Bioassays have revealed that the quinoline derivatives exhibit better activity than quinolone derivatives in terms of both nematocidal and fungicidal activities. Notably, compound D1 demonstrated strong nematocidal activity, with a 72 h LC50 of 23.06 µg/mL, and it effectively controlled the infection of root-knot nematodes on cucumbers. The structure-activity relationship suggests that the quinoline moiety is essential for the nematocidal efficacy of Waltherione A. Additionally, compound D1 exhibited broad-spectrum fungicidal activity, with an EC50 of 2.98 µg/mL against Botrytis cinerea. At a concentration of 200 µg/mL, it significantly inhibited the occurrence of B. cinerea on tomato fruits, with an inhibitory effect of 96.65%, which is slightly better than the positive control (90.30%).


Assuntos
Antinematódeos , Antinematódeos/farmacologia , Antinematódeos/síntese química , Antinematódeos/química , Relação Estrutura-Atividade , Animais , Desenho de Fármacos , Doenças das Plantas/parasitologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Cucumis sativus/parasitologia , Cucumis sativus/microbiologia , Fungicidas Industriais/farmacologia , Fungicidas Industriais/síntese química , Fungicidas Industriais/química , Quinolinas/química , Quinolinas/farmacologia , Quinolinas/síntese química , Nematoides/efeitos dos fármacos , Tylenchoidea/efeitos dos fármacos , Botrytis/efeitos dos fármacos , Quinolonas/farmacologia , Quinolonas/química , Quinolonas/síntese química , Estrutura Molecular
7.
J Agric Food Chem ; 72(37): 20483-20495, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39248366

RESUMO

Mechanical stimuli can affect plant growth, development, and defenses. The role of water spray stimulation, as a prevalent mechanical stimulus in the environment, in crop growth and defense cannot be overlooked. In this study, the effects of water spray on tomato plant growth and defense against the chewing herbivore Helicoverpa armigera and necrotrophic fungus Botrytis cinerea were investigated. Suprathreshold water spray stimulus (LS) was found to enhance tomato plant defenses against pests and pathogens while concurrently modifying plant architecture. The results of the phytohormone and chemical metabolite analysis revealed that LS improved the plant defense response via jasmonic acid (JA) signaling. LS significantly elevated the level of a pivotal defensive metabolite, chlorogenic acid, and reduced the emissions of volatile organic compounds (VOCs) from tomato plants, thereby defending against pest and pathogen attacks. The most obvious finding to emerge from this study is that LS enhances tomato plant defenses against biotic stresses, which will pave the way for further work on the application of mechanical stimuli for pest management.


Assuntos
Botrytis , Ciclopentanos , Oxilipinas , Doenças das Plantas , Solanum lycopersicum , Compostos Orgânicos Voláteis , Água , Solanum lycopersicum/microbiologia , Solanum lycopersicum/parasitologia , Solanum lycopersicum/imunologia , Solanum lycopersicum/química , Solanum lycopersicum/metabolismo , Água/metabolismo , Animais , Botrytis/fisiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/parasitologia , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/metabolismo , Mariposas/fisiologia , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Estresse Fisiológico , Herbivoria , Defesa das Plantas contra Herbivoria
8.
J Agric Food Chem ; 72(36): 19618-19628, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39193844

RESUMO

Sophora flavescens, a traditional Chinese herb, produces a wide range of secondary metabolites with a broad spectrum of biological activities. In this study, we isolated six isopentenyl flavonoids (1-6) from the roots of S. flavescens and evaluated their activities against phytopathogenic fungi. In vitro activities showed that kurarinone and sophoraflavanone G displayed broad spectrum and superior activities, among which sophoraflavanone G displayed excellent activity against tested fungi, with EC50 values ranging from 4.76 to 13.94 µg/mL. Notably, kurarinone was easily purified and showed potential activity against Rhizoctonia solani, Botrytis cinerea, and Fusarium graminearum with EC50 values of 16.12, 16.55, and 16.99 µg/mL, respectively. Consequently, we initially investigated the mechanism of kurarinone against B. cinerea. It was found that kurarinone disrupted cell wall components, impaired cell membrane integrity, increased cell membrane permeability, and affected cellular energy metabolism, thereby exerting its effect against B. cinerea. Therefore, kurarinone is expected to be a potential candidate for the development of plant fungicides.


Assuntos
Botrytis , Flavonoides , Fungicidas Industriais , Fusarium , Doenças das Plantas , Raízes de Plantas , Rhizoctonia , Sophora , Botrytis/efeitos dos fármacos , Botrytis/crescimento & desenvolvimento , Sophora/química , Flavonoides/farmacologia , Flavonoides/química , Flavonoides/isolamento & purificação , Fusarium/efeitos dos fármacos , Fungicidas Industriais/farmacologia , Fungicidas Industriais/química , Raízes de Plantas/química , Doenças das Plantas/microbiologia , Rhizoctonia/efeitos dos fármacos , Rhizoctonia/crescimento & desenvolvimento , Prenilação , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Sophora flavescens
9.
Curr Microbiol ; 81(10): 327, 2024 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-39181975

RESUMO

Application of actinobacteria has grown exponentially in recent years in sustainable agricultural. Most actinobacterial inoculants are tailored to function as either biocontrol agents or biofertilizers. Hence, there is the need to obtain and include multifunctional actinobacterial strains in inocula formulations. In this research, 90 actinobacterial isolates were isolated from rhizospheric and non-rhizospheric soils of Algerian Saharan arid regions and were screened for their activity against the phytopathogenic fungi Alternaria alternata, Aspergillus flavus, Botrytis cinerea, Fusarium oxysporum, and Fusarium solani. Five isolates that inhibited at least three of these fungi were characterized according to morphological, environmental and biochemical parameters, and were preliminarily identified as Streptomyces enissocaesilis A1, Streptomyces olivoverticillatus A5, Streptomyces erumpens A6, Streptomyces cavourensis A8, and Streptomyces microflavus A20. These strains were then screened for plant growth promoting activities. All strains produced siderophores, hydrocyanic acid, ammonia and the auxin indole-3-acetic acid (IAA) and were capable of solubilizing phosphate. The highest producer of siderophores (69.19 percent siderophore units), ammonia (70.56 µg mL-1) and IAA (148.76 µg mL-1) was strain A8, A20, and A5, respectively. These findings showed that the five actinobacteria are multipurpose strains with simultaneous antifungal and plant growth promoting activities and have the potential to be used for sustainable agricultural practices, particularly in arid regions.


Assuntos
Actinobacteria , Antifúngicos , Microbiologia do Solo , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Actinobacteria/metabolismo , Actinobacteria/classificação , Actinobacteria/genética , Actinobacteria/isolamento & purificação , Actinobacteria/crescimento & desenvolvimento , Alternaria/efeitos dos fármacos , Alternaria/crescimento & desenvolvimento , Ácidos Indolacéticos/metabolismo , Sideróforos/metabolismo , Fusarium/efeitos dos fármacos , Fusarium/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Streptomyces/classificação , Streptomyces/isolamento & purificação , Streptomyces/genética , Streptomyces/metabolismo , Aspergillus flavus/crescimento & desenvolvimento , Aspergillus flavus/efeitos dos fármacos , Aspergillus flavus/metabolismo , Botrytis/efeitos dos fármacos , Botrytis/crescimento & desenvolvimento , Filogenia , Argélia , Desenvolvimento Vegetal , Antibiose , África do Norte
10.
New Phytol ; 244(1): 192-201, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39107894

RESUMO

The devastating pathogen Botrytis cinerea infects a broad spectrum of host plants, causing great socio-economic losses. The necrotrophic fungus rapidly kills plant cells, nourishing their wall and cellular contents. To this end, necrotrophs secrete a cocktail of cell wall degrading enzymes, phytotoxic proteins and metabolites. Additionally, many fungi produce specialized invasion organs that generate high invasive pressures to force their way into the plant cell. However, for most necrotrophs, including Botrytis, the biomechanics of penetration and its contribution to virulence are poorly understood. Here, we use a combination of quantitative micromechanical imaging and CRISPR-Cas-guided mutagenesis to show that Botrytis uses substantial invasive pressure, in combination with strong surface adherence, for penetration. We found that the fungus establishes a unique mechanical geometry of penetration that develops over time during penetration events, and which is actin cytoskeleton dependent. Furthermore, interference of force generation by blocking actin polymerization was found to decrease Botrytis virulence, indicating that also for necrotrophs, mechanical pressure is important in host colonization. Our results demonstrate for the first time mechanistically how a necrotrophic fungus such as Botrytis employs this 'brute force' approach, in addition to the secretion of lytic proteins and phytotoxic metabolites, to overcome plant host resistance.


Assuntos
Actinas , Botrytis , Doenças das Plantas , Pressão , Botrytis/patogenicidade , Botrytis/fisiologia , Doenças das Plantas/microbiologia , Actinas/metabolismo , Virulência , Fenômenos Biomecânicos
11.
Food Chem ; 461: 140942, 2024 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-39181046

RESUMO

Methionine (Met) can inhibit plant diseases caused by phytopathogens. However, the effect of Met on gray mold resulted from Botrytis cinerea in tomato is still unclear. This study showed 5 mM Met alleviated disease development of gray mold, enhanced chitinase (CHI) and ß-1, 3-glucanase (GNS) activities and the expression of SlCHI, SlGNS, SlPR1 and SlNPR1 in tomatoes, rather than inhibited the growth of B. cinerea directly. Moreover, ethylene biosynthesis and signal transduction before pathogen inoculating were induced by 5 mM Met. Interestingly, Met reduced the nitrosylation levels of ACS4 and ACO6, enhanced the activities of nitric oxide synthase, nitrite reductase (NR) and S-nitrosoglutathione reductase (GSNOR) and the expression of SlNR and SlGSNOR. Tomatoes treated with aminoethoxyvinylglycine and carboxy-PTIO exhibited lower resistance to B. cinerea. These results indicate 5 mM Met promoted ethylene biosynthesis and signal transduction to facilitate NO synthesis and metabolism, enhancing the resistance of tomatoes to B. cinerea.


Assuntos
Botrytis , Etilenos , Metionina , Óxido Nítrico , Doenças das Plantas , Proteínas de Plantas , Transdução de Sinais , Solanum lycopersicum , Solanum lycopersicum/microbiologia , Solanum lycopersicum/metabolismo , Solanum lycopersicum/química , Botrytis/efeitos dos fármacos , Botrytis/crescimento & desenvolvimento , Etilenos/farmacologia , Etilenos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Óxido Nítrico/metabolismo , Metionina/metabolismo , Metionina/farmacologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética
12.
J Agric Food Chem ; 72(34): 18824-18839, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39140189

RESUMO

The Zn(II)2Cys6 zinc cluster protein family comprises a subclass of zinc-finger proteins that serve as transcriptional regulators involved in a diverse array of fugal biological processes. However, the roles and mechanisms of the Zn(II)2Cys6 transcription factors in mediating Botrytis cinerea, a necrotrophic fungus that causes gray mold in over 1000 plant species, development and virulence remain obscure. Here, we demonstrate that a novel B. cinerea pathogenicity-associated factor BcFTG1 (fungal transcription factor containing the GAL4 domain), identified from a virulence-attenuated mutant M20162 from a B. cinerea T-DNA insertion mutant library, plays an important role in oxalic acid (OA) secretion, carbon source absorption and cell wall integrity. Loss of BcFTG1 compromises the ability of the pathogen to secrete OA, absorb carbon sources, maintain cell wall integrity, and promote virulence. Our findings provide novel insights into fungal factors mediating the pathogenesis of the gray mold fungus via regulation of OA secretion, carbon source utilization and cell wall integrity.


Assuntos
Botrytis , Carbono , Proteínas Fúngicas , Doenças das Plantas , Fatores de Transcrição , Botrytis/genética , Botrytis/patogenicidade , Botrytis/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Doenças das Plantas/microbiologia , Virulência , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Carbono/metabolismo , Regulação Fúngica da Expressão Gênica , Ácido Oxálico/metabolismo , Parede Celular/metabolismo , Parede Celular/genética , Parede Celular/química
13.
J Agric Food Chem ; 72(33): 18507-18519, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39113497

RESUMO

Small secreted peptides (SSPs) are essential for defense mechanisms in plant-microbe interactions, acting as danger-associated molecular patterns (DAMPs). Despite the first discovery of SSPs over three decades ago, only a limited number of SSP families, particularly within Solanaceae plants, have been identified due to inefficient approaches. This study employed comparative genomics screens with Solanaceae proteomes (tomato, tobacco, and pepper) to discover a novel SSP family, SolP. Bioinformatics analysis suggests that SolP may serve as an endogenous signal initiating the plant PTI response. Interestingly, SolP family members from tomato, tobacco, and pepper share an identical sequence (VTSNALALVNRFAD), named SlSolP12 (also referred to as NtSolP15 or CaSolP1). Biochemical and phenotypic analyses revealed that synthetic SlSolP12 peptide triggers multiple defense responses: ROS burst, MAPK activation, callose deposition, stomatal closure, and expression of immune defense genes. Furthermore, SlSolP12 enhances systemic resistance against Botrytis cinerea infection in tomato plants and interferes with classical peptides, flg22 and Systemin, which modulate the immune response. Remarkably, SolP12 activates ROS in diverse plant species, such as Arabidopsis thaliana, soybean, and rice, showing a broad spectrum of biological activities. This study provides valuable approaches for identifying endogenous SSPs and highlights SlSolP12 as a novel DAMP that could serve as a useful target for crop protection.


Assuntos
Botrytis , Genômica , Doenças das Plantas , Imunidade Vegetal , Proteínas de Plantas , Solanum lycopersicum , Solanum lycopersicum/imunologia , Solanum lycopersicum/genética , Solanum lycopersicum/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/imunologia , Proteínas de Plantas/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Doenças das Plantas/genética , Imunidade Vegetal/genética , Peptídeos/imunologia , Peptídeos/química , Resistência à Doença/genética , Resistência à Doença/imunologia , Regulação da Expressão Gênica de Plantas , Nicotiana/imunologia , Nicotiana/genética , Nicotiana/microbiologia , Nicotiana/metabolismo , Capsicum/imunologia , Capsicum/genética , Capsicum/microbiologia , Capsicum/química
14.
Cell Rep ; 43(8): 114588, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39110594

RESUMO

Plant diseases caused by fungal pathogens pose a great threat to crop production. Conidiation of fungi is critical for disease epidemics and serves as a promising drug target. Here, we show that deacetylation of the FolTFIIS transcription elongation factor is indispensable for Fusarium oxysporum f. sp. lycopersici (Fol) conidiation. Upon microconidiation, Fol decreases K76 acetylation of FolTFIIS by altering the level of controlling enzymes, allowing for its nuclear translocation by FolIws1. Increased nuclear FolTFIIS enhances the transcription of sporulation-related genes and, consequently, enables microconidia production. Deacetylation of FolTFIIS is also critical for the production of macroconidia and chlamydospores, and its homolog has similar functions in Botrytis cinerea. We identify two FolIws1-targeting chemicals that block the conidiation of Fol and have effective activity against a wide range of pathogenic fungi without harm to the hosts. These findings reveal a conserved mechanism of conidiation regulation and provide candidate agrochemicals for disease management.


Assuntos
Proteínas Fúngicas , Fusarium , Esporos Fúngicos , Fusarium/metabolismo , Fusarium/efeitos dos fármacos , Fusarium/genética , Fusarium/patogenicidade , Esporos Fúngicos/metabolismo , Esporos Fúngicos/efeitos dos fármacos , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Acetilação , Doenças das Plantas/microbiologia , Núcleo Celular/metabolismo , Regulação Fúngica da Expressão Gênica , Transporte Ativo do Núcleo Celular , Botrytis/genética , Botrytis/metabolismo , Botrytis/efeitos dos fármacos
15.
Biophys Chem ; 314: 107305, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39154582

RESUMO

Rhamnolipids (RLs) and Fengycins (FGs) are biosurfactants with very promising antifungal properties proposed to reduce the use of synthetic pesticides in crops. They are amphiphilic molecules, both known to target the plasma membrane. They act differently on Botrytis cinerea and Sclerotinia sclerotiorum, two close Sclerotiniaceae phytopathogenic fungi. RLs are more efficient at permeabilizing S. sclerotiorum, and FGs are more efficient at permeabilizing B. cinerea mycelial cells. To study the link between the lipid membrane composition and the activity of RLs and FGs, we analyzed the lipid profiles of B. cinerea and S. sclerotiorum. We determined that unsaturated or saturated C18 and saturated C16 fatty acids are predominant in both fungi. We also showed that phosphatidylethanolamine (PE), phosphatidic acid (PA), and phosphatidylcholine (PC) are the main phospholipids (in this order) in both fungi, with more PA and less PC in S. sclerotiorum. The results were used to build biomimetic lipid membrane models of B. cinerea and S. sclerotiorum for all-atom molecular dynamic simulations and solid-state NMR experiments to more deeply study the interactions between RLs or FGs with different compositions of lipid bilayers. Distinctive effects are exerted by both compounds. RLs completely insert in all the studied model membranes with a fluidification effect. FGs tend to form aggregates out of the bilayer and insert individually more easily into the models representative of B. cinerea than those of S. sclerotiorum, with a higher fluidification effect. These results provide new insights into the lipid composition of closely related fungi and its impact on the mode of action of very promising membranotropic antifungal molecules for agricultural applications.


Assuntos
Ascomicetos , Botrytis , Glicolipídeos , Lipidômica , Lipopeptídeos , Botrytis/efeitos dos fármacos , Botrytis/química , Ascomicetos/química , Ascomicetos/efeitos dos fármacos , Ascomicetos/metabolismo , Glicolipídeos/química , Glicolipídeos/farmacologia , Glicolipídeos/metabolismo , Lipopeptídeos/farmacologia , Lipopeptídeos/química , Antifúngicos/farmacologia , Antifúngicos/química , Antifúngicos/metabolismo , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Membrana Celular/química , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Materiais Biomiméticos/metabolismo
16.
Sensors (Basel) ; 24(15)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39123884

RESUMO

In strawberry cultivation, precise disease management is crucial for maximizing yields and reducing unnecessary fungicide use. Traditional methods for measuring leaf wetness duration (LWD), a critical factor in assessing the risk of fungal diseases such as botrytis fruit rot and anthracnose, have been reliant on sensors with known limitations in accuracy and reliability and difficulties with calibrating. To overcome these limitations, this study introduced an innovative algorithm for leaf wetness detection systems employing high-resolution imaging and deep learning technologies, including convolutional neural networks (CNNs). Implemented at the University of Florida's Plant Science Research and Education Unit (PSREU) in Citra, FL, USA, and expanded to three additional locations across Florida, USA, the system captured and analyzed images of a reference plate to accurately determine the wetness and, consequently, the LWD. The comparison of system outputs with manual observations across diverse environmental conditions demonstrated the enhanced accuracy and reliability of the artificial intelligence-driven approach. By integrating this system into the Strawberry Advisory System (SAS), this study provided an efficient solution to improve disease risk assessment and fungicide application strategies, promising significant economic benefits and sustainability advances in strawberry production.


Assuntos
Inteligência Artificial , Fragaria , Doenças das Plantas , Folhas de Planta , Fragaria/microbiologia , Doenças das Plantas/microbiologia , Redes Neurais de Computação , Algoritmos , Botrytis
17.
Int J Mol Sci ; 25(15)2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39125929

RESUMO

In this work, liposomes loaded with the fungicide, Fludioxonil (FLUD), for the containment of fungal diseases in agriculture were developed. Three types of vesicles with different compositions were compared: (I) plain vesicles, composed of soy phosphatidylcholine and cholesterol; (II) PEG-coated vesicles, with an additional polyethylene glycol coating; and (III) cationic vesicles, containing didodecyldimethylammonium bromide. Nanometric-sized vesicles were obtained both by the micelle-to-vesicle transition method and by the extrusion technique, and encapsulation efficiency, drug loading content, and Zeta potential were determined for all the samples. The extruded and PEGylated liposomes were the most stable over time and together with the cationic ones showed a significant prolonged FLUD release capacity. The liposomes' biological activity was evaluated on conidial germination, germ tube elongation and colony radial growth of the ascomycete Botrytis cinerea, a phytopathogenic fungus affecting worldwide many important agricultural crops in the field as well as in the postharvest phase. The extruded and PEGylated liposomes showed greater effectiveness in inhibiting germ tube elongation and colony radial growth of the fungal pathogen, even at 0.01 µg·mL-1, the lowest concentration assessed.


Assuntos
Botrytis , Dioxóis , Fungicidas Industriais , Lipossomos , Doenças das Plantas , Lipossomos/química , Botrytis/efeitos dos fármacos , Fungicidas Industriais/farmacologia , Fungicidas Industriais/química , Dioxóis/farmacologia , Dioxóis/química , Dioxóis/administração & dosagem , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Polietilenoglicóis/química , Agricultura/métodos , Compostos de Amônio Quaternário/química , Compostos de Amônio Quaternário/farmacologia , Fosfatidilcolinas/química , Esporos Fúngicos/efeitos dos fármacos , Pirróis
18.
An Acad Bras Cienc ; 96(suppl 2): e20240255, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39194008

RESUMO

The use of yeasts has been explored as an efficient alternative to fungicide application in the treatment and prevention of post-harvest fruit deterioration. Here, we evaluated the biocontrol abilities of the Antarctic yeast strain Debaryomyces hansenii UFT8244 against the post-harvest phytopathogenic fungi Botrytis cinerea and Rhizopus stolonifer for the protection and preservation of strawberry fruit. The strongest inhibition of germination of B. cinerea (57%) was observed at 0 °C, followed by 40% at 25 °C. In addition, germ tubes and hyphae of B. cinerea were strongly surrounded and colonized by D. hansenii. Production of the enzymes ß-1,3-glucanase, chitinase and protease by D. hansenii was detected in the presence of phytopathogenic fungus cell walls. The activity of ß-1,3-glucanase was highest on day 12 of incubation and remained high until day 15. Chitinase and protease activities reached their highest levels on the day 15 of incubation. D. hansenii additionally demonstrated the ability to resist oxidative stress. Our data demonstrated that the main biocontrol mechanisms displayed by D. hansenii were the control of phytopathogenic fungal spore germination, production of antifungal enzymes and resistance to oxidative stress. We conclude that isolate D. hansenii UFT8422 should be further investigated for use at commercial scales at low temperatures.


Assuntos
Botrytis , Fragaria , Fragaria/microbiologia , Botrytis/efeitos dos fármacos , Botrytis/fisiologia , Rhizopus/fisiologia , Rhizopus/efeitos dos fármacos , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Quitinases/metabolismo , Controle Biológico de Vetores/métodos , Regiões Antárticas , Debaryomyces/fisiologia , Agentes de Controle Biológico/farmacologia
19.
Physiol Plant ; 176(4): e14504, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39191700

RESUMO

Plant infections caused by fungi lead to significant crop losses worldwide every year. This study aims to better understand the plant defence mechanisms regulated by red light, in particular, the effects of red light at night when most phytopathogens are highly infectious. Our results showed that superoxide production significantly increased immediately after red light exposure and, together with hydrogen peroxide levels, was highest at dawn after 30 min of nocturnal red-light treatment. In parallel, red-light-induced expression and increased the activities of several antioxidant enzymes. The nocturnal red light did not affect salicylic acid but increased jasmonic acid levels immediately after illumination, whereas abscisic acid levels increased 3 h after nocturnal red-light exposure at dawn. Based on the RNAseq data, red light immediately increased the transcription of several chloroplastic chlorophyll a-b binding protein and circadian rhythm-related genes, such as Constans 1, CONSTANS interacting protein 1 and zinc finger protein CONSTANS-LIKE 10. In addition, the levels of several transcription factors were also increased after red light exposure, such as the DOF zinc finger protein and a MYB transcription factor involved in the regulation of circadian rhythms and defence responses in tomato. In addition to identifying these key transcription factors in tomato, the application of red light at night for one week not only reactivated key antioxidant enzymes at the gene and enzyme activity level at dawn but also contributed to a more efficient and successful defence against Botrytis cinerea infection.


Assuntos
Botrytis , Regulação da Expressão Gênica de Plantas , Luz , Doenças das Plantas , Solanum lycopersicum , Botrytis/fisiologia , Solanum lycopersicum/microbiologia , Solanum lycopersicum/genética , Solanum lycopersicum/efeitos da radiação , Solanum lycopersicum/fisiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Oxilipinas/metabolismo , Ciclopentanos/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Ácido Abscísico/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Ácido Salicílico/metabolismo , Ritmo Circadiano/fisiologia , Ritmo Circadiano/efeitos da radiação , Reguladores de Crescimento de Plantas/metabolismo , Peróxido de Hidrogênio/metabolismo , Luz Vermelha
20.
Food Res Int ; 192: 114782, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39147480

RESUMO

Infection of grapevines with the grey mold pathogen Botrytis cinerea results in severe problems for winemakers worldwide. Browning of wine is caused by the laccase-mediated oxidation of polyphenols. In the last decades, Botrytis management has become increasingly difficult due to the rising number of resistances and the genetic variety of Botrytis strains. During the search for sustainable fungicides, polyphenols showed great potential to inhibit fungal growth. The present study revealed two important aspects regarding the effects of grape-specific polyphenols and their polymerized oxidation products on Botrytis wild strains. On the one hand, laccase-mediated oxidized polyphenols, which resemble the products found in infected grapes, showed the same potential for inhibition of growth and laccase activity, but differed from their native forms. On the other hand, the impact of phenolic compounds on mycelial growth is not correlated to the effect on laccase activity. Instead, mycelial growth and relative specific laccase activity appear to be modulated independently. All phenolic compounds showed not only inhibitory but also inductive effects on fungal growth and/or laccase activity, an observation which is reported for the first time. The simultaneous inhibition of growth and laccase activity demonstrated may serve as a basis for the development of a natural botryticide. Yet, the results showed considerable differences between genetically distinguishable strains, impeding the use of a specific phenolic compound against the genetic variety of wild strains. The present findings might have important implications for future understanding of Botrytis cinerea infections and sustainable Botrytis management including the role of polyphenols.


Assuntos
Botrytis , Lacase , Oxirredução , Polifenóis , Vitis , Botrytis/efeitos dos fármacos , Botrytis/crescimento & desenvolvimento , Botrytis/enzimologia , Lacase/metabolismo , Polifenóis/farmacologia , Vitis/microbiologia , Micélio/crescimento & desenvolvimento , Micélio/efeitos dos fármacos , Fungicidas Industriais/farmacologia , Fungicidas Industriais/química , Vinho/microbiologia , Doenças das Plantas/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA