Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.018
Filtrar
1.
BMC Plant Biol ; 24(1): 433, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773359

RESUMO

BACKGROUND: Freezing stress is one of the major abiotic stresses that causes extensive damage to plants. LEA (Late embryogenesis abundant) proteins play a crucial role in plant growth, development, and abiotic stress. However, there is limited research on the function of LEA genes in low-temperature stress in Brassica napus (rapeseed). RESULTS: Total 306 potential LEA genes were identified in B. rapa (79), B. oleracea (79) and B. napus (148) and divided into eight subgroups. LEA genes of the same subgroup had similar gene structures and predicted subcellular locations. Cis-regulatory elements analysis showed that the promoters of BnaLEA genes rich in cis-regulatory elements related to various abiotic stresses. Additionally, RNA-seq and real-time PCR results indicated that the majority of BnaLEA family members were highly expressed in senescent tissues of rapeseed, especially during late stages of seed maturation, and most BnaLEA genes can be induced by salt and osmotic stress. Interestingly, the BnaA.LEA6.a and BnaC.LEA6.a genes were highly expressed across different vegetative and reproductive organs during different development stages, and showed strong responses to salt, osmotic, and cold stress, particularly freezing stress. Further analysis showed that overexpression of BnaA.LEA6.a increased the freezing tolerance in rapeseed, as evidenced by lower relative electrical leakage and higher survival rates compared to the wild-type (WT) under freezing treatment. CONCLUSION: This study is of great significance for understanding the functions of BnaLEA genes in freezing tolerance in rapeseed and offers an ideal candidate gene (BnaA.LEA6.a) for molecular breeding of freezing-tolerant rapeseed cultivars.


Assuntos
Brassica napus , Congelamento , Proteínas de Plantas , Brassica napus/genética , Brassica napus/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Família Multigênica , Genoma de Planta , Resposta ao Choque Frio/genética
2.
Int J Mol Sci ; 25(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38731814

RESUMO

In this study, a rutabaga (Brassica napus ssp. napobrassica) donor parent FGRA106, which exhibited broad-spectrum resistance to 17 isolates representing 16 pathotypes of Plasmodiophora brassicae, was used in genetic crosses with the susceptible spring-type canola (B. napus ssp. napus) accession FG769. The F2 plants derived from a clubroot-resistant F1 plant were screened against three P. brassicae isolates representing pathotypes 3A, 3D, and 3H. Chi-square (χ2) goodness-of-fit tests indicated that the F2 plants inherited two major clubroot resistance genes from the CR donor FGRA106. The total RNA from plants resistant (R) and susceptible (S) to each pathotype were pooled and subjected to bulked segregant RNA-sequencing (BSR-Seq). The analysis of gene expression profiles identified 431, 67, and 98 differentially expressed genes (DEGs) between the R and S bulks. The variant calling method indicated a total of 12 (7 major + 5 minor) QTLs across seven chromosomes. The seven major QTLs included: BnaA5P3A.CRX1.1, BnaC1P3H.CRX1.2, and BnaC7P3A.CRX1.1 on chromosomes A05, C01, and C07, respectively; and BnaA8P3D.CRX1.1, BnaA8P3D.RCr91.2/BnaA8P3H.RCr91.2, BnaA8P3H.Crr11.3/BnaA8P3D.Crr11.3, and BnaA8P3D.qBrCR381.4 on chromosome A08. A total of 16 of the DEGs were located in the major QTL regions, 13 of which were on chromosome C07. The molecular data suggested that clubroot resistance in FGRA106 may be controlled by major and minor genes on both the A and C genomes, which are deployed in different combinations to confer resistance to the different isolates. This study provides valuable germplasm for the breeding of clubroot-resistant B. napus cultivars in Western Canada.


Assuntos
Brassica napus , Resistência à Doença , Melhoramento Vegetal , Doenças das Plantas , Plasmodioforídeos , Locos de Características Quantitativas , Brassica napus/genética , Brassica napus/parasitologia , Resistência à Doença/genética , Doenças das Plantas/parasitologia , Doenças das Plantas/genética , Plasmodioforídeos/fisiologia , Plasmodioforídeos/patogenicidade , RNA-Seq , Mapeamento Cromossômico , Regulação da Expressão Gênica de Plantas , Cromossomos de Plantas/genética
3.
Physiol Plant ; 176(3): e14315, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38693794

RESUMO

Rapeseed (Brassica napus L.) is an oil-containing crop of great economic value but with considerable nitrogen requirement. Breeding root systems that efficiently absorb nitrogen from the soil could be a driver to ensure genetic gains for more sustainable rapeseed production. The aim of this study is to identify genomic regions that regulate root morphology in response to nitrate availability. The natural variability offered by 300 inbred lines was screened at two experimental locations. Seedlings grew hydroponically with low or elevated nitrate levels. Fifteen traits related to biomass production and root morphology were measured. On average across the panel, a low nitrate level increased the root-to-shoot biomass ratio and the lateral root length. A large phenotypic variation was observed, along with important heritability values and genotypic effects, but low genotype-by-nitrogen interactions. Genome-wide association study and bulk segregant analysis were used to identify loci regulating phenotypic traits. The first approach nominated 319 SNPs that were combined into 80 QTLs. Three QTLs identified on the A07 and C07 chromosomes were stable across nitrate levels and/or experimental locations. The second approach involved genotyping two groups of individuals from an experimental F2 population created by crossing two accessions with contrasting lateral root lengths. These individuals were found in the tails of the phenotypic distribution. Co-localized QTLs found in both mapping approaches covered a chromosomal region on the A06 chromosome. The QTL regions contained some genes putatively involved in root organogenesis and represent selection targets for redesigning the root morphology of rapeseed.


Assuntos
Brassica napus , Nitrogênio , Fenótipo , Raízes de Plantas , Locos de Características Quantitativas , Raízes de Plantas/genética , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Nitrogênio/metabolismo , Locos de Características Quantitativas/genética , Brassica napus/genética , Brassica napus/crescimento & desenvolvimento , Brassica napus/anatomia & histologia , Brassica napus/metabolismo , Genótipo , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único/genética , Biomassa , Nitratos/metabolismo , Mapeamento Cromossômico , Variação Genética
4.
Physiol Plant ; 176(3): e14328, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38695265

RESUMO

While endophytic fungi offer promising avenues for bolstering plant resilience against abiotic stressors, the molecular mechanisms behind this biofortification remain largely unknown. This study employed a multifaceted approach, combining plant physiology, proteomic, metabolomic, and targeted hormonal analyses to illuminate the early response of Brassica napus to Acremonium alternatum during the nascent stages of their interaction. Notably, under optimal growth conditions, the initial reaction to fungus was relatively subtle, with no visible alterations in plant phenotype and only minor impacts on the proteome and metabolome. Interestingly, the identified proteins associated with the Acremonium response included TUDOR 1, Annexin D4, and a plastidic K+ efflux antiporter, hinting at potential processes that could counter abiotic stressors, particularly salt stress. Subsequent experiments validated this hypothesis, showcasing significantly enhanced growth in Acremonium-inoculated plants under salt stress. Molecular analyses revealed a profound impact on the plant's proteome, with over 50% of salt stress response proteins remaining unaffected in inoculated plants. Acremonium modulated ribosomal proteins, increased abundance of photosynthetic proteins, enhanced ROS metabolism, accumulation of V-ATPase, altered abundances of various metabolic enzymes, and possibly promoted abscisic acid signaling. Subsequent analyses validated the accumulation of this hormone and its enhanced signaling. Collectively, these findings indicate that Acremonium promotes salt tolerance by orchestrating abscisic acid signaling, priming the plant's antioxidant system, as evidenced by the accumulation of ROS-scavenging metabolites and alterations in ROS metabolism, leading to lowered ROS levels and enhanced photosynthesis. Additionally, it modulates ion sequestration through V-ATPase accumulation, potentially contributing to the observed decrease in chloride content.


Assuntos
Acremonium , Homeostase , Oxirredução , Reguladores de Crescimento de Plantas , Tolerância ao Sal , Transdução de Sinais , Acremonium/metabolismo , Acremonium/fisiologia , Reguladores de Crescimento de Plantas/metabolismo , Tolerância ao Sal/fisiologia , Brassica napus/microbiologia , Brassica napus/metabolismo , Brassica napus/fisiologia , Brassica napus/efeitos dos fármacos , Estresse Salino/fisiologia , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Ácido Abscísico/metabolismo , Fotossíntese
5.
BMC Plant Biol ; 24(1): 363, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724910

RESUMO

Salinity stress is a significant challenge in agricultural production. When soil contains high salts, it can adversely affect plant growth and productivity due to the high concentration of soluble salts in the soil water. To overcome this issue, foliar applications of methyl jasmonate (MJ) and gibberellic acid (GA3) can be productive amendments. Both can potentially improve the plant's growth attributes and flowering, which are imperative in improving growth and yield. However, limited literature is available on their combined use in canola to mitigate salinity stress. That's why the current study investigates the impact of different levels of MJ (at concentrations of 0.8, 1.6, and 3.2 mM MJ) and GA3 (0GA3 and 5 mg/L GA3) on canola cultivated in salt-affected soils. Applying all the treatments in four replicates. Results indicate that the application of 0.8 mM MJ with 5 mg/L GA3 significantly enhances shoot length (23.29%), shoot dry weight (24.77%), number of leaves per plant (24.93%), number of flowering branches (26.11%), chlorophyll a (31.44%), chlorophyll b (20.28%) and total chlorophyll (27.66%) and shoot total soluble carbohydrates (22.53%) over control. Treatment with 0.8 mM MJ and 5 mg/L GA3 resulted in a decrease in shoot proline (48.17%), MDA (81.41%), SOD (50.59%), POD (14.81%) while increase in N (10.38%), P (15.22%), and K (8.05%) compared to control in canola under salinity stress. In conclusion, 0.8 mM MJ + 5 mg/L GA3 can improve canola growth under salinity stress. More investigations are recommended at the field level to declare 0.8 mM MJ + 5 mg/L GA3 as the best amendment for alleviating salinity stress in different crops.


Assuntos
Acetatos , Antioxidantes , Brassica napus , Ciclopentanos , Giberelinas , Oxilipinas , Reguladores de Crescimento de Plantas , Solo , Ciclopentanos/farmacologia , Oxilipinas/farmacologia , Brassica napus/crescimento & desenvolvimento , Brassica napus/efeitos dos fármacos , Brassica napus/metabolismo , Giberelinas/metabolismo , Giberelinas/farmacologia , Antioxidantes/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Acetatos/farmacologia , Solo/química , Clorofila/metabolismo , Estresse Salino/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Nutrientes/metabolismo
6.
BMC Genomics ; 25(1): 492, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760719

RESUMO

Rapeseed (Brassica napus L.), accounts for nearly 16% of vegetable oil, is the world's second produced oilseed. However, pod shattering has caused significant yield loses in rapeseed production, particularly during mechanical harvesting. The GH28 genes can promote pod shattering by changing the structure of the pod cell wall in Arabidopsis. However, the role of the GH28 gene family in rapeseed was largely unknown. Therefore, a genome-wide comprehensive analysis was conducted to classify the role of GH28 gene family on rapeseed pod shattering. A total of 37 BnaGH28 genes in the rapeseed genome were identified. These BnaGH28s can be divided into five groups (Group A-E), based on phylogenetic and synteny analysis. Protein property, gene structure, conserved motif, cis-acting element, and gene expression profile of BnaGH28 genes in the same group were similar. Specially, the expression level of genes in group A-D was gradually decreased, but increased in group E with the development of silique. Among eleven higher expressed genes in group E, two BnaGH28 genes (BnaA07T0199500ZS and BnaC06T0206500ZS) were significantly regulated by IAA or GA treatment. And the significant effects of BnaA07T0199500ZS variation on pod shattering resistance were also demonstrated in present study. These results could open a new window for insight into the role of BnaGH28 genes on pod shattering resistance in rapeseed.


Assuntos
Brassica napus , Filogenia , Proteínas de Plantas , Brassica napus/genética , Proteínas de Plantas/genética , Regulação da Expressão Gênica de Plantas , Família Multigênica , Genoma de Planta , Sintenia , Perfilação da Expressão Gênica
7.
BMC Plant Biol ; 24(1): 400, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38745278

RESUMO

XTH genes are key genes that regulate the hydrolysis and recombination of XG components and plays role in the structure and composition of plant cell walls. Therefore, clarifying the changes that occur in XTHs during plant defense against abiotic stresses is informative for the study of the plant stress regulatory mechanism mediated by plant cell wall signals. XTH proteins in Arabidopsis thaliana was selected as the seed sequences in combination with its protein structural domains, 80 members of the BnXTH gene family were jointly identified from the whole genome of the Brassica napus ZS11, and analyzed for their encoded protein physicochemical properties, phylogenetic relationships, covariance relationships, and interoperating miRNAs. Based on the transcriptome data, the expression patterns of BnXTHs were analyzed in response to different abiotic stress treatments. The relative expression levels of some BnXTH genes under Al, alkali, salt, and drought treatments after 0, 6, 12 and 24 h were analyzed by using qRT-PCR to explore their roles in abiotic stress tolerance in B. napus. BnXTHs showed different expression patterns in response to different abiotic stress signals, indicating that the response mechanisms of oilseed rape against different abiotic stresses are also different. This paper provides a theoretical basis for clarifying the function and molecular genetic mechanism of the BnXTH gene family in abiotic stress tolerance in rapeseed.


Assuntos
Brassica napus , Regulação da Expressão Gênica de Plantas , Glicosiltransferases , Família Multigênica , Filogenia , Estresse Fisiológico , Brassica napus/genética , Brassica napus/enzimologia , Estresse Fisiológico/genética , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genes de Plantas , Arabidopsis/genética , Arabidopsis/enzimologia
8.
Plant Mol Biol ; 114(3): 59, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750303

RESUMO

The plant-specific homeodomain-leucine zipper I subfamily is involved in the regulation of various biological processes, particularly growth, development and stress response. In the present study, we characterized four BnaHB6 homologues from Brassica napus. All BnaHB6 proteins have transcriptional activation activity. Structural and functional data indicate the complex role of BnaHB6 genes in regulating biological processes, with some functions conserved and others diverged. Transcriptional analyzes revealed that they are induced in a similar manner in different tissues but show different expression patterns in response to stress and circadian rhythm. Only the BnaA09HB6 and BnaC08HB6 genes are expressed under dehydration and salt stress, and in darkness. The partial transcriptional overlap of BnaHB6s with the evolutionarily related genes BnaHB5 and BnaHB16 was also observed. Transgenic Arabidopsis thaliana plants expressing a single proBnaHB6::GUS partially confirmed the expression results. Bioinformatic analysis allowed the identification of TF-binding sites in the BnaHB6 promoters that may control their expression under stress and circadian rhythm. ChIP-qPCR analysis revealed that BnaA09HB6 and BnaC08HB6 bind directly to the promoters of the target genes BnaABF4 and BnaDREB2A. Comparison of their expression patterns in the WT plants and the bnac08hb6 mutant showed that BnaC08HB6 positively regulates the expression of the BnaABF4 and BnaDREB2A genes under dehydration and salt stress. We conclude that four BnaHB6 homologues have distinct functions in response to stress despite high sequence similarity, possibly indicating different binding preferences with BnaABF4 and BnaDREB2A. We hypothesize that BnaC08HB6 and BnaA09HB6 function in a complex regulatory network under stress.


Assuntos
Brassica napus , Desidratação , Regulação da Expressão Gênica de Plantas , Zíper de Leucina , Proteínas de Plantas , Estresse Salino , Fatores de Transcrição , Brassica napus/genética , Brassica napus/metabolismo , Brassica napus/fisiologia , Brassica napus/efeitos dos fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Salino/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Zíper de Leucina/genética , Plantas Geneticamente Modificadas , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Arabidopsis/genética , Arabidopsis/fisiologia , Arabidopsis/metabolismo , Regiões Promotoras Genéticas/genética , Filogenia , Ritmo Circadiano/genética , Estresse Fisiológico/genética
9.
Theor Appl Genet ; 137(6): 129, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740615

RESUMO

KEY MESSAGE: Through comprehensive genomic and transcriptomic analyses, we identified a set of 23 genes that act up- or downstream of erucic acid content (EAC) production in rapeseed seeds. We selected example genes to showcase the distribution of single nucleotide polymorphisms, haplotypes associated with EAC phenotypes, and the creation of molecular markers differentiating low EAC and high EAC genotypes. Erucic acid content (EAC) is a crucial trait in rapeseed, with low LEAC oil recognized for its health benefits and high EA oil holding industrial value. Despite its significance, the genomic consequences of intensive LEAC-cultivar selection and the genetic basis underlying EA regulation remain largely unexplored. To address this knowledge gap, we conducted selective signal analyses, genome-wide association studies (GWAS), and transcriptome analyses. Our investigation unveiled the genetic footprints resulting from LEAC selection in germplasm populations, drawing attention to specific loci that contribute to enriching diversity. By integrating GWAS and transcriptome analyses, we identified a set of 23 genes that play a significant role in determining EAC in seeds or are downstream consequences of EA-level alterations. These genes have emerged as promising candidates for elucidating the potential mechanisms governing EAC in rapeseed. To exemplify the findings, we selected specific genes to demonstrate the distribution of single nucleotide polymorphisms and haplotypes associated with different EAC phenotypes. Additionally, we showcased to develop molecular markers distinguishing between LEAC and high EAC genotypes.


Assuntos
Brassica napus , Ácidos Erúcicos , Polimorfismo de Nucleotídeo Único , Sementes , Sementes/genética , Sementes/crescimento & desenvolvimento , Brassica napus/genética , Ácidos Erúcicos/metabolismo , Fenótipo , Haplótipos , Transcriptoma , Estudo de Associação Genômica Ampla , Genótipo , Perfilação da Expressão Gênica , Genômica/métodos , Regulação da Expressão Gênica de Plantas , Locos de Características Quantitativas
10.
Sci Data ; 11(1): 356, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589398

RESUMO

Rapeseed is a critical cash crop globally, and understanding its distribution can assist in refined agricultural management, ensuring a sustainable vegetable oil supply, and informing government decisions. China is the leading consumer and third-largest producer of rapeseed. However, there is a lack of widely available, long-term, and large-scale remotely sensed maps on rapeseed cultivation in China. Here this study utilizes multi-source data such as satellite images, GLDAS environmental variables, land cover maps, and terrain data to create the China annual rapeseed maps at 30 m spatial resolution from 2000 to 2022 (CARM30). Our product was validated using independent samples and showed average F1 scores of 0.869 and 0.971 for winter and spring rapeseed. The CARM30 has high spatial consistency with existing 10 m and 20 m rapeseed maps. Additionally, the CARM30-derived rapeseed planted area was significantly correlated with agricultural statistics (R2 = 0.65-0.86; p < 0.001). The obtained rapeseed distribution information can serve as a reference for stakeholders such as farmers, scientific communities, and decision-makers.


Assuntos
Brassica napus , Agricultura , China
11.
Pestic Biochem Physiol ; 200: 105785, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38582570

RESUMO

This study investigates the effects of chlorantraniliprole (CAP) pesticide stress on oilseed rape through comprehensive pot experiments. Assessing CAP residue variations in soil and oilseed rape (Brassia campestris L.), enzyme activities (POD, CPR, GST), and differential metabolites, we unveil significant findings. The average CAP residue levels were 18.38-13.70 mg/kg in unplanted soil, 9.94-6.30 mg/kg in planted soil, and 0-4.18 mg/kg in oilseed rape samples, respectively. Soil microbial influences and systemic pesticide translocation into oilseed rape contribute to CAP residue variations. Under the influence of CAP stress, oilseed rape displays escalated enzyme activities (POD, CPR, GST) and manifests 57 differential metabolites. Among these, 32 demonstrate considerable downregulation, mainly impacting amino acids and phenolic compounds, while 25 exhibit noteworthy overexpression, primarily affecting flavonoid compounds. This impact extends to 24 metabolic pathways, notably influencing amide biosynthesis, as well as arginine and proline metabolism. These findings underscore the discernible effects of CAP pesticide stress on oilseed rape.


Assuntos
Brassica napus , Praguicidas , ortoaminobenzoatos , Praguicidas/metabolismo , Brassica napus/metabolismo , Solo
12.
BMC Plant Biol ; 24(1): 245, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38575879

RESUMO

Seed germination is an important development process in plant growth. The phytohormone abscisic acid (ABA) plays a critical role during seed germination. However, the mechanism of rapeseed in response to ABA is still elusive. In order to understand changes of rapeseed under exogenous ABA treatment, we explored differentially expressed metabolites (DEMs) and the differentially expressed genes (DEGs) between mock- and ABA-treated seedlings. A widely targeted LC-MS/MS based metabolomics were used to identify and quantify metabolic changes in response to ABA during seed germination, and a total of 186 significantly DEMs were identified. There are many compounds which are involved in ABA stimuli, especially some specific ABA transportation-related metabolites such as starches and lipids were screened out. Meanwhile, a total of 4440 significantly DEGs were identified by transcriptomic analyses. There was a significant enrichment of DEGs related to phenylpropanoid and cell wall organization. It suggests that exogenous ABA mainly affects seed germination by regulating cell wall loosening. Finally, the correlation analysis of the key DEMs and DEGs indicates that many DEGs play a direct or indirect regulatory role in DEMs metabolism. The integrative analysis between DEGs and DEMs suggests that the starch and sucrose pathways were the key pathway in ABA responses. The two metabolites from starch and sucrose pathways, levan and cellobiose, both were found significantly down-regulated in ABA-treated seedlings. These comprehensive metabolic and transcript analyses provide useful information for the subsequent post-transcriptional modification and post germination growth of rapeseed in response to ABA signals and stresses.


Assuntos
Brassica napus , Brassica rapa , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Plântula/metabolismo , Brassica napus/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem , Perfilação da Expressão Gênica , Germinação/genética , Brassica rapa/metabolismo , Metaboloma , Amido/metabolismo , Sacarose/metabolismo , Sementes , Regulação da Expressão Gênica de Plantas , Transcriptoma
13.
Int J Mol Sci ; 25(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38612746

RESUMO

Signal peptide peptidase (SPP) and its homologs, signal peptide peptidase-like (SPPL) proteases, are members of the GxGD-type aspartyl protease family, which is widespread in plants and animals and is a class of transmembrane proteins with significant biological functions. SPP/SPPLs have been identified; however, the functions of SPP/SPPL in rapeseed (Brassica napus L.) have not been reported. In this study, 26 SPP/SPPLs were identified in rapeseed and categorized into three groups: SPP, SPPL2, and SPPL3. These members mainly contained the Peptidase_A22 and PA domains, which were distributed on 17 out of 19 chromosomes. Evolutionary analyses indicated that BnaSPP/SPPLs evolved with a large number of whole-genome duplication (WGD) events and strong purifying selection. Members are widely expressed and play a key role in the growth and development of rapeseed. The regulation of rapeseed pollen fertility by the BnaSPPL4 gene was further validated through experiments based on bioinformatics analysis, concluding that BnaSPPL4 silencing causes male sterility. Cytological observation showed that male infertility caused by loss of BnaSPPL4 gene function occurs late in the mononucleate stage due to microspore dysplasia.


Assuntos
Brassica napus , Brassica rapa , Infertilidade Masculina , Animais , Humanos , Masculino , Brassica napus/genética , Ácido Aspártico Endopeptidases , Fertilidade/genética , Peptídeo Hidrolases
14.
Planta ; 259(5): 122, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619628

RESUMO

MAIN CONCLUSION: Overexpression of BnaC02.TPS8 increased low N and high sucrose-induced anthocyanin accumulation. Anthocyanin plays a crucial role in safeguarding photosynthetic tissues against high light, UV radiation, and oxidative stress. Their accumulation is triggered by low nitrogen (N) stress and elevated sucrose levels in Arabidopsis. Trehalose-6-phosphate (T6P) serves as a pivotal signaling molecule, sensing sucrose availability, and carbon (C) metabolism. However, the mechanisms governing the regulation of T6P synthase (TPS) genes responsible for anthocyanin accumulation under conditions of low N and high sucrose remain elusive. In a previous study, we demonstrated the positive impact of a cytoplasm-localized class II TPS protein 'BnaC02.TPS8' on photosynthesis and seed yield improvement in Brassica napus. The present research delves into the biological role of BnaC02.TPS8 in response to low N and high sucrose. Ectopic overexpression of BnaC02.TPS8 in Arabidopsis seedlings resulted in elevated shoot T6P levels under N-sufficient conditions, as well as an increased carbon-to-nitrogen (C/N) ratio, sucrose accumulation, and starch storage under low N conditions. Overexpression of BnaC02.TPS8 in Arabidopsis heightened sensitivity to low N stress and high sucrose levels, accompanied by increased anthocyanin accumulation and upregulation of genes involved in flavonoid biosynthesis and regulation. Metabolic profiling revealed increased levels of intermediate products of carbon metabolism, as well as anthocyanin and flavonoid derivatives in BnaC02.TPS8-overexpressing Arabidopsis plants under low N conditions. Furthermore, yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) analyses demonstrated that BnaC02.TPS8 interacts with both BnaC08.TPS9 and BnaA01.TPS10. These findings contribute to our understanding of how TPS8-mediated anthocyanin accumulation is modulated under low N and high sucrose conditions.


Assuntos
Arabidopsis , Brassica napus , Fosfatos Açúcares , Trealose , Antocianinas , Arabidopsis/genética , Brassica napus/genética , Carbono , Flavonoides , Nitrogênio , Trealose/análogos & derivados , Técnicas do Sistema de Duplo-Híbrido
15.
Curr Protoc ; 4(4): e1039, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38665046

RESUMO

Clubroot caused by the obligate parasite Plasmodiophora brassicae is a devastating disease affecting the canola industry worldwide. The socio-economic impact of clubroot can be significant, particularly in regions where Brassica crops are a major agricultural commodity. The disease can cause significant crop losses, leading to reduced yield and income for farmers. Extensive studies have been conducted to understand the biology and genetics of the pathogens and develop more effective management strategies. However, the basic procedures used for pathogen storage and virulence analysis have not been assembled or discussed in detail. As a result, there are discrepancies among the different protocols used today. The aim of this article is to provide a comprehensive and easily accessible resource for researchers who are interested in replicating or building upon the methods used in the study of the clubroot pathogen. Here, we discuss in detail the methods used for P. brassicae spore isolation, inoculation, quantification, propagation, and molecular techniques such as DNA extraction and PCR. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Extraction of Plasmodiophora brassicae resting spores and propagation Support Protocol 1: Evans blue staining to identify resting spore viability Support Protocol 2: Storage of Plasmodiophora brassicae Basic Protocol 2: Generation of single spore isolates from P. brassicae field isolates Basic Protocol 3: Phenotyping of Plasmodiophora brassicae isolates Basic Protocol 4: Genomic DNA extraction from Plasmodiophora brassicae resting spores Basic Protocol 5: Molecular detection of Plasmodiophora brassicae.


Assuntos
Doenças das Plantas , Plasmodioforídeos , Plasmodioforídeos/genética , Plasmodioforídeos/isolamento & purificação , Plasmodioforídeos/patogenicidade , Doenças das Plantas/parasitologia , Brassica/parasitologia , Brassica napus/parasitologia
16.
BMC Plant Biol ; 24(1): 329, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664610

RESUMO

BACKGROUND: Advancement in agricultural biotechnology has resulted in increasing numbers of commercial varieties of genetically modified (GM) crops worldwide. Though several databases on GM crops are available, these databases generally focus on collecting and providing information on transgenic crops rather than on screening strategies. To overcome this, we constructed a novel tool named, Genetically Modified Organisms Identification Tool (GMOIT), designed to integrate basic and genetic information on genetic modification events and detection methods. RESULTS: At present, data for each element from 118 independent genetic modification events in soybean, maize, canola, and rice were included in the database. Particularly, GMOIT allows users to customize assay ranges and thus obtain the corresponding optimized screening strategies using common elements or specific locations as the detection targets with high flexibility. Using the 118 genetic modification events currently included in GMOIT as the range and algorithm selection results, a "6 + 4" protocol (six exogenous elements and four endogenous reference genes as the detection targets) covering 108 events for the four crops was established. Plasmids pGMOIT-1 and pGMOIT-2 were constructed as positive controls or calibrators in qualitative and quantitative transgene detection. CONCLUSIONS: Our study provides a simple, practical tool for selecting, detecting, and screening strategies for a sustainable and efficient application of genetic modification.


Assuntos
Produtos Agrícolas , Glycine max , Oryza , Plantas Geneticamente Modificadas , Produtos Agrícolas/genética , Plantas Geneticamente Modificadas/genética , Oryza/genética , Glycine max/genética , Zea mays/genética , Transgenes , Brassica napus/genética
17.
Chemosphere ; 356: 141977, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38608779

RESUMO

Residues of veterinary antibiotics are a worldwide problem of increasing concern due to their persistence and diverse negative effects on organisms, including crops, and limited understanding of their phytotoxicity. Therefore, this study aimed to compare the phytotoxic effects of veterinary antibiotics tetracycline (TC) and ciprofloxacin (CIP) applied in a wide range of concentrations on model plant oilseed rape (Brassica napus). Overall phytotoxicity of 1-500 mg kg-1 of TC and CIP was investigated based on morphological, biochemical, and physiological plant response. Photosystem II (PSII) performance was suppressed by TC even under environmentally relevant concentration (1 mg kg-1), with an increasing effect proportionally to TC concentration in soil. In contrast, CIP was found to be more phytotoxic than TC when applied at high concentrations, inducing a powerful oxidative burst, impairment of photosynthetic performance, collapse of antioxidative protection and sugar metabolism, and in turn, complete growth retardation at 250 and 500 mg kg-1 CIP treatments. Results of our study suggest that TC and CIP pollution do not pose a significant risk to oilseed rapes in many little anthropogenically affected agro-environments where TC or CIP concentrations do not exceed 1 mg kg-1; however, intensive application of manure with high CIP concentrations (more than 50 mg kg-1) might be detrimental to plants and, in turn, lead to diminished agricultural production and a potential risk to human health.


Assuntos
Antibacterianos , Brassica napus , Poluentes do Solo , Brassica napus/efeitos dos fármacos , Brassica napus/crescimento & desenvolvimento , Antibacterianos/toxicidade , Poluentes do Solo/toxicidade , Tetraciclina/toxicidade , Ciprofloxacina/toxicidade , Fotossíntese/efeitos dos fármacos , Drogas Veterinárias/toxicidade , Complexo de Proteína do Fotossistema II/metabolismo
18.
PeerJ ; 12: e17312, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38685942

RESUMO

Salinity stress imposes severe constraints on plant growth and development. Here, we explored the impacts of prohexadione-calcium (Pro-Ca) on rapeseed growth under salt stress. We designed a randomized block design pot experiment using two rapeseed varieties, 'Huayouza 158R' and 'Huayouza 62'. We conducted six treatments, S0: non-primed + 0 mM NaCl, Pro-Ca+S0: Pro-Ca primed + 0 mM NaCl, S100: non-primed + 100 mM NaCl, Pro-Ca+S100: Pro-Ca primed + 100 mM NaCl, S150: non-primed + 150 mM NaCl, Pro-Ca+S150: Pro-Ca primed + 150 mM NaCl. The morphophysiological characteristics, and osmoregulatory and antioxidant activities were compared for primed and non-primed varieties. Our data analysis showed that salt stress induced morph-physiological traits and significantly reduced the antioxidant enzyme activities in both rapeseed varieties. The Pro-Ca primed treatment significantly improved seedlings, root, and shoot morphological traits and accumulated more dry matter biomass under salt stress. Compared to Huayouza 158R, Huayouza 62 performed better with the Pro-Ca primed treatment. The Pro-Ca primed treatment significantly enhanced chlorophyll content, net photosynthetic rate (Pn), stomatal conductance (Gs), transpiration rate (Tr), and actual photochemical quantum efficiency (ФPSII). Furthermore, the Pro-Ca primed treatment also improved ascorbic acid (ASA) content, superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) activity, and stimulated the accumulation of soluble proteins. These findings strongly suggested that the Pro-Ca primed treatment may effectively counteract the negative impacts of salinity stress by regulating the morph-physiological and antioxidant traits.


Assuntos
Brassica napus , Cálcio , Estresse Salino , Plântula , Brassica napus/efeitos dos fármacos , Estresse Salino/efeitos dos fármacos , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Cálcio/metabolismo , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Clorofila/metabolismo
19.
Chemosphere ; 358: 142148, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38679170

RESUMO

Although oilseed rape is frequently used as an alternative planting crop in the phytoremediation of cadmium (Cd)-contaminated agricultural land, methods for screening excellent oilseed rape varieties in this regard are inadequate. Herein, we developed a screening method that incorporates Cd accumulation, distribution, and removal, economic output, adaptability to Cd-contaminated agricultural land, and trace element variation. A Cd-adaptability index (Cd-AI) based on 10 agronomic traits was used to measure the adaptability of varieties to Cd-contaminated agricultural land. Moreover, to simplify the evaluation of adaptability, yield, biomass, and pod number with high weightings were selected to construct a discriminant function for Cd-contaminated agricultural land adaptability (correctly classified 94.20%). In a 2 year field trial, we evaluated 225 oilseed rape varieties, among which we identified two promising low-Cd-accumulating and two Cd-remediating varieties. For the low-Cd-accumulating varieties (HuYou17 and DeXingYou558), we obtained grain bioaccumulation factor (BAF) values of 0.07 and 0.08, BAFsoil-stalk values of <1, and economic outputs of RMB 25,054 and 32,292 yuan hm-2, respectively. Similarly, the Cd-remediating varieties (ZaoZa8 and YuYou61) were characterized by BAFsoil-stalk values of 4.65 and 3.61, BAFsoil-grain values of 0.16 and 0.16, Cd removals of 69.02 and 58.25 g hm-2, and economic outputs of RMB 31,189 and 24,962 yuan hm-2, respectively. Compared with the control variety, we detected lower uptakes of multiple trace elements (3-43%) in the low-Cd-accumulating varieties, whereas the Cd-remediating varieties were characterized by 15.40% and 8.30% increases in the accumulation of magnesium and zinc, respectively. Our findings augment the evaluation indices used for evaluating oilseed rape varieties and provide valuable insights from the perspectives of varietal screening and promotional application. The effective varieties identified have application potential for safe production and the remediation of agricultural land without interrupting annual agricultural production, and provide an economically sustainable approach for the utilization of Cd-contaminated agricultural land.


Assuntos
Agricultura , Biodegradação Ambiental , Cádmio , Poluentes do Solo , Cádmio/metabolismo , Cádmio/análise , Poluentes do Solo/análise , Poluentes do Solo/metabolismo , Agricultura/métodos , Brassica napus/metabolismo , Biomassa , Solo/química
20.
J Hazard Mater ; 471: 134262, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38640678

RESUMO

Cadmium (Cd) hazard is a serious limitation to plants, soils and environments. Cd-toxicity causes stunted growth, chlorosis, necrosis, and plant yield loss. Thus, ecofriendly strategies with understanding of molecular mechanisms of Cd-tolerance in plants is highly demandable. The Cd-toxicity caused plant growth retardation, leaf chlorosis and cellular damages, where the glutathione (GSH) enhanced plant fitness and Cd-toxicity in Brassica through Cd accumulation and antioxidant defense. A high-throughput proteome approach screened 4947 proteins, wherein 370 were differently abundant, 164 were upregulated and 206 were downregulated. These proteins involved in energy and carbohydrate metabolism, CO2 assimilation and photosynthesis, signal transduction and protein metabolism, antioxidant defense response, heavy metal detoxification, cytoskeleton and cell wall structure, and plant development in Brassica. Interestingly, several key proteins including glutathione S-transferase F9 (A0A078GBY1), ATP sulfurylase 2 (A0A078GW82), cystine lyase CORI3 (A0A078FC13), ferredoxin-dependent glutamate synthase 1 (A0A078HXC0), glutaredoxin-C5 (A0A078ILU9), glutaredoxin-C2 (A0A078HHH4) actively involved in antioxidant defense and sulfur assimilation-mediated Cd detoxification process confirmed by their interactome analyses. These candidate proteins shared common gene networks associated with plant fitness, Cd-detoxification and tolerance in Brassica. The proteome insights may encourage breeders for enhancing multi-omics assisted Cd-tolerance in Brassica, and GSH-mediated hazard free oil seed crop production for global food security.


Assuntos
Brassica napus , Cádmio , Glutationa , Proteínas de Plantas , Proteômica , Cádmio/toxicidade , Brassica napus/efeitos dos fármacos , Brassica napus/genética , Brassica napus/metabolismo , Glutationa/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Poluentes do Solo/toxicidade , Proteoma/efeitos dos fármacos , Proteoma/metabolismo , Antioxidantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA