Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
1.
Commun Biol ; 7(1): 803, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961195

RESUMO

The RNA-guided DNA endonuclease Cas9 cleaves double-stranded DNA targets complementary to an RNA guide, and is widely used as a powerful genome-editing tool. Here, we report the crystal structure of Brevibacillus laterosporus Cas9 (BlCas9, also known as BlatCas9), in complex with a guide RNA and its target DNA at 2.4-Å resolution. The structure reveals that the BlCas9 guide RNA adopts an unexpected architecture containing a triple-helix, which is specifically recognized by BlCas9, and that BlCas9 recognizes a unique N4CNDN protospacer adjacent motif through base-specific interactions on both the target and non-target DNA strands. Based on the structure, we rationally engineered a BlCas9 variant that exhibits enhanced genome- and base-editing activities with an expanded target scope in human cells. This approach may further improve the performance of the enhanced BlCas9 variant to generate useful genome-editing tools that require only a single C PAM nucleotide and can be packaged into a single AAV vector for in vivo gene therapy.


Assuntos
Brevibacillus , Proteína 9 Associada à CRISPR , Edição de Genes , Brevibacillus/genética , Brevibacillus/metabolismo , Brevibacillus/enzimologia , Edição de Genes/métodos , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Proteína 9 Associada à CRISPR/química , RNA Guia de Sistemas CRISPR-Cas/genética , RNA Guia de Sistemas CRISPR-Cas/metabolismo , Humanos , Sistemas CRISPR-Cas , Engenharia de Proteínas/métodos
2.
BMC Microbiol ; 24(1): 259, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-38997685

RESUMO

BACKGROUND: Bacterial genomes often encode structures similar to phage capsids (encapsulins) and phage tails which can be induced spontaneously or using genotoxic compounds such as mitomycin C. These high molecular-weight (HMW) putative antibacterial proteins (ABPs) are used against the competitive strains under natural environment. Previously, it was unknown whether these HMW putative ABPs originating from the insect pathogenic Gram-positive, spore-forming bacterium Brevibacillus laterosporus (Bl) isolates (1821L, 1951) are spontaneously induced during the growth and pose a detrimental effect on their own survival. Furthermore, no prior work has been undertaken to determine their biochemical characteristics. RESULTS: Using a soft agar overlay method with polyethylene glycol precipitation, a narrow spectrum of bioactivity was found from the precipitated lysate of Bl 1951. Electron micrographs of mitomycin C- induced filtrates showed structures similar to phage capsids and contractile tails. Bioactivity assays of cell free supernatants (CFS) extracted during the growth of Bl 1821L and Bl 1951 suggested spontaneous induction of these HMW putative ABPs with an autocidal activity. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis of spontaneously induced putative ABPs showed appearance of ~ 30 kDa and ~ 48 kDa bands of varying intensity across all the time intervals during the bacterial growth except in the initial hours. Statistically, spontaneously induced HMW putative ABPs of Bl 1951 exhibited a significant decrease in the number of viable cells of its producer strain after 18 h of growth in liquid. In addition, a significant change in pH and prominent bioactivity of the CFS of this particular time period was noted. Biochemically, the filtered supernatant derived from either Bl 1821L or Bl 1951 maintained bioactivity over a wide range of pH and temperature. CONCLUSION: This study reports the spontaneous induction of HMW putative ABPs (bacteriocins) of Bl 1821L and Bl 1951 isolates during the course of growth with potential autocidal activity which is critically important during production as a potential biopesticide. A narrow spectrum of putative antibacterial activity of Bl 1951 precipitate was found. The stability of HMW putative ABPs of Bl 1821L and Bl 1951 over a wide range of pH and temperature can be useful in expanding the potential of this useful bacterium beyond the insecticidal value.


Assuntos
Antibacterianos , Proteínas de Bactérias , Brevibacillus , Peso Molecular , Brevibacillus/metabolismo , Brevibacillus/genética , Brevibacillus/isolamento & purificação , Animais , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Mitomicina/farmacologia , Cinética , Insetos/microbiologia , Concentração de Íons de Hidrogênio , Eletroforese em Gel de Poliacrilamida
3.
PeerJ ; 12: e17568, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38948232

RESUMO

Background: Colletotrichum species are among the most common pathogens in agriculture and forestry, and their control is urgently needed. Methods: In this study, a total of 68 strains of biocontrol bacteria were isolated and identified from Photinia × fraseri rhizosphere soil. Results: The isolates were identified as Brevibacillus brevis by 16S rRNA. The inhibitory effect of TR-4 on Colletotrichum was confirmed by an in vitro antagonistic experiment. The inhibitory effect of TR-4 was 98% at a concentration of 10 µl/ml bacterial solution, protection of the plant and inhibition of C. siamense was evident. Moreover, the secretion of cellulase and chitosan enzymes in the TR-4 fermentation liquid cultured for three days was 9.07 mol/L and 2.15 µl/mol, respectively. Scanning electron microscopy and transmission electron microscopy confirmed that TR-4 destroyed the cell wall of C. siamense, resulting in leakage of the cell contents, thus weakening the pathogenicity of the bacteria.


Assuntos
Brevibacillus , Doenças das Plantas , Microbiologia do Solo , Brevibacillus/metabolismo , Brevibacillus/genética , Doenças das Plantas/microbiologia , Colletotrichum/genética , Colletotrichum/patogenicidade , RNA Ribossômico 16S/genética , Folhas de Planta/microbiologia , Rizosfera , Microscopia Eletrônica de Varredura
4.
mBio ; 15(7): e0135124, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38860787

RESUMO

Plant pathogenic fungi cause serious diseases, which result in the loss of crop yields and reduce the quality of crops worldwide. To counteract the escalating risks of chemical fungicides, interest in biological control agents to manage plant diseases has significantly increased. In this study, we comprehensively screened microbial culture filtrates using a yeast screening system to find microbes exhibiting respiratory inhibition activity. Consequently, we found a soil-borne microbe Brevibacillus brevis HK544 strain exhibiting a respiration inhibitory activity and identified edeine B1 (EB1) from the culture filtrate of HK544 as the active compound of the respiration inhibition activity. Furthermore, against a plant pathogenic fungus Fusarium graminearum, our results showed that EB1 has effects on multiple aspects of respiration with the downregulation of most of the mitochondrial-related genes based on transcriptome analysis, differential EB1-sensitivity from targeted mutagenesis, and the synergistic effects of EB1 with electron transport chain complex inhibitors. With the promising plant disease control efficacy of B. brevis HK544 producing EB1, our results suggest that B. brevis HK544 has potential as a biocontrol agent for Fusarium head blight.IMPORTANCEAs a necrotrophic fungus, Fusarium graminearum is a highly destructive pathogen causing severe diseases in cereal crops and mycotoxin contamination in grains. Although chemical control is considered the primary approach to control plant disease caused by F. graminearum, fungicide-resistant strains have been detected in the field after long-term continuous application of fungicides. Moreover, applying chemical fungicides that trigger mycotoxin biosynthesis is a great concern for many researchers. Biocontrol of Fusarium head blight (FHB) by biological control agents (BCAs) represents an alternative approach and could be used as part of the integrated management of FHB and mycotoxin production. The most extensive studies on bacterial BCAs-fungal communications in agroecosystems have focused on antibiosis. Although many BCAs in agricultural ecology have already been used for fungal disease control, the molecular mechanisms of antibiotics produced by BCAs remain to be elucidated. Here, we found a potential BCA (Brevibacillus brevis HK544) with a strong antifungal activity based on the respiration inhibition activity with its active compound edeine B1 (EB1). Furthermore, our results showed that EB1 secreted by HK544 suppresses the expression of the mitochondria-related genes of F. graminearum, subsequently suppressing fungal development and the virulence of F. graminearum. In addition, EB1 exhibited a synergism with complex I inhibitors such as rotenone and fenazaquin. Our work extends our understanding of how B. brevis HK544 exhibits antifungal activity and suggests that the B. brevis HK544 strain could be a valuable source for developing new crop protectants to control F. graminearum.


Assuntos
Brevibacillus , Fusarium , Mitocôndrias , Doenças das Plantas , Fusarium/efeitos dos fármacos , Fusarium/patogenicidade , Fusarium/genética , Fusarium/metabolismo , Brevibacillus/genética , Brevibacillus/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Virulência , Agentes de Controle Biológico/farmacologia , Fungicidas Industriais/farmacologia
5.
Protein Sci ; 33(6): e5029, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38801228

RESUMO

Thermal stability of proteins is a primary metric for evaluating their physical properties. Although researchers attempted to predict it using machine learning frameworks, their performance has been dependent on the quality and quantity of published data. This is due to the technical limitation that thermodynamic characterization of protein denaturation by fluorescence or calorimetry in a high-throughput manner has been challenging. Obtaining a melting curve that derives solely from the target protein requires laborious purification, making it far from practical to prepare a hundred or more samples in a single workflow. Here, we aimed to overcome this throughput limitation by leveraging the high protein secretion efficacy of Brevibacillus and consecutive treatment with plate-scale purification methodologies. By handling the entire process of expression, purification, and analysis on a per-plate basis, we enabled the direct observation of protein denaturation in 384 samples within 4 days. To demonstrate a practical application of the system, we conducted a comprehensive analysis of 186 single mutants of a single-chain variable fragment of nivolumab, harvesting the melting temperature (Tm) ranging from -9.3 up to +10.8°C compared to the wild-type sequence. Our findings will allow for data-driven stabilization in protein design and streamlining the rational approaches.


Assuntos
Estabilidade Proteica , Termodinâmica , Desnaturação Proteica , Ensaios de Triagem em Larga Escala , Brevibacillus/genética , Brevibacillus/química , Brevibacillus/metabolismo
6.
Int J Mol Sci ; 25(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38731830

RESUMO

Brevibacillus sp. JNUCC 41, characterized as a plant-growth-promoting rhizobacterium (PGPR), actively participates in lipid metabolism and biocontrol based on gene analysis. This study aimed to investigate the crucial secondary metabolites in biological metabolism; fermentation, extraction, and isolation were performed, revealing that methyl indole-3-acetate showed the best hyaluronidase (HAase) inhibitory activity (IC50: 343.9 µM). Molecular docking results further revealed that the compound forms hydrogen bonds with the residues Tyr-75 and Tyr-247 of HAase (binding energy: -6.4 kcal/mol). Molecular dynamics (MD) simulations demonstrated that the compound predominantly binds to HAase via hydrogen bonding (MM-PBSA binding energy: -24.9 kcal/mol) and exhibits good stability. The residues Tyr-247 and Tyr-202, pivotal for binding in docking, were also confirmed via MD simulations. This study suggests that methyl indole-3-acetate holds potential applications in anti-inflammatory and anti-aging treatments.


Assuntos
Brevibacillus , Hialuronoglucosaminidase , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Hialuronoglucosaminidase/antagonistas & inibidores , Hialuronoglucosaminidase/metabolismo , Brevibacillus/metabolismo , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Ligação de Hidrogênio , Genoma Bacteriano
7.
J Basic Microbiol ; 64(6): e2400091, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38651780

RESUMO

Brevibacillus thermoruber strain Nabari cells grow as widely spreading dendritic colonies on reasoner's 2A-agar (1.5%) plates at around 55°C but as small motile colonies at 37°C. Motile colonies can be divided into colonies that move in straight or curved lines over long distances (wandering colonies), and colonies that rotate at a fixed location (rotating colonies). The addition of surfactant to the agar medium greatly increased the frequency of wandering colonies and facilitated the study of such colonies. The morphology of the wandering colonies varied: circular at the tip and pointed at the back, lemon-shaped with pointed ends, crescent-shaped, bullet-shaped, fish-like, and so on. A single colony may split into multiple colonies as it moves, or multiple colonies may merge into a single colony. The most surprising aspect of the movement of wandering colonies was that when a moving colony collides with another colony, it sometimes does not make a U-turn, but instead retreats straight back, as if bouncing back. The migration mechanisms of wandering colonies are discussed based on optical microscopic observations of swimming patterns of single cells in water and scanning electron microscopy of the arrangement of bacterial cells in wandering colonies.


Assuntos
Ágar , Brevibacillus , Meios de Cultura , Brevibacillus/crescimento & desenvolvimento , Brevibacillus/fisiologia , Brevibacillus/metabolismo , Meios de Cultura/química , Temperatura , Microscopia Eletrônica de Varredura , Movimento , Tensoativos
8.
Chemosphere ; 350: 141100, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38171393

RESUMO

Ester-containing deltamethrin pesticides are widely used in farmland and have inevitable side effects on the biosphere and human health. Microbia have been used for efficient degradation of deltamethrin, but the related mechanism and enzyme characteristics have not been elucidated. In this study, a species Brevibacillus parabrevis BCP-09 could degrade up to 75 mg L-1 deltamethrin with a degradation efficiency of 95.41%. Proteomic and genomic methods were used to explore its degradation mechanism. Enzymes belonged to hydrolases, oxidases and aromatic compound degrading enzymes were expressed enhanced and might participate in the deltamethrin degradtion. RT-PCR experiment and enzyme activity analysis verified the degradation of deltamethrin by bacterial protein. Additionally, the formation of endospores can help strain BCP-09 resist the toxicity of deltamethrin and enhance its degradation. This study supplies a scientific evidence for the application of Brevibacillus parabrevis BCP-09 in the bioremediation of environmental pollution and enriches the resources of deltamethrin-biodegradable proteins.


Assuntos
Brevibacillus , Nitrilas , Proteômica , Piretrinas , Humanos , Biodegradação Ambiental , Brevibacillus/genética , Brevibacillus/metabolismo
9.
Biosci Biotechnol Biochem ; 87(9): 1029-1035, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37328425

RESUMO

Triple-FLAG (3 × FLAG)-tagged proteins can be affinity purified through binding to an anti-FLAG antibody and competitive elution with excess free 3 × FLAG peptide. To expand the availability of the 3 × FLAG purification system, we produced a recombinant His-tagged 3 × FLAG peptide in Brevibacillus choshinensis. The screening of connecting linkers between His-tag and the 3 × FLAG peptide, culture containers, and culture media showed that the His-tagged 3 × FLAG peptide with an LA linker was most expressed in 2SY medium using a baffled shake flask. The peptide was affinity-purified to give a yield of about 25 mg/L of culture. The peptide was effective for eluting 3 × FLAG-tagged α-amylase from anti-FLAG magnetic beads. Finally, the peptide remaining in the amylase fraction was removed by His-tag affinity purification. These results show that the recombinant His-tagged 3 × FLAG peptide can function as an easy-to-remove affinity peptide in the 3 × FLAG purification system.


Assuntos
Brevibacillus , Proteínas Recombinantes/metabolismo , Brevibacillus/genética , Brevibacillus/metabolismo , Cromatografia de Afinidade/métodos , Peptídeos/genética , Peptídeos/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
10.
Appl Microbiol Biotechnol ; 107(13): 4337-4353, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37204448

RESUMO

Brevibacillus laterosporus (Bl) is a Gram-positive and spore-forming bacterium. Insect pathogenic strains have been characterised in New Zealand, and two isolates, Bl 1821L and Bl 1951, are under development for use in biopesticides. However, growth in culture is sometimes disrupted, affecting mass production. Based on previous work, it was hypothesised that Tectiviridae phages might be implicated. While investigating the cause of the disrupted growth, electron micrographs of crude lysates showed structural components of putative phages including capsid and tail-like structures. Sucrose density gradient purification yielded a putative self-killing protein of ~30 kDa. N-terminal sequencing of the ~30 kDa protein identified matches to a predicted 25 kDa hypothetical and a 31.4 kDa putative encapsulating protein homologs, with the genes encoding each protein adjacent in the genomes. BLASTp analysis of the homologs of 31.4 kDa amino acid sequences shared 98.6% amino acid identity to the Linocin M18 bacteriocin family protein of Brevibacterium sp. JNUCC-42. Bioinformatic tools including AMPA and CellPPD defined that the bactericidal potential originated from a putative encapsulating protein. Antagonistic activity of the ~30 kDa encapsulating protein of Bl 1821L and Bl 1951during growth in broth exhibited bacterial autolytic activity. LIVE/DEAD staining of Bl 1821L cells after treatment with the ~30 kDa encapsulating protein of Bl 1821L substantiated the findings by showing 58.8% cells with the compromised cell membranes as compared to 37.5% cells in the control. Furthermore, antibacterial activity of the identified proteins of Bl 1821L was validated through gene expression in a Gram-positive bacterium Bacillus subtilis WB800N. KEY POINTS: • Gene encoding the 31.4 kDa antibacterial Linocin M18 protein was identified • It defined the autocidal activity of Linocin M18 (encapsulating) protein • Identified the possible killing mechanism of the encapsulins.


Assuntos
Bacillus , Bacteriocinas , Brevibacillus , Animais , Brevibacillus/genética , Brevibacillus/metabolismo , Antibacterianos/metabolismo , Insetos
11.
J Appl Microbiol ; 134(3)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36914211

RESUMO

AIM: This study was aimed to determine antimicrobial and antiviral activity of a novel lanthipeptide from a Brevibacillus sp. for disinfectant application. METHODS AND RESULTS: The antimicrobial peptide (AMP) was produced by a bacterial strain AF8 identified as a member of the genus Brevibacillus representing a novel species. Whole genome sequence analysis using BAGEL identified a putative complete biosynthetic gene cluster involved in lanthipeptide synthesis. The deduced amino acid sequence of lanthipeptide named as brevicillin, showed >30% similarity with epidermin. Mass determined by MALDI-MS and Q-TOF suggested posttranslational modifications like dehydration of all Ser and Thr amino acids to yield Dha and Dhb, respectively. Amino acid composition determined upon acid hydrolysis is in agreement with core peptide sequence deduced from the putative biosynthetic gene bvrAF8. Biochemical evidence along with stability features ascertained posttranslational modifications during formation of the core peptide. The peptide showed strong activity with 99% killing of pathogens at 12 µg ml-1 within 1 minute. Interestingly, it also showed potent anti-SARS-CoV-2 activity by inhibiting ∼99% virus growth at 10 µg ml-1 in cell culture-based assay. Brevicillin did not show dermal allergic reactions in BALB/c mice. CONCLUSION: This study provides detailed description of a novel lanthipeptide and demonstrates its effective antibacterial, antifungal and anti-SARS-CoV-2 activity.


Assuntos
Brevibacillus , COVID-19 , Animais , Camundongos , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Brevibacillus/genética , Brevibacillus/metabolismo , Antivirais , Peptídeos/química
12.
Biotechnol Bioeng ; 120(1): 194-202, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36253915

RESUMO

Resilin, an insect structural protein, has excellent flexibility, photocrosslinking properties, and temperature responsiveness. Recombinant resilin-like proteins (RLPs) can be fabricated into three-dimensional (3D) structures for use as cell culture substrates and highly elastic materials. A simplified, high-yielding production process for RLPs is required for their widespread application. This study proposes a simple production process combining extracellular expression using Brevibacillus choshinensis (B. choshinensis) and rapid column-free purification. Extracellular production was tested using four representative signal peptides; B. choshinensis was found to efficiently secrete Rec1, an RLP derived from Drosophila melanogaster, regardless of the type of signal peptide. However, it was suggested that Rec1 is altered by an increase in the pH of the culture medium associated with prolonged incubation. Production in a jar fermentor with controllable pH yielded 530 mg Rec1 per liter of culture medium, which is superior to productivity using other hosts. The secreted Rec1 was purified from the culture supernatant via (NH4 )2 SO4 and ethanol precipitations, and the purified Rec1 was applied to ring-shaped 3D hydrogels. These results indicate that the combination of secretory production using B. choshinensis and column-free purification can accelerate the further application of RLPs.


Assuntos
Brevibacillus , Animais , Brevibacillus/genética , Brevibacillus/metabolismo , Drosophila melanogaster/metabolismo , Hidrogéis , Proteínas de Insetos/genética , Proteínas Recombinantes , Meios de Cultura/metabolismo
13.
Artigo em Inglês | MEDLINE | ID: mdl-36498382

RESUMO

To explore the mechanism by which the plant growth-promoting bacterium Brevibacillus sp. SR-9 improves sweet sorghum tolerance and enriches soil cadmium (Cd) under pot conditions, the effect of strain SR-9 inoculation on the microbial community of sorghum rhizosphere soil was analyzed by metagenomics. Gene expression in sweet sorghum roots was analyzed using transcriptomics. The results showed that strain SR-9 promoted the growth of sweet sorghum and improved the absorption and enrichment of Cd in the plants. Compared with the uninoculated treatment, the aboveground part and root dry weight in strain SR-9 inoculated with sorghum increased by 21.09% and 17.37%, respectively, and the accumulation of Cd increased by 135% and 53.41%, respectively. High-throughput sequencing showed that strain SR-9 inoculation altered the rhizosphere bacterial community, significantly increasing the relative abundance of Actinobacteria and Firmicutes. Metagenomic analysis showed that after inoculation with strain SR-9, the abundance of genes involved in amino acid transport metabolism, energy generation and conversion, and carbohydrate transport metabolism increased. KEGG functional classification showed that inoculation with strain SR-9 increased the abundance of genes involved in soil microbial metabolic pathways in the rhizosphere soil of sweet sorghum and the activity of soil bacteria. Transcriptome analysis identified 198 upregulated differentially expressed genes in sweet sorghum inoculated with strain SR-9, including those involved in genetic information processing, biological system, metabolism, environmental information processing, cellular process, and human disease. Most of the annotated differentially expressed genes were enriched in the metabolic category and were related to pathways such as signal transduction, carbohydrate metabolism, amino acid metabolism, and biosynthesis of other secondary metabolites. This study showed that plant growth-promoting bacteria can alter the rhizosphere bacterial community composition, increasing the activity of soil bacteria and upregulating gene expression in sweet sorghum roots. The findings enhance our understanding of the microbiological and botanical mechanisms by which plant growth-promoting bacterial inoculation improves the remediation of heavy metals by sorghum.


Assuntos
Brevibacillus , Poluentes do Solo , Sorghum , Humanos , Cádmio/análise , Sorghum/metabolismo , Sorghum/microbiologia , Poluentes do Solo/análise , Brevibacillus/genética , Brevibacillus/metabolismo , Solo/química , Microbiologia do Solo , Perfilação da Expressão Gênica , Aminoácidos/metabolismo , Raízes de Plantas/metabolismo , Biodegradação Ambiental
14.
Gene ; 846: 146853, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36070852

RESUMO

Members of the genus Brevibacillus belonging to the familyPaenibacillaceae are Gram-positive/variable, endospore-forming, and rod-shaped bacteria that dwell in various environmental habitats. Brevibacillus spp. have a wide range of enzyme activities such as degradation of various carbohydrates, plastics, and they possess resistance against heavy metals. These characteristics make them encouraging contenders for biotechnological applications.In this work, we analyzed the reference genomes of 19Brevibacillusspecies, focusing on discovering the biodegradation and heavy metal resistance capabilities of this little studied genus from genomic data. The results indicate that several strain specific traits were identified. For example Brevibacillus halotolerans s-14, and Brevibacillus laterosporus DSM 25 have more glycoside hydrolases (GHs) compared to other carbohydrate-active enzymes, and therefore might be more suitable for biodegradation of carbohydrates. In contrast, strains such as Brevibacillus antibioticus TGS2-1, with a higher number of glycosyltransfereases (GTs) may aid in the biosynthesis of complex carbohydrates. Our results also suggest some correlation between heavy metal resistance and polyurethane degradation, thus indicating that heavy metal resistance strains (e.g. Brevibacillus reuszeri J31TS6) can be a promising source of enzymes for polyurethane degradation. These strain specific features make the members of this bacterial group potential candidates for further investigations with industrial implications. This work also represents the first exhaustive study of Brevibacillus at the genome scale.


Assuntos
Brevibacillus , Metais Pesados , Biodegradação Ambiental , Brevibacillus/genética , Brevibacillus/metabolismo , Carboidratos , DNA Bacteriano/genética , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Metais Pesados/metabolismo , Filogenia , Poliuretanos/metabolismo , Análise de Sequência de DNA , Microbiologia do Solo
15.
Chemosphere ; 307(Pt 4): 136004, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35970213

RESUMO

The extensive usage of synthetic fungicides against fungal diseases has caused adverse impacts on both human and agricultural crops. Therefore, the current study aims to establish a new bacterium 7WMA2, as a biocontrol agent to achieve better antifungal results. The strain 7WMA2 was isolated from marine sediment, displayed a broad spectrum of several fungi that includes Alternaria alternata, Cladosporium sp., Candida albicans, Fusarium oxysporum, Trichosporon pullulans, and Trichophyton rubrum. The 16S rRNA phylogeny inferred that strain 7WMA2 was a member of Brevibacillus. The phylogenetic and biochemical analyses revealed that the strain 7WMA2 belongs to the species of Brevibacillus halotolerans. The complete genome sequence of Brevibacillus halotolerans 7WMA2 consists of a circular chromosome of 5,351,077 bp length with a GC content of 41.39 mol %, including 4433 CDS, 111 tRNA genes, and 36 rRNA genes. The genomic analysis showed 23 putative biosynthetic secondary metabolite gene clusters responsible for non-ribosomal peptides, polyketides and siderophores. The antifungal compounds concentrated from cell-free fermentation broth demonstrated strong inhibition of fungi, and the compounds are considerably thermal stable and adaptable to pH range 2-12. This complete genome sequence has provided insight for further exploration of antagonistic ability and its secondary metabolite compounds indicated feasibility as biological control agents against fungal infections.


Assuntos
Brevibacillus , Fungicidas Industriais , Policetídeos , Antifúngicos/metabolismo , Antifúngicos/farmacologia , Agentes de Controle Biológico/farmacologia , Brevibacillus/genética , Brevibacillus/metabolismo , Fungicidas Industriais/metabolismo , Humanos , Peptídeos/metabolismo , Filogenia , Policetídeos/metabolismo , Policetídeos/farmacologia , RNA Ribossômico 16S/genética , Sideróforos/metabolismo
16.
World J Microbiol Biotechnol ; 38(11): 201, 2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-35999383

RESUMO

Brevilaterins as antimicrobial peptides (AMPs) secreted by a newly discovered species Brevibacillus laterosporus, had been demonstrated to display excellent antibacterial and antifungal activities; however, very limited information about their new bioactivity was ever developed. Herein, we discovered Brevilaterin B, an AMP produced by Br. laterosporus S62-9, exhibited a new anticancer activity and investigated its anticancer details. Proliferation, membrane permeability and apoptotic rate of cell lines were studied by methods of CCK-8 Assay, LDH Assay and Annexin V-FITC/PI Kits, respectively. ROS levels and mitochondrial membrane potential of tested cells were further detected through the fluorescent probes DCFH-DA and JC-1. Brevilaterin B exhibited broad-spectrum anticancer activity in a dose-dependent manner. It selectively inhibited the proliferation of epidermal cancer cell A431 but had no effect on its control normal cells in a dose of 2.0 µg/mL. In comparision, typical morphological characteristics of apoptosis and an apoptotic ratio of 71.0% in A431 were observed after treatment by 2.0-3.0 µg/mL of Brevilaterin B. The ROS levels increased by 21.3% and mitochondrial membrane potential reduced by 48.8% from A431 were further occurred, indicating Brevilaterin B's anticancer action was mainly focus on the mitochondrion of cancer cells. In total, Brevilaterin B we reported above maybe believed to be a potential application as an anticancer medicament, increasing its commercial value.


Assuntos
Bacillus , Brevibacillus , Neoplasias , Apoptose , Brevibacillus/metabolismo , Espécies Reativas de Oxigênio/metabolismo
17.
Chemosphere ; 305: 135345, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35738403

RESUMO

This study was carried out in order to find an environmentally friendly solution to recover the abandoned Cr-enriched sludge soil, which causes a variety of environmental issues. Hence, in this research the influence of pre-identified Brevibacillus borstelensis UTM105 and Brevibacillus borstelensis AK2 coated Jatropha curcas seed in phytoremediation process with various treatment groups (group A to F) under greenhouse condition. Furthermore, their influence on growth, biomolecules (total proteins and total chlorophyll) content, and antioxidant activity of J. curcas during the phytoremediation process were analyzed. Surprisingly, the outstanding phytoremediation was recorded in group F treatment. In these groups, Group E. accompanied it, and the Cr was reduced by up to 31.17% and 25.65%, respectively, in treated soil after 90 days of treatment. Among these two bacterial strains, the B. borstelensis AK2 had greatest effect on J. curcas growth, the yield of biomass, total protein, total chlorophyll, and antioxidant activity and it followed by B. borstelensis UTM105. These phytoremediation potential of J. curcas was effective at soil diluted with fertile and xenobiotics free soil with dilution ratio of 50:50 and followed by 75:25 ratio. Because under undiluted Cr sludge soil condition seed germination has not occurred even though the seed has been coated with potential bacterial strains and soil blend with sterilized goat manure. Hence, under diluted conditions J. curcas seed coated with B. borstelensis AK2 showed an outstanding phytoremediation process. Hence, this approach can be applied to a field study to assess the metal removal potential of this sustainable approach.


Assuntos
Brevibacillus , Jatropha , Poluentes do Solo , Antioxidantes/metabolismo , Biodegradação Ambiental , Brevibacillus/metabolismo , Clorofila/metabolismo , Cromo/metabolismo , Esgotos , Solo , Poluentes do Solo/análise
18.
J Cell Biochem ; 123(7): 1237-1246, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35656936

RESUMO

Antimicrobial peptides (AMP) from Brevibacillus laterosporus have good prospects as clinical treatments for cancer. Nevertheless, details about their anticancer spectrum and mode of cytotoxicity remain poorly understood. A newly found AMP (named Brevilaterin C) secreted by B. laterosporus S62-9 exhibited strong inhibition on almost cancer cell lines examined at a concentration of 8 µg/ml but was relatively safe for normal cells. We further systematically examined its cytotoxicity and mechanism toward human epidermal cancer cell A431. A dosage of 3 µg/ml of Brevilaterin C could significantly increase lactate dehydrogenase release of tumor cells. Moreover, it could remarkably increase the ratio of apoptosis and reactive oxygen species generation of A431, indicating effective induction of apoptosis. Moreover, the formation of JC-1 aggregates was effectively prevented by a low concentration of Brevilaterin C, indicating its effective induction of A431's apoptosis. Brevilaterin C exhibited broad-spectrum cytotoxicity to cancer cells, indicating a good potential prospect in the medical field.


Assuntos
Brevibacillus , Neoplasias , Humanos , Brevibacillus/metabolismo
19.
Arch Microbiol ; 204(7): 399, 2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35713724

RESUMO

Marine microbes produce polysaccharides with unique physicochemical and functional properties that help them survive in harsh marine environments. However, only a handful of marine exopolysaccharides (EPSs) have been reported to date. The present study explored the seashore of Visakhapatnam, India, to report a novel exopolysaccharide designated as Br42 produced by Brevibacillus borstelensis M42. The isolate was identified through morphological, biochemical, phylogenetic, and genome sequencing analysis. The studies on fermentation kinetics revealed that EPS Br42 was a primary metabolite with a maximum production of 1.88 ± 0.02 g/L after 60 h when production broth was fortified with 2% glucose. Additionally, EPS Br42 was found to be a heteropolysaccharide consisting of glucose and galacturonic acid with a molecular weight of about 286 kDa. Interestingly, this molecule possesses industrially relevant functional properties such as water-holding (510 ± 0.35%), oil-holding (374 ± 0.12% for coconut oil and 384 ± 0.35% for olive oil), and swelling capacities (146.6 ± 5.75%). EPS Br42 could form an emulsion that was stable at a wide pH range for about 72 h and, in fact, performed better as compared to Span 20, a commercially used synthetic emulsifier. Moreover, this EPS was also found to be heat stable and exhibited non-Newtonian pseudoplastic behavior. These physicochemical and functional properties of polysaccharides suggest that the EPS Br42 has potential for multifarious industrial applications as an emulsifier, stabilizer, viscosifier, and binding agent.


Assuntos
Brevibacillus , Polissacarídeos Bacterianos , Brevibacillus/genética , Brevibacillus/metabolismo , Glucose/metabolismo , Filogenia
20.
Protein Expr Purif ; 194: 106075, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35231586

RESUMO

Brevibacillus choshinensis is a gram-positive bacterium that is known to efficiently secrete recombinant proteins. However, the expression of these proteins is often difficult depending upon the expressed protein. In this study, we demonstrated that the addition of arginine hydrochloride and proline to the culture medium dramatically increased protein expression. By culturing bacterial cells in 96-well plates, we were able to rapidly examine the expression conditions and easily scale up to 96 mL of culture for production. Although functional expression of the receptor binding domain (RBD) of the SARS-CoV-2 spike protein without any solubility-enhancing tag in bacterial strains (including Escherichia coli) has not been reported to date, we succeeded in efficiently producing RBD which showed a similar CD spectrum to that of RBD produced by eukaryotic cell expression systems. Furthermore, RBD from the omicron variant (B.1.1.529) was also produced. Physicochemical analyses indicated that omicron RBD exhibited markedly increased instability compared to the wild-type. We also revealed that the Fab format of the anti-SARS-CoV-2 antibody C121 can be produced in large quantities using the same expression system. The obtained C121 Fab bound to wild-type RBD but not to omicron RBD. These results strongly suggest that the Brevibacillus expression system is useful for facilitating the efficient expression of proteins that are difficult to fold and will thus contribute to the rapid physicochemical evaluation of functional proteins.


Assuntos
Brevibacillus , COVID-19 , Anticorpos Antivirais , Arginina/metabolismo , Brevibacillus/genética , Brevibacillus/metabolismo , Humanos , Prolina/metabolismo , Proteínas Recombinantes/química , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA