Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
1.
Protein Sci ; 33(6): e5029, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38801228

RESUMO

Thermal stability of proteins is a primary metric for evaluating their physical properties. Although researchers attempted to predict it using machine learning frameworks, their performance has been dependent on the quality and quantity of published data. This is due to the technical limitation that thermodynamic characterization of protein denaturation by fluorescence or calorimetry in a high-throughput manner has been challenging. Obtaining a melting curve that derives solely from the target protein requires laborious purification, making it far from practical to prepare a hundred or more samples in a single workflow. Here, we aimed to overcome this throughput limitation by leveraging the high protein secretion efficacy of Brevibacillus and consecutive treatment with plate-scale purification methodologies. By handling the entire process of expression, purification, and analysis on a per-plate basis, we enabled the direct observation of protein denaturation in 384 samples within 4 days. To demonstrate a practical application of the system, we conducted a comprehensive analysis of 186 single mutants of a single-chain variable fragment of nivolumab, harvesting the melting temperature (Tm) ranging from -9.3 up to +10.8°C compared to the wild-type sequence. Our findings will allow for data-driven stabilization in protein design and streamlining the rational approaches.


Assuntos
Estabilidade Proteica , Termodinâmica , Desnaturação Proteica , Ensaios de Triagem em Larga Escala , Brevibacillus/genética , Brevibacillus/química , Brevibacillus/metabolismo
2.
Chemosphere ; 350: 141100, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38171393

RESUMO

Ester-containing deltamethrin pesticides are widely used in farmland and have inevitable side effects on the biosphere and human health. Microbia have been used for efficient degradation of deltamethrin, but the related mechanism and enzyme characteristics have not been elucidated. In this study, a species Brevibacillus parabrevis BCP-09 could degrade up to 75 mg L-1 deltamethrin with a degradation efficiency of 95.41%. Proteomic and genomic methods were used to explore its degradation mechanism. Enzymes belonged to hydrolases, oxidases and aromatic compound degrading enzymes were expressed enhanced and might participate in the deltamethrin degradtion. RT-PCR experiment and enzyme activity analysis verified the degradation of deltamethrin by bacterial protein. Additionally, the formation of endospores can help strain BCP-09 resist the toxicity of deltamethrin and enhance its degradation. This study supplies a scientific evidence for the application of Brevibacillus parabrevis BCP-09 in the bioremediation of environmental pollution and enriches the resources of deltamethrin-biodegradable proteins.


Assuntos
Brevibacillus , Nitrilas , Proteômica , Piretrinas , Humanos , Biodegradação Ambiental , Brevibacillus/genética , Brevibacillus/metabolismo
3.
Int J Mol Sci ; 24(15)2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37569391

RESUMO

Brevibacillus sp. SPR20 produced potentially antibacterial substances against methicillin-resistant Staphylococcus aureus (MRSA). The synthesis of these substances is controlled by their biosynthetic gene clusters. Several mutagenesis methods are used to overcome the restriction of gene regulations when genetic information is absent. Atmospheric and room temperature plasma (ARTP) is a powerful technique to initiate random mutagenesis for microbial strain improvement. This study utilized an argon-based ARTP to conduct the mutations on SPR20. The positive mutants of 40% occurred. The M27 mutant exhibited an increase in anti-MRSA activity when compared to the wild-type strain, with the MIC values of 250-500 and 500 µg/mL, respectively. M27 had genetic stability because it exhibited constant activity throughout fifteen generations. This mutant had similar morphology and antibiotic susceptibility to the wild type. Comparative proteomic analysis identified some specific proteins that were upregulated in M27. These proteins were involved in the metabolism of amino acids, cell structure and movement, and catalytic enzymes. These might result in the enhancement of the anti-MRSA activity of the ARTP-treated SPR20 mutant. This study supports the ARTP technology designed to increase the production of valuable antibacterial agents.


Assuntos
Brevibacillus , Staphylococcus aureus Resistente à Meticilina , Staphylococcus aureus Resistente à Meticilina/genética , Brevibacillus/genética , Temperatura , Proteômica , Mutagênese , Antibacterianos/farmacologia
4.
Biosci Biotechnol Biochem ; 87(9): 1029-1035, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37328425

RESUMO

Triple-FLAG (3 × FLAG)-tagged proteins can be affinity purified through binding to an anti-FLAG antibody and competitive elution with excess free 3 × FLAG peptide. To expand the availability of the 3 × FLAG purification system, we produced a recombinant His-tagged 3 × FLAG peptide in Brevibacillus choshinensis. The screening of connecting linkers between His-tag and the 3 × FLAG peptide, culture containers, and culture media showed that the His-tagged 3 × FLAG peptide with an LA linker was most expressed in 2SY medium using a baffled shake flask. The peptide was affinity-purified to give a yield of about 25 mg/L of culture. The peptide was effective for eluting 3 × FLAG-tagged α-amylase from anti-FLAG magnetic beads. Finally, the peptide remaining in the amylase fraction was removed by His-tag affinity purification. These results show that the recombinant His-tagged 3 × FLAG peptide can function as an easy-to-remove affinity peptide in the 3 × FLAG purification system.


Assuntos
Brevibacillus , Proteínas Recombinantes/metabolismo , Brevibacillus/genética , Brevibacillus/metabolismo , Cromatografia de Afinidade/métodos , Peptídeos/genética , Peptídeos/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
5.
Appl Microbiol Biotechnol ; 107(13): 4337-4353, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37204448

RESUMO

Brevibacillus laterosporus (Bl) is a Gram-positive and spore-forming bacterium. Insect pathogenic strains have been characterised in New Zealand, and two isolates, Bl 1821L and Bl 1951, are under development for use in biopesticides. However, growth in culture is sometimes disrupted, affecting mass production. Based on previous work, it was hypothesised that Tectiviridae phages might be implicated. While investigating the cause of the disrupted growth, electron micrographs of crude lysates showed structural components of putative phages including capsid and tail-like structures. Sucrose density gradient purification yielded a putative self-killing protein of ~30 kDa. N-terminal sequencing of the ~30 kDa protein identified matches to a predicted 25 kDa hypothetical and a 31.4 kDa putative encapsulating protein homologs, with the genes encoding each protein adjacent in the genomes. BLASTp analysis of the homologs of 31.4 kDa amino acid sequences shared 98.6% amino acid identity to the Linocin M18 bacteriocin family protein of Brevibacterium sp. JNUCC-42. Bioinformatic tools including AMPA and CellPPD defined that the bactericidal potential originated from a putative encapsulating protein. Antagonistic activity of the ~30 kDa encapsulating protein of Bl 1821L and Bl 1951during growth in broth exhibited bacterial autolytic activity. LIVE/DEAD staining of Bl 1821L cells after treatment with the ~30 kDa encapsulating protein of Bl 1821L substantiated the findings by showing 58.8% cells with the compromised cell membranes as compared to 37.5% cells in the control. Furthermore, antibacterial activity of the identified proteins of Bl 1821L was validated through gene expression in a Gram-positive bacterium Bacillus subtilis WB800N. KEY POINTS: • Gene encoding the 31.4 kDa antibacterial Linocin M18 protein was identified • It defined the autocidal activity of Linocin M18 (encapsulating) protein • Identified the possible killing mechanism of the encapsulins.


Assuntos
Bacillus , Bacteriocinas , Brevibacillus , Animais , Brevibacillus/genética , Brevibacillus/metabolismo , Antibacterianos/metabolismo , Insetos
6.
J Appl Microbiol ; 134(3)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36914211

RESUMO

AIM: This study was aimed to determine antimicrobial and antiviral activity of a novel lanthipeptide from a Brevibacillus sp. for disinfectant application. METHODS AND RESULTS: The antimicrobial peptide (AMP) was produced by a bacterial strain AF8 identified as a member of the genus Brevibacillus representing a novel species. Whole genome sequence analysis using BAGEL identified a putative complete biosynthetic gene cluster involved in lanthipeptide synthesis. The deduced amino acid sequence of lanthipeptide named as brevicillin, showed >30% similarity with epidermin. Mass determined by MALDI-MS and Q-TOF suggested posttranslational modifications like dehydration of all Ser and Thr amino acids to yield Dha and Dhb, respectively. Amino acid composition determined upon acid hydrolysis is in agreement with core peptide sequence deduced from the putative biosynthetic gene bvrAF8. Biochemical evidence along with stability features ascertained posttranslational modifications during formation of the core peptide. The peptide showed strong activity with 99% killing of pathogens at 12 µg ml-1 within 1 minute. Interestingly, it also showed potent anti-SARS-CoV-2 activity by inhibiting ∼99% virus growth at 10 µg ml-1 in cell culture-based assay. Brevicillin did not show dermal allergic reactions in BALB/c mice. CONCLUSION: This study provides detailed description of a novel lanthipeptide and demonstrates its effective antibacterial, antifungal and anti-SARS-CoV-2 activity.


Assuntos
Brevibacillus , COVID-19 , Animais , Camundongos , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Brevibacillus/genética , Brevibacillus/metabolismo , Antivirais , Peptídeos/química
7.
Biotechnol Bioeng ; 120(1): 194-202, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36253915

RESUMO

Resilin, an insect structural protein, has excellent flexibility, photocrosslinking properties, and temperature responsiveness. Recombinant resilin-like proteins (RLPs) can be fabricated into three-dimensional (3D) structures for use as cell culture substrates and highly elastic materials. A simplified, high-yielding production process for RLPs is required for their widespread application. This study proposes a simple production process combining extracellular expression using Brevibacillus choshinensis (B. choshinensis) and rapid column-free purification. Extracellular production was tested using four representative signal peptides; B. choshinensis was found to efficiently secrete Rec1, an RLP derived from Drosophila melanogaster, regardless of the type of signal peptide. However, it was suggested that Rec1 is altered by an increase in the pH of the culture medium associated with prolonged incubation. Production in a jar fermentor with controllable pH yielded 530 mg Rec1 per liter of culture medium, which is superior to productivity using other hosts. The secreted Rec1 was purified from the culture supernatant via (NH4 )2 SO4 and ethanol precipitations, and the purified Rec1 was applied to ring-shaped 3D hydrogels. These results indicate that the combination of secretory production using B. choshinensis and column-free purification can accelerate the further application of RLPs.


Assuntos
Brevibacillus , Animais , Brevibacillus/genética , Brevibacillus/metabolismo , Drosophila melanogaster/metabolismo , Hidrogéis , Proteínas de Insetos/genética , Proteínas Recombinantes , Meios de Cultura/metabolismo
8.
Artigo em Inglês | MEDLINE | ID: mdl-36498382

RESUMO

To explore the mechanism by which the plant growth-promoting bacterium Brevibacillus sp. SR-9 improves sweet sorghum tolerance and enriches soil cadmium (Cd) under pot conditions, the effect of strain SR-9 inoculation on the microbial community of sorghum rhizosphere soil was analyzed by metagenomics. Gene expression in sweet sorghum roots was analyzed using transcriptomics. The results showed that strain SR-9 promoted the growth of sweet sorghum and improved the absorption and enrichment of Cd in the plants. Compared with the uninoculated treatment, the aboveground part and root dry weight in strain SR-9 inoculated with sorghum increased by 21.09% and 17.37%, respectively, and the accumulation of Cd increased by 135% and 53.41%, respectively. High-throughput sequencing showed that strain SR-9 inoculation altered the rhizosphere bacterial community, significantly increasing the relative abundance of Actinobacteria and Firmicutes. Metagenomic analysis showed that after inoculation with strain SR-9, the abundance of genes involved in amino acid transport metabolism, energy generation and conversion, and carbohydrate transport metabolism increased. KEGG functional classification showed that inoculation with strain SR-9 increased the abundance of genes involved in soil microbial metabolic pathways in the rhizosphere soil of sweet sorghum and the activity of soil bacteria. Transcriptome analysis identified 198 upregulated differentially expressed genes in sweet sorghum inoculated with strain SR-9, including those involved in genetic information processing, biological system, metabolism, environmental information processing, cellular process, and human disease. Most of the annotated differentially expressed genes were enriched in the metabolic category and were related to pathways such as signal transduction, carbohydrate metabolism, amino acid metabolism, and biosynthesis of other secondary metabolites. This study showed that plant growth-promoting bacteria can alter the rhizosphere bacterial community composition, increasing the activity of soil bacteria and upregulating gene expression in sweet sorghum roots. The findings enhance our understanding of the microbiological and botanical mechanisms by which plant growth-promoting bacterial inoculation improves the remediation of heavy metals by sorghum.


Assuntos
Brevibacillus , Poluentes do Solo , Sorghum , Humanos , Cádmio/análise , Sorghum/metabolismo , Sorghum/microbiologia , Poluentes do Solo/análise , Brevibacillus/genética , Brevibacillus/metabolismo , Solo/química , Microbiologia do Solo , Perfilação da Expressão Gênica , Aminoácidos/metabolismo , Raízes de Plantas/metabolismo , Biodegradação Ambiental
9.
J Basic Microbiol ; 62(12): 1475-1486, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36190013

RESUMO

Brevibacillus thermoruber strain Nabari was isolated from compost and identified based on 16 S rRNA gene sequencing and DNA-DNA hybridization using B. thermoruber DSM 7064 T as the standard, despite some differences in their physiological and structural characteristics. When B. thermoruber Nabari was cultivated on various solid media containing 1.5% agar at 60°C, it rapidly propagated over the entire plate. In particular, on R2A-agar medium, it formed fine dendritic colonies. Macroscopic and microscopic observations of peripheral regions of the colonies indicated that the dendritic patterns were formed by bacterial swarming of some of the cells; large flows of bacterial cell populations were observed in the peripheral regions of the dendritic colonies. The cells were highly flagellated, but no extreme elongation of cells was observed. When B. thermoruber Nabari cells were cultivated at 37°C on R2A-agar plates, most colonies were nonmotile, but some colonies were motile. For example, a wandering colony moved on the plate and split into two, and then they collided to become one again. Additionally, a simple incubation system was devised to record the movement of colonies at high temperatures in this study while protecting the cameras from thermal damage.


Assuntos
Brevibacillus , Ágar , Brevibacillus/genética , Meios de Cultura , DNA
10.
Gene ; 846: 146853, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36070852

RESUMO

Members of the genus Brevibacillus belonging to the familyPaenibacillaceae are Gram-positive/variable, endospore-forming, and rod-shaped bacteria that dwell in various environmental habitats. Brevibacillus spp. have a wide range of enzyme activities such as degradation of various carbohydrates, plastics, and they possess resistance against heavy metals. These characteristics make them encouraging contenders for biotechnological applications.In this work, we analyzed the reference genomes of 19Brevibacillusspecies, focusing on discovering the biodegradation and heavy metal resistance capabilities of this little studied genus from genomic data. The results indicate that several strain specific traits were identified. For example Brevibacillus halotolerans s-14, and Brevibacillus laterosporus DSM 25 have more glycoside hydrolases (GHs) compared to other carbohydrate-active enzymes, and therefore might be more suitable for biodegradation of carbohydrates. In contrast, strains such as Brevibacillus antibioticus TGS2-1, with a higher number of glycosyltransfereases (GTs) may aid in the biosynthesis of complex carbohydrates. Our results also suggest some correlation between heavy metal resistance and polyurethane degradation, thus indicating that heavy metal resistance strains (e.g. Brevibacillus reuszeri J31TS6) can be a promising source of enzymes for polyurethane degradation. These strain specific features make the members of this bacterial group potential candidates for further investigations with industrial implications. This work also represents the first exhaustive study of Brevibacillus at the genome scale.


Assuntos
Brevibacillus , Metais Pesados , Biodegradação Ambiental , Brevibacillus/genética , Brevibacillus/metabolismo , Carboidratos , DNA Bacteriano/genética , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Metais Pesados/metabolismo , Filogenia , Poliuretanos/metabolismo , Análise de Sequência de DNA , Microbiologia do Solo
11.
Chemosphere ; 307(Pt 4): 136004, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35970213

RESUMO

The extensive usage of synthetic fungicides against fungal diseases has caused adverse impacts on both human and agricultural crops. Therefore, the current study aims to establish a new bacterium 7WMA2, as a biocontrol agent to achieve better antifungal results. The strain 7WMA2 was isolated from marine sediment, displayed a broad spectrum of several fungi that includes Alternaria alternata, Cladosporium sp., Candida albicans, Fusarium oxysporum, Trichosporon pullulans, and Trichophyton rubrum. The 16S rRNA phylogeny inferred that strain 7WMA2 was a member of Brevibacillus. The phylogenetic and biochemical analyses revealed that the strain 7WMA2 belongs to the species of Brevibacillus halotolerans. The complete genome sequence of Brevibacillus halotolerans 7WMA2 consists of a circular chromosome of 5,351,077 bp length with a GC content of 41.39 mol %, including 4433 CDS, 111 tRNA genes, and 36 rRNA genes. The genomic analysis showed 23 putative biosynthetic secondary metabolite gene clusters responsible for non-ribosomal peptides, polyketides and siderophores. The antifungal compounds concentrated from cell-free fermentation broth demonstrated strong inhibition of fungi, and the compounds are considerably thermal stable and adaptable to pH range 2-12. This complete genome sequence has provided insight for further exploration of antagonistic ability and its secondary metabolite compounds indicated feasibility as biological control agents against fungal infections.


Assuntos
Brevibacillus , Fungicidas Industriais , Policetídeos , Antifúngicos/metabolismo , Antifúngicos/farmacologia , Agentes de Controle Biológico/farmacologia , Brevibacillus/genética , Brevibacillus/metabolismo , Fungicidas Industriais/metabolismo , Humanos , Peptídeos/metabolismo , Filogenia , Policetídeos/metabolismo , Policetídeos/farmacologia , RNA Ribossômico 16S/genética , Sideróforos/metabolismo
12.
Arch Microbiol ; 204(7): 399, 2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35713724

RESUMO

Marine microbes produce polysaccharides with unique physicochemical and functional properties that help them survive in harsh marine environments. However, only a handful of marine exopolysaccharides (EPSs) have been reported to date. The present study explored the seashore of Visakhapatnam, India, to report a novel exopolysaccharide designated as Br42 produced by Brevibacillus borstelensis M42. The isolate was identified through morphological, biochemical, phylogenetic, and genome sequencing analysis. The studies on fermentation kinetics revealed that EPS Br42 was a primary metabolite with a maximum production of 1.88 ± 0.02 g/L after 60 h when production broth was fortified with 2% glucose. Additionally, EPS Br42 was found to be a heteropolysaccharide consisting of glucose and galacturonic acid with a molecular weight of about 286 kDa. Interestingly, this molecule possesses industrially relevant functional properties such as water-holding (510 ± 0.35%), oil-holding (374 ± 0.12% for coconut oil and 384 ± 0.35% for olive oil), and swelling capacities (146.6 ± 5.75%). EPS Br42 could form an emulsion that was stable at a wide pH range for about 72 h and, in fact, performed better as compared to Span 20, a commercially used synthetic emulsifier. Moreover, this EPS was also found to be heat stable and exhibited non-Newtonian pseudoplastic behavior. These physicochemical and functional properties of polysaccharides suggest that the EPS Br42 has potential for multifarious industrial applications as an emulsifier, stabilizer, viscosifier, and binding agent.


Assuntos
Brevibacillus , Polissacarídeos Bacterianos , Brevibacillus/genética , Brevibacillus/metabolismo , Glucose/metabolismo , Filogenia
13.
Curr Microbiol ; 79(7): 194, 2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35579716

RESUMO

A Gram-positive-staining, strictly aerobic, motile, ellipsoidal endospore-forming bacterial strain, designated CHY01T, was isolated from the Chishui river in a section of Maotai Town, Guizhou Province, Southwest China. Strain CHY01T was found to grow optimally at pH 8.0 and 28 °C. The 16S rRNA gene sequence analysis indicated that strain CHY01T belonged to the genus Brevibacillus and clustered with the type strain of Brevibacillus panacihumi, with which it exhibited 16S rRNA gene sequence similarity values of 97.8%. The predominant respiratory quinone was MK-7, and the major polar lipids were phosphatidylethanolamine and phosphatidylglycerol. The major fatty acids were C14:0, iso-C15:0, anteiso-C15:0, C16:0, C15:1iso-H and/or C13:0 3-OH, and C16:1ω7c and/or C16:1ω6c. Genome sequencing revealed a genome size of 6.1 Mbp and a G + C content of 50.6%. The results of physiological and biochemical tests allowed strain CHY01T to be distinguished genotypically and phenotypically from Brevibacillus species with validly published names. Pairwise determined whole-genome average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values suggested that strain CHY01T represents a new species, for which we propose the name Brevibacillus dissolubilis sp. nov. with the type strain CHY01T (= CGMCC 1.15916 T = KCTC 33863 T).


Assuntos
Brevibacillus , Técnicas de Tipagem Bacteriana , Brevibacillus/genética , DNA Bacteriano/genética , Ácidos Graxos/química , Água Doce , Fosfolipídeos/química , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
14.
Water Sci Technol ; 85(8): 2358-2374, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35486460

RESUMO

Various activities of different industries are found to be the main reason for water pollution with heavy metals. Use of microorganisms that are tolerant even of a high concentration of metal ions could be a valuable tool for remediation of contaminated water resources. In the present study, microorganisms that showed high resistance to lead ions were isolated and evaluated for biosorption efficiency for removal of lead ions from waste water. Biochemical identification and 16S rRNA gene sequence analysis indicated that the isolated strain was Brevibacillus. The conditions of pH, biomass concentration, temperature, time, agitation and Initial concentration of metal for biosorption of Pb (II) were optimized. Based on induction coupled plasma optical emission spectroscopy (ICP-OES) analysis, the biosorption efficiency of Brevibacillus at optimized conditions of initial metal concentration of 150 µg/mL, 1 g/L of biomass dose, pH 6.0, 40 °C, for 12 h at 80 rpm was 78.58% and the biosorption capacity (qe) is 128.58 mg/g of the biosorbent. Of the three isotherm models investigated, the Freundlich isotherm model was identified as a good fit with high correlation coefficient, while kinetic data followed the pseudo first order model as best fit. Surface characterization by scanning electron microscopy (SEM) analysis revealed morphological changes with a bulged rod-shape cell having metal depositions and rough texture. The presence of lead within the cell was detected by transmission emission microscopy (TEM). The key functional groups that participate in biosorption were analyzed by Fourier transform infrared (FTIR) spectroscopy and were found to be carboxyl, hydroxyl, amino and phosphate groups. From the real-time study, it proves that the biomass of Brevibacillus can be used as a promising biosorbent for removal of metals including lead from waste water.


Assuntos
Brevibacillus , Adsorção , Biomassa , Brevibacillus/genética , Íons , Chumbo , RNA Ribossômico 16S , Águas Residuárias , Poluição da Água , Recursos Hídricos
15.
Protein Expr Purif ; 194: 106075, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35231586

RESUMO

Brevibacillus choshinensis is a gram-positive bacterium that is known to efficiently secrete recombinant proteins. However, the expression of these proteins is often difficult depending upon the expressed protein. In this study, we demonstrated that the addition of arginine hydrochloride and proline to the culture medium dramatically increased protein expression. By culturing bacterial cells in 96-well plates, we were able to rapidly examine the expression conditions and easily scale up to 96 mL of culture for production. Although functional expression of the receptor binding domain (RBD) of the SARS-CoV-2 spike protein without any solubility-enhancing tag in bacterial strains (including Escherichia coli) has not been reported to date, we succeeded in efficiently producing RBD which showed a similar CD spectrum to that of RBD produced by eukaryotic cell expression systems. Furthermore, RBD from the omicron variant (B.1.1.529) was also produced. Physicochemical analyses indicated that omicron RBD exhibited markedly increased instability compared to the wild-type. We also revealed that the Fab format of the anti-SARS-CoV-2 antibody C121 can be produced in large quantities using the same expression system. The obtained C121 Fab bound to wild-type RBD but not to omicron RBD. These results strongly suggest that the Brevibacillus expression system is useful for facilitating the efficient expression of proteins that are difficult to fold and will thus contribute to the rapid physicochemical evaluation of functional proteins.


Assuntos
Brevibacillus , COVID-19 , Anticorpos Antivirais , Arginina/metabolismo , Brevibacillus/genética , Brevibacillus/metabolismo , Humanos , Prolina/metabolismo , Proteínas Recombinantes/química , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/química
16.
EBioMedicine ; 77: 103926, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35290826

RESUMO

BACKGROUND: Current SARS-CoV-2 detection platforms lack the ability to differentiate among variants of concern (VOCs) in an efficient manner. CRISPR/Cas (Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated) based detection systems have the potential to transform the landscape of COVID-19 diagnostics due to their programmability; however, most of these methods are reliant on either a multi-step process involving amplification or elaborate guide RNA designs. METHODS: Three Cas12b proteins from Alicyclobacillus acidoterrestris (AacCas12b), Alicyclobacillus acidiphilus (AapCas12b), and Brevibacillus sp. SYP-B805 (BrCas12b) were expressed and purified, and their thermostability was characterised by differential scanning fluorimetry, cis-, and trans-cleavage activities over a range of temperatures. The BrCas12b was then incorporated into a reverse transcription loop-mediated isothermal amplification (RT-LAMP)-based one-pot reaction system, coined CRISPR-SPADE (CRISPR Single Pot Assay for Detecting Emerging VOCs). FINDINGS: Here we describe a complete one-pot detection reaction using a thermostable Cas12b effector endonuclease from Brevibacillus sp. to overcome these challenges detecting and discriminating SARS-CoV-2 VOCs in clinical samples. CRISPR-SPADE was then applied for discriminating SARS-CoV-2 VOCs, including Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2), and Omicron (B.1.1.529) and validated in 208 clinical samples. CRISPR-SPADE achieved 92·8% sensitivity, 99·4% specificity, and 96·7% accuracy within 10-30 min for discriminating the SARS-CoV-2 VOCs, in agreement with S gene sequencing, achieving a positive and negative predictive value of 99·1% and 95·1%, respectively. Interestingly, for samples with high viral load (Ct value ≤ 30), 100% accuracy and sensitivity were attained. To facilitate dissemination and global implementation of the assay, a lyophilised version of one-pot CRISPR-SPADE reagents was developed and combined with an in-house portable multiplexing device capable of interpreting two orthogonal fluorescence signals. INTERPRETATION: This technology enables real-time monitoring of RT-LAMP-mediated amplification and CRISPR-based reactions at a fraction of the cost of a qPCR system. The thermostable Brevibacillus sp. Cas12b offers relaxed primer design for accurately detecting SARS-CoV-2 VOCs in a simple and robust one-pot assay. The lyophilised reagents and simple instrumentation further enable rapid deployable point-of-care diagnostics that can be easily expanded beyond COVID-19. FUNDING: This project was funded in part by the United States-India Science & Technology Endowment Fund- COVIDI/247/2020 (P.K.J.), Florida Breast Cancer Foundation- AGR00018466 (P.K.J.), National Institutes of Health- NIAID 1R21AI156321-01 (P.K.J.), Centers for Disease Control and Prevention- U01GH002338 (R.R.D., J.A.L., & P.K.J.), University of Florida, Herbert Wertheim College of Engineering (P.K.J.), University of Florida Vice President Office of Research and CTSI seed funds (M.S.), and University of Florida College of Veterinary Medicine and Emerging Pathogens Institute (R.R.D.).


Assuntos
Brevibacillus , COVID-19 , Brevibacillus/genética , COVID-19/diagnóstico , Humanos , RNA Guia de Cinetoplastídeos , SARS-CoV-2/genética
17.
J Ind Microbiol Biotechnol ; 49(1)2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-34601573

RESUMO

A strategy for optimizing the extracellular degradation and folding environment of Brevibacillus choshinensis has been used to enhance the extracellular production of recombinant α-amylase. First, a gene (bcp) encoding an extracellular protease and another encoding an extracellular chaperone (prsC) were identified in the genome of B. choshinensis HPD31-SP3. Then, the effect of extracellular protein degradation on recombinant α-amylase production was investigated by establishing a CRISPR/Cas9n system to knock out bcp. The effect of extracellular folding capacity was investigated separately by coexpressing extracellular chaperones genes from different sources (prsA, prsC, prsL, prsQ) in B. choshinensis. The final recombinant strain (BCPPSQ), which coexpressed prsQ in a genetic background lacking bcp, produced an extracellular α-amylase activity of 6940.9 U/ml during shake-flask cultivation. This was 2.1-fold greater than that of the original strain BCWPS (3367.9 U/ml). Cultivation of BCPPSQ in a 3-l fermenter produced an extracellular α-amylase activity of 17925.6 U/ml at 72 h, which was 7.6-fold greater than that of BCWPS (2358.1 U/ml). This strategy demonstrates its great potential in enhancing extracellular α-amylase production in B. choshinensis. What's more, this study provides a strategic reference for improving the extracellular production of other recombinant proteins in B. choshinensis.


Assuntos
Brevibacillus , alfa-Amilases/biossíntese , Reatores Biológicos , Brevibacillus/genética , Brevibacillus/metabolismo , Dobramento de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , alfa-Amilases/genética
18.
Microb Biotechnol ; 15(2): 577-589, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34310825

RESUMO

Edeines, a group of cationic antimicrobial peptides produced by the soil bacterium Brevibacillus, have broad biological effects, such as antimicrobial, anticancer and immunosuppressive activities. However, the yield of edeines in wild-type (WT) Brevibacillus is extremely low, and chemical synthesis of edeines is a time-consuming process. Genetic engineering has proven to be an effective approach to produce antibiotics with high yield. In this study, the edeine biosynthetic gene cluster (ede BGC), which is involved in edeine production, was identified and characterized in Brevibacillus brevis X23. To improve edeine production in B. brevis X23, the ede BGC promoter was replaced with six different promoters, Pmwp , Pspc , PxylA , Pshuttle-09 , Pgrac or P43 , through double-crossover homologous recombination. The new promoters significantly increased the expression of the ede BGC as well as edeine production by 2.9 ± 0.4 to 20.5 ± 1.2-fold and 3.6 ± 0.1to 8.7 ± 0.7-fold respectively. The highest yield of edeines (83.6 mg l-1 ) was obtained in B. brevis X23 with the Pmwp promoter. This study provides a practical approach for producing high yields of edeines in B. brevis.


Assuntos
Bacillus , Brevibacillus , Antibacterianos/metabolismo , Bacillus/metabolismo , Brevibacillus/genética , Brevibacillus/metabolismo , Edeína/química , Edeína/metabolismo
19.
Int J Syst Evol Microbiol ; 71(12)2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34904940

RESUMO

A novel thermophilic bacterium, designated SCSIO 07484T, was isolated from marine sediment sampled in the South China Sea. Growth occurred at 30-60 °C, pH 6.0-8.0 and in the presence of 0-3 % (w/v) NaCl. Cells of strain SCSIO 07484T were rod-shaped and flagellum-forming. No soluble pigment was observed. The phylogenetic analysis of the 16S rRNA gene sequences indicated that SCSIO 07484T belonged to the family Paenibacillaceae and clustered with members of the genus Brevibacillus in the phylogenetic trees with less than 96.2 % similarities. The cell wall contained meso-diaminopimelic acid. Whole-cell hydrolysates contained arabinose, glucose and ribose. The predominant menaquinone was MK-7. Major fatty acids were iso-C16 : 0, iso-C15 : 0, C16 : 0 and iso-C14 : 0. Diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and phosphatidylmonomethylethanolamine were its diagnostic polar lipids. The whole genome size of strain SCSIO 07484T was 4 079 826 bp with a DNA G+C content of 56.2 mol%, including one circular chromosome of 3 978392 bp and one plasmid of 101434 bp. Based on the polyphasic analysis of strain SCSIO 07484T, it is considered to represent a novel species of the genus Brevibacillus, for which the name Brevibacillus marinus sp. nov. is proposed with the type strain SCSIO 07484T (=DSM 106769T=CGMCC 1.15814T).


Assuntos
Brevibacillus , Sedimentos Geológicos/microbiologia , Filogenia , Água do Mar/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , Brevibacillus/genética , China , DNA Bacteriano/genética , Ácidos Graxos/química , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
20.
Artigo em Inglês | MEDLINE | ID: mdl-34444364

RESUMO

Harmful algal blooms caused huge ecological damage and economic losses around the world. Controlling algal blooms by algicidal bacteria is expected to be an effective biological control method. The current study investigated the molecular mechanism of harmful cyanobacteria disrupted by algicidal bacteria. Microcystis aeruginosa was co-cultured with Brevibacillus laterosporus Bl-zj, and RNA-seq based transcriptomic analysis was performed compared to M. aeruginosa, which was cultivated separately. A total of 1706 differentially expressed genes were identified, which were mainly involved in carbohydrate metabolism, energy metabolism and amino acid metabolism. In the co-cultured group, the expression of genes mainly enriched in photosynthesis and oxidative phosphorylation were significantly inhibited. However, the expression of the genes related to fatty acid synthesis increased. In addition, the expression of the antioxidant enzymes, such as 2-Cys peroxiredoxin, was increased. These results suggested that B. laterosporus could block the electron transport by attacking the PSI system and complex I of M. aeruginosa, affecting the energy acquisition and causing oxidative damage. This further led to the lipid peroxidation of the microalgal cell membrane, resulting in algal death. The transcriptional analysis of algicidal bacteria in the interaction process can be combined to explain the algicidal mechanism in the future.


Assuntos
Bacillus , Brevibacillus , Microcystis , Brevibacillus/genética , Proliferação Nociva de Algas , Microcystis/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA