RESUMO
Bufalin is a promising active ingredient in traditional Chinese medicine but has shown limited anticancer applications due to its toxicity. Here, we report BCNPs@gel, a bufalin-containing CaCO3 nanoparticle hydrogel, for enhancing cancer treatment through inducing cellular pyroptosis. Under the tumor microenvironment's low pH conditions, bufalin and Ca2+ are released from the delivery system. Bufalin serves as a direct anticancer drug and a Na+/K+-ATPase inhibitor by forcing the Na+/Ca2+ exchanger to reverse its function, which transfers Ca2+ into cytoplasm and ultimately causes Ca2+ overload-triggered pyroptosis. Meanwhile, we found that bufalin can upregulate PD-L1 in tumor cells. In combination with the PD-1 antibody, the delivery system showed a greater performance during the cancer treatment. BCNPs@gel enhances antitumor efficiency, reduces systemic side effects, extends antitumor mechanism of bufalin, and provides new strategies for inducing pyroptosis and calcium overload in cancer immunotherapy via Na+/K+-ATPase inhibitor. This work provides an application model for numerous other traditional Chinese medicine ingredients.
Assuntos
Bufanolídeos , Carbonato de Cálcio , Cálcio , Nanopartículas , Piroptose , Bufanolídeos/farmacologia , Bufanolídeos/química , Bufanolídeos/uso terapêutico , Nanopartículas/química , Humanos , Cálcio/metabolismo , Animais , Piroptose/efeitos dos fármacos , Carbonato de Cálcio/química , Camundongos , Linhagem Celular Tumoral , Trocador de Sódio e Cálcio/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Imunoterapia/métodos , Microambiente Tumoral/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidoresRESUMO
Severe acute pancreatitis (SAP) is a prevalent acute inflammatory disease that is clinically manifested by systemic inflammation dysregulation, resulting in a significantly elevated mortality rate. Bufalin has been verified to have potent pharmacological properties, including analgesic, anti-tumor and anti-inflammatory effects. However, it remains unclear whether bufalin inhibits SAP. Thus, we aim to explore the impact of bufalin in SAP rats and to evaluate the potential mechanisms of action. In addition to analyzing serum biochemistry and pancreatic tissue pathology, we elucidated its mechanisms of action through enzyme-linked immunosorbent assay (ELISA), immunohistochemical analysis, Western blot, and quantitative real-time PCR. The results demonstrated that bufalin dose-dependently reversed the elevation of serum Amylase (Amy) and Lipase (LPS) levels in SAP rats, alleviating pancreatic tissue pathological damage. Bufalin exhibited potent antioxidant effects by reducing malondialdehyde (MDA) levels, decreasing Superoxide dismutase (SOD) and glutathione(GSH) consumption, inhibiting the interaction of Keap1-Nrf2, and increasing HO-1 expression. Furthermore, bufalin inhibited TNF-α, IL-6, IL-1ß, p-NF-κB-p65, p-IκBα, and NF-κB-p65 expression, while enhancing IκBα expression, ultimately confirming its anti-inflammatory effects on SAP. In summary, our findings suggest that bufalin exerts anti-inflammatory and antioxidant actions in NaT-SAP rats by inhibiting NF-κB and activating the Keap1-Nrf2/HO-1 pathway. This study represents the inaugural application of bufalin in NaT-induced SAP rats, indicating its potential as an effective therapeutic agent for SAP patients.
Assuntos
Anti-Inflamatórios , Bufanolídeos , Proteína 1 Associada a ECH Semelhante a Kelch , Fator 2 Relacionado a NF-E2 , NF-kappa B , Estresse Oxidativo , Pancreatite , Ratos Sprague-Dawley , Transdução de Sinais , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Pancreatite/tratamento farmacológico , Pancreatite/induzido quimicamente , Pancreatite/patologia , Estresse Oxidativo/efeitos dos fármacos , NF-kappa B/metabolismo , Masculino , Bufanolídeos/farmacologia , Bufanolídeos/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/farmacologia , Ratos , Citocinas/metabolismo , Pâncreas/patologia , Pâncreas/efeitos dos fármacos , Pâncreas/metabolismo , Heme Oxigenase (Desciclizante)/metabolismo , Modelos Animais de Doenças , Humanos , Amilases/sangueRESUMO
Macrophages have crucial roles in immune responses and tumor progression, exhibiting diverse phenotypes based on environmental cues. In the present study, the impact of cinobufagin (CB) on macrophage polarization and the consequences on tumorassociated behaviors were investigated. Morphological transformations of THP1 cells into M0, M1 and M2 macrophages were observed, including distinct changes in the size, shape and adherence properties of these cells. CB treatment inhibited the viability of A549 and LLC cells in a concentrationdependent manner, with an IC50 of 28.8 and 30.12 ng/ml, respectively. CB at concentrations of <30 ng/ml had no impact on the viability of M0 macrophages and lung epithelial (BEAS2B) cells. CB influenced the expression of macrophage surface markers, reducing CD206 positivity in M2 macrophages without affecting CD86 expression in M1 macrophages. CB also altered certain expression profiles at the mRNA level, notably downregulating macrophage receptor with collagenous structure (MARCO) expression in M2 macrophages and upregulating tumor necrosis factorα and interleukin1ß in both M0 and M1 macrophages. Furthermore, ELISA analyses revealed that CB increased the levels of proinflammatory cytokines in M1 macrophages and reduced the levels of antiinflammatory factors in M2 macrophages. CB treatment also attenuated the migration and invasion capacities of A549 and LLC cells stimulated by M2 macrophageconditioned medium. Additionally, CB modulated peroxisome proliferatoractivated receptor γ (PPARγ) and MARCO expression in M2 macrophages and epithelialmesenchymal transition in A549 cells, which was partially reversed by rosiglitazone, a PPARγ agonist. Finally, CB and cisplatin treatments hindered tumor growth in vivo, with distinct impacts on animal body weight and macrophage marker expression in tumor tissues. In conclusion, the results of the present study demonstrated that CB exerted complex regulatory effects on macrophage polarization and tumor progression, suggesting its potential as a modulator of the tumor microenvironment and a therapeutic for cancer treatment.
Assuntos
Bufanolídeos , Movimento Celular , Neoplasias Pulmonares , Invasividade Neoplásica , Macrófagos Associados a Tumor , Bufanolídeos/farmacologia , Bufanolídeos/uso terapêutico , Humanos , Macrófagos Associados a Tumor/efeitos dos fármacos , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/imunologia , Animais , Camundongos , Movimento Celular/efeitos dos fármacos , Células A549 , Ensaios Antitumorais Modelo de Xenoenxerto , Células THP-1 , PPAR gama/metabolismo , Ativação de Macrófagos/efeitos dos fármacos , Linhagem Celular TumoralRESUMO
Cisplatin (DPP) resistance is a severe obstacle to ovarian cancer (OC) treatment. Our research aims to uncover the therapeutic effect and the underlying mechanism of Bufalin against DDP resistance. The cell viability, proliferation capacity, γH2AX expression, and apoptosis ratio were quantified via CCK8 assay, colony formation assay, immunofluorescence, and flow cytometry analysis respectively. Xenografting experiment was performed to detect the tumor growth. Molecular docking was applied to mimic the combination of Bufalin and USP36 protein, and Western blotting was conducted to measure the Bax, Bcl-2, γH2AX, USP36, and c-Myc expression. The c-Myc ubiquitination and half-life were detected via ubiquitination assay and cycloheximide chasing assay. Bufalin treatment notably suppressed the cell viability and colony numbers, and increased the apoptosis ratio and γH2AX level in the DDP treatment group. Bufalin therapy also notably inhibited tumor growth, Bax, Bcl-2, and γH2AX expression in vivo. Moreover, the Bufalin application remarkedly reduced the c-Myc expression and half-life and increased the c-Myc ubiquitination via interaction and subsequent down-regulation of USP36. Knockdown of USP36 reversed the antiproliferative effect and proapoptotic capacity of Bufalin therapy in the DDP treatment group. In conclusion, Bufalin can overcome the DDP resistance in vitro and in vivo via the USP36/c-Myc axis, which innovatively suggests the therapeutic potential of Bufalin against DDP resistance ovarian cancer.
Assuntos
Antineoplásicos , Bufanolídeos , Cisplatino , Resistencia a Medicamentos Antineoplásicos , Neoplasias Ovarianas , Proteínas Proto-Oncogênicas c-myc , Ubiquitina Tiolesterase , Feminino , Humanos , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/genética , Bufanolídeos/farmacologia , Bufanolídeos/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Ubiquitina Tiolesterase/metabolismo , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/antagonistas & inibidores , Linhagem Celular Tumoral , Animais , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Camundongos Nus , Apoptose/efeitos dos fármacos , Camundongos , Proliferação de Células/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Transdução de Sinais/efeitos dos fármacosRESUMO
Bufadienolides, specifically bufalin, have garnered attention for their potential therapeutic application in modulating inflammatory pathways. Bufalin is derived from toad venom and exhibits promising anti-inflammatory properties. Its anti-inflammatory effects have been demonstrated by influencing crucial signaling pathways like NF-B, MAPK, and JAK-STAT, resulting in the inhibition of pro-inflammatory substances like cytokines, chemokines, and adhesion molecules. Bufalin blocks inflammasome activation and reduces oxidative stress, hence increasing its anti-inflammatory properties. Bufalin has shown effectiveness in reducing inflammation-related diseases such as cancer, cardiovascular problems, and autoimmune ailments in preclinical investigations. Furthermore, producing new approaches of medication delivery and combining therapies with bufalin shows potential for improving its effectiveness and reducing adverse effects. This review explores the pharmacological effects and mechanistic approaches of bufalin as an anti-inflammatory agent, which further highlights its potential for therapy and offers the basis for further study on its therapeutic application in inflammation-related disorders.
Assuntos
Anti-Inflamatórios , Bufanolídeos , Inflamação , Bufanolídeos/farmacologia , Bufanolídeos/uso terapêutico , Humanos , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Inflamação/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacosRESUMO
OBJECTIVE: To retrospectively analyse the effects of cinobufotalin capsule combined with zoledronic acid on pain symptoms and clinical efficacy of prostate cancer patients with bone metastases. METHODS: Patients with prostate cancer with bone metastasis admitted to our hospital from January 2021 to December 2022 were selected as study subjects. They were divided into the control group (treated with zoledronic acid) and the combined group (cinobufotalin capsules were added on the control group basis) according to different recorded treatment methods. The efficacies of the two groups after matching, lumbar L1-4 bone mineral density (BMD), serum calcium, serum phosphorus, visual analogue scale (VAS) score and Karnofsky performance status (KPS) score before and after treatment were compared, and adverse reactions were statistically analysed. RESULTS: A total of 102 patients were included in the study, encompassing 52 patients in the combined group and 50 patients in the control group. After 1:1 preference score matching, 64 patients were included in the two groups. No significant difference in baseline data was found between the two groups (p > 0.05). The total effective rate of the combination group was higher than that of the control group (p < 0.05). No significant differences in L1-4 bone mineral density, serum calcium and phosphorus, VAS score and KPS score were observed between the two groups prior to treatment (p > 0.05). After treatment, the L1-4 bone mineral density (BMD) and KPS score of the combined group decreased to less than those of the control group, the VAS score was lower than that of the control group, and the serum calcium and phosphorus level increased but less than that of the control group (p < 0.05). No significant difference in adverse reactions was found between the two groups (p > 0.05). CONCLUSIONS: Cinobufotalin capsule combined with zoledronic acid had ideal efficacy in the treatment of prostate cancer in patients with bone metastasis. This approach could improve their bone density and quality of life, improve their calcium and phosphorus metabolism, reduce their pain symptoms and provide increased safety. It may have an important guiding role in formulating future clinical treatment plans for patients with prostate cancer and bone metastasis.
Assuntos
Conservadores da Densidade Óssea , Neoplasias Ósseas , Bufanolídeos , Neoplasias da Próstata , Ácido Zoledrônico , Humanos , Masculino , Ácido Zoledrônico/uso terapêutico , Ácido Zoledrônico/administração & dosagem , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Neoplasias da Próstata/complicações , Estudos Retrospectivos , Idoso , Conservadores da Densidade Óssea/uso terapêutico , Conservadores da Densidade Óssea/administração & dosagem , Neoplasias Ósseas/secundário , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/complicações , Bufanolídeos/uso terapêutico , Bufanolídeos/administração & dosagem , Pessoa de Meia-Idade , Resultado do Tratamento , Cápsulas , Quimioterapia Combinada , Dor do Câncer/tratamento farmacológicoRESUMO
Glioblastoma multiforme (GBM) is the most prevalent and lethal primary intracranial neoplasm in the adult population, with treatments of limited efficacy. Recently, bufotalin has been shown to have anti-cancer activity in a variety of cancers. This investigation aims to investigate the effect of bufotalin on GBM and elucidate its potential underlying mechanism. Our results show that bufotalin not only inhibits the proliferation and epithelial-mesenchymal transition (EMT) but also triggers apoptosis in GBM cells. The result of RNA-seq indicated that bufotalin could induce mitochondrial dysfunction. Moreover, our observations indicate that bufotalin induces an excessive accumulation of intracellular reactive oxygen species (ROS) in GBM cells, leading to mitochondrial dysfunction and the dephosphorylation of AKT. Moreover, bufotalin improved TMZ sensitivity of GBM cells in vitro and in vivo. In conclusion, bufotalin enhances apoptosis and TMZ chemosensitivity of glioblastoma cells by promoting mitochondrial dysfunction via AKT signaling pathway.
Assuntos
Apoptose , Bufanolídeos , Glioblastoma , Mitocôndrias , Proteínas Proto-Oncogênicas c-akt , Espécies Reativas de Oxigênio , Transdução de Sinais , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Apoptose/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Bufanolídeos/farmacologia , Bufanolídeos/uso terapêutico , Linhagem Celular Tumoral , Animais , Espécies Reativas de Oxigênio/metabolismo , Proliferação de Células/efeitos dos fármacos , Camundongos , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Transição Epitelial-Mesenquimal/efeitos dos fármacosRESUMO
Resibufogenin (RBG), a significant bufadienolide compound found in the traditional Chinese medicine Chansu, has garnered increasing attention in recent years for its wide range of pharmacological effects. This compound has shown promising potential in various therapeutic areas, including oncology, cardiology, and respiratory medicine. Among its notable properties, the anticancer effects of RBG are particularly striking, positioning it as a potential candidate for innovative cancer treatments. The mechanism of action of RBG is diverse, impacting various cellular processes. Its anticancer efficacy has been observed in different types of cancer cells, where it induces apoptosis and inhibits cell proliferation. Beyond its oncological applications, RBG also demonstrates substantial anti-inflammatory and antiviral activities. These properties suggest its utility in managing chronic inflammatory disorders and viral infections, respectively. The compound's cardiotonic effects are also noteworthy, providing potential benefits in cardiovascular health, particularly in heart failure management. Additionally, RBG has shown effectiveness in blood pressure regulation and respiratory function improvement, making it a versatile agent in the treatment of hypertension and respiratory disorders. However, despite these promising aspects, systematic reviews focusing specifically on RBG are limited. This article aims to address this gap by comprehensively reviewing RBG's origin, physiological, and pharmacological effects. The review will serve as a crucial reference for clinicians and researchers interested in the therapeutic applications of RBG, highlighting its potential in various medical domains. By synthesizing current research findings, this review will facilitate a deeper understanding of RBG's role in medicine and encourage further investigation into its clinical uses.
Assuntos
Bufanolídeos , Bufanolídeos/farmacologia , Bufanolídeos/uso terapêutico , Cardiotônicos/farmacologia , Cardiotônicos/uso terapêutico , Coração , Pressão SanguíneaRESUMO
BACKGROUND: Cinobufagin (CBG), a key bioactive component in cinobufacini, exhibits antitumor properties. This study explores CBG's impact on triple-negative breast cancer (TNBC) metastasis and elucidates the underpinning mechanism. METHODS: Murine xenograft and orthotopic metastatic TNBC models were generated and treated with CBG. The burden of metastatic tumor in the mouse lung, the epithelial to mesenchymal transition (EMT) markers, and macrophage polarization markers within the tumors were examined. The phenotype of tumor-associated macrophages (TAMs) and mobility of TNBCs in vitro in a macrophage-TNBC cell coculture system were analyzed. Physiological targets of CBG were identified by bioinformatics analyses. RESULTS: CBG treatment significantly alleviated lung tumor burden and EMT activity. It triggered an M2-to-M1 shift in TAMs, resulting in decreased TNBC cell migration, invasion, and EMT in vitro. CBG upregulated membrane metalloendopeptidase (MME) expression, suppressing FAK and STAT3 phosphorylation. Silencing of MME, either in mice or TAMs, counteracted CBG effects, reinstating M2 TAM predominance and enhancing TNBC cell metastasis. Cotreatment with Defactinib, a FAK antagonist, reversed M2 TAM polarization and TNBC cell metastasis. Notably, MME silencing in TNBC cells had no impact on CBG-suppressed malignant properties, indicating MME's indirect involvement in TNBC cell behavior through TAM mediation. CONCLUSION: This study unveils CBG's ability to enhance MME expression, deactivate FAK/STAT3 signaling, and inhibit TNBC metastasis by suppressing M2-skewed macrophages.
Assuntos
Bufanolídeos , Transição Epitelial-Mesenquimal , Fator de Transcrição STAT3 , Transdução de Sinais , Neoplasias de Mama Triplo Negativas , Ensaios Antitumorais Modelo de Xenoenxerto , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Bufanolídeos/farmacologia , Bufanolídeos/uso terapêutico , Animais , Feminino , Fator de Transcrição STAT3/metabolismo , Camundongos , Humanos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Quinase 1 de Adesão Focal/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/secundário , Neoplasias Pulmonares/metabolismo , Linhagem Celular Tumoral , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacosRESUMO
Patients with metastatic colorectal cancer often have poor outcomes, primarily due to hepatic metastasis. Colorectal cancer (CRC) cells have the ability to secrete cytokines and other molecules that can remodel the tumor microenvironment, facilitating the spread of cancer to the liver. Kupffer cells (KCs), which are macrophages in the liver, can be polarized to M2 type, thereby promoting the expression of adhesion molecules that aid in tumor metastasis. Our research has shown that huachanshu (with bufalin as the main active monomer) can effectively inhibit CRC metastasis. However, the underlying mechanism still needs to be thoroughly investigated. We have observed that highly metastatic CRC cells have a greater ability to induce M2-type polarization of Kupffer cells, leading to enhanced metastasis. Interestingly, we have found that inhibiting the expression of IL-6, which is highly expressed in the serum, can reverse this phenomenon. Notably, bufalin has been shown to attenuate the M2-type polarization of Kupffer cells induced by highly metastatic Colorectal cancer (mCRC) cells and down-regulate IL-6 expression, ultimately inhibiting tumor metastasis. In this project, our aim is to study how high mCRC cells induce M2-type polarization and how bufalin, via the SRC-3/IL-6 pathway, can inhibit CRC metastasis. This research will provide a theoretical foundation for understanding the anti-CRC effect of bufalin.
Assuntos
Bufanolídeos , Neoplasias do Colo , Interleucina-6 , Células de Kupffer , Neoplasias Hepáticas , Células de Kupffer/efeitos dos fármacos , Células de Kupffer/metabolismo , Bufanolídeos/farmacologia , Bufanolídeos/uso terapêutico , Neoplasias Hepáticas/secundário , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Humanos , Animais , Interleucina-6/metabolismo , Interleucina-6/genética , Neoplasias do Colo/patologia , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Neoplasias do Colo/genética , Linhagem Celular Tumoral , Camundongos , Antineoplásicos/farmacologia , Microambiente Tumoral/efeitos dos fármacos , Polaridade Celular/efeitos dos fármacos , Metástase NeoplásicaRESUMO
Chinese medicine cinobufacini is an extract from the dried skin of Bufo bufo gargarizans Cantor, with active ingredients of bufadienolides and indole alkaloids. With further research and clinical applications, it is found that cinobufacini alone or in combination with other therapeutic methods can play an anti-tumor role by controlling proliferation of tumor cells, promoting apoptosis, inhibiting formation of tumor neovascularization, reversing multidrug resistance, and regulating immune response; it also has the functions of relieving cancer pain and regulating immune function. In this paper, the chemical composition, pharmacological effects, clinical applications, and adverse reactions of cinobufacini are summarized. However, the extraction of monomer components of cinobufacini, the relationship between different mechanisms, and the causes of adverse reactions need to be further studied. Also, high-quality clinical studies should be conducted.
Assuntos
Venenos de Anfíbios , Bufanolídeos , Neoplasias , Animais , Humanos , Neoplasias/tratamento farmacológico , Bufonidae , Venenos de Anfíbios/farmacologia , Venenos de Anfíbios/uso terapêutico , Venenos de Anfíbios/química , Bufanolídeos/farmacologia , Bufanolídeos/uso terapêuticoRESUMO
Idiopathic pulmonary fibrosis (IPF) is a chronic interstitial lung disease with no cure. Bufotalin (BT), an active component extracted from Venenum Bufonis, has been prescribed as a treatment for chronic inflammatory diseases. However, whether BT has antifibrotic properties has never been investigated. In this study, we report on the potential therapeutic effect and mechanism of BT on IPF. BT was shown to attenuate lung injury, inflammation, and fibrosis as well as preserve pulmonary function in bleomycin (BLM)-induced pulmonary fibrosis model. We next confirmed BT's ability to inhibit TGF-ß1-induced epithelial-mesenchymal transition (EMT) and myofibroblast activation (including differentiation, proliferation, migration, and extracellular matrix production) in vitro. Furthermore, transcriptional profile analysis indicated the Wnt signaling pathway as a potential target of BT. Mechanistically, BT effectively prevented ß-catenin from translocating into the nucleus to activate transcription of profibrotic genes. This was achieved by blunting TGF-ß1-induced increases in phosphorylated Akt Ser437 (p-Akt S437) and phosphorylated glycogen synthase kinase (GSK)-3ß Ser9 (p-GSK-3ß S9), thereby reactivating GSK-3ß. Additionally, the antifibrotic effects of BT were further validated in another in vivo model of radiation-induced pulmonary fibrosis. Collectively, these data demonstrated the potent antifibrotic actions of BT through inhibition of Akt/GSK-3ß/ß-catenin axis downstream of TGF-ß1. Thus, BT could be a potential option to be further explored in IPF treatment.
Assuntos
Bufanolídeos , Fibrose Pulmonar Idiopática , Fator de Crescimento Transformador beta1 , Animais , Humanos , Masculino , Camundongos , Células A549 , beta Catenina/metabolismo , Bleomicina/farmacologia , Bufanolídeos/farmacologia , Bufanolídeos/uso terapêutico , Transição Epitelial-Mesenquimal , Glicogênio Sintase Quinase 3 beta/metabolismo , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/tratamento farmacológico , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Via de Sinalização WntRESUMO
Cinobufagin (CBF) is a bufadienolide, which is a major active ingredient of toad venom. In recent years, CBF has attracted increasing attention due to its highly potent and multiple pharmacological activities. To better understand the status of research on CBF, we collated recent studies on CBF to provide a valuable reference for clinical researchers and practitioners. According to reports, CBF exhibits extensive pharmacological properties, including antitumor, analgesic, cardioprotection, immunomodulatory, antifibrotic, antiviral, and antiprotozoal effects. Studies on the pharmacological activity of CBF have mainly focused on its anticancer activity. It has been demonstrated that CBF has a therapeutic effect on liver cancer, osteosarcoma, melanoma, colorectal cancer, acute promyelocytic leukemia, nasopharyngeal carcinoma, multiple myeloma, gastric cancer, and breast cancer. However, the direct molecular targets of CBF are currently unknown. In addition, there are few reports on toxicological and pharmacokinetic of CBF. Subsequent studies focusing on these aspects will help promote the development and application of CBF in clinical practice.
Assuntos
Venenos de Anfíbios , Neoplasias Ósseas , Bufanolídeos , Neoplasias Nasofaríngeas , Humanos , Venenos de Anfíbios/farmacologia , Venenos de Anfíbios/uso terapêutico , Bufanolídeos/farmacologia , Bufanolídeos/uso terapêuticoRESUMO
Intrinsic or acquired drug resistance of tumor cells is the main cause of tumor chemotherapy failure and tumor-related death. Bufalin (BF) is the main active monomer component extracted from the Traditional Chinese Medicine Toad venom (secretions of glands behind the ears and epidermis of bufo gargarizans and Bufo Melanostictus Schneider). It is a cardiotonic steroid with broad-spectrum anti-cancer effects and has been widely used against various malignant tumors in clinical practice. Pharmacological studies also found that BF has the effect of reversing drug resistance, which provides a new perspective for the application of Traditional Chinese Medicine as a chemosensitizer in cancer therapy. This article provides an extensive search and summary of published research on mitigating drug resistance to BF and reviews its potential mechanisms.
Assuntos
Bufanolídeos , Neoplasias , Humanos , Biofarmácia , Bufanolídeos/farmacologia , Bufanolídeos/uso terapêutico , Neoplasias/tratamento farmacológico , Resistência a MedicamentosRESUMO
Toad venom is a traditional Chinese medicine that has a long history in treating infectious and inflammatory diseases, such as carbuncle, pharyngitis. As one of the major active components in toad venom, resibufogenin (RBG) possesses a variety of pharmacological activities, including lowering blood pressure, reducing proteinuria and preventing oxidative stress. But only its antitumor activity attracts widespread attention in these years. This study aimed to explore the nonnegligible anti-inflammatory activity of RBG in vivo and in vitro. In endotoxemia mice, a single intraperitoneal administration of RBG significantly lowered serum TNF-α, IL-6 and MCP-1 levels. In LPS-stimulated macrophages, RBG decreased LPS-induced pro-inflammatory mediators' productions (e.g., iNOS, IL-6, TNF-α and MCP-1) through suppressing their transcriptions. Mechanism study showed that RBG hindered IκBα phosphorylation and prevented nuclear translocation of p65, thus inactivating nuclear factor-κB (NF-κB) signaling. Concurrently, RBG also dampened activator protein-1 (AP-1) signaling through inhibiting the phosphorylation levels of c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK). Besides LPS (TLR4 ligand) model, RBG also inhibited Pam3CSK4 (TLR2 ligand)- or poly I:C (TLR3 ligand)-induced inflammatory reactions, suggesting that its target(s) site is(are) not on the cytomembrane. These findings not only support the pharmacological basis for the traditional use of toad venom in inflammatory diseases, but also provide a promising anti-inflammatory candidate.
Assuntos
Venenos de Anfíbios , Bufanolídeos , Animais , Camundongos , Venenos de Anfíbios/uso terapêutico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Bufanolídeos/uso terapêutico , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Interleucina-6/metabolismo , Ligantes , Lipopolissacarídeos , NF-kappa B/metabolismo , Células RAW 264.7 , Fator de Transcrição AP-1/metabolismo , Fator de Necrose Tumoral alfa/metabolismoRESUMO
Bufalin is an endogenous cardiotonic steroid, first discovered in toad venom but also found in the plasma of healthy humans, with anti-tumour activities in different cancer types. The current review is focused on its mechanisms of action and highlights its very large spectrum of effects both in vitro and in vivo. All leads to the conclusion that bufalin mediates its effects by affecting all the hallmarks of cancer and seems restricted to cancer cells avoiding side effects. Bufalin decreases cancer cell proliferation by acting on the cell cycle and inducing different mechanisms of cell death including apoptosis, necroptosis, autophagy and senescence. Bufalin also moderates metastasis formation by blocking migration and invasion as well as angiogenesis and by inducing a phenotype switch towards differentiation and decreasing cancer cell stemness. Regarding its various mechanisms of action in cancer cells, bufalin blocks overactivated signalling pathways and modifies cell metabolism. Moreover, bufalin gained lately a huge interest in the field of drug resistance by both reversing various drug resistance mechanisms and affecting the immune microenvironment. Together, these data support bufalin as a quite promising new anti-cancer drug candidate.
Assuntos
Venenos de Anfíbios , Antineoplásicos , Bufanolídeos , Glicosídeos Cardíacos , Neoplasias , Venenos de Anfíbios/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Bufanolídeos/farmacologia , Bufanolídeos/uso terapêutico , Glicosídeos Cardíacos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Neoplasias/tratamento farmacológico , Microambiente TumoralRESUMO
BACKGROUND: Currently, multiple myeloma (MM) is still an incurable plasma cell malignancy in urgent need of novel therapeutic targets and drugs. METHODS: Bufalin was known as a highly toxic but effective anti-cancer compound. We used Bufalin as a probe to screen its potential targets by proteome microarray, in which AHSA1 was the unique target of Bufalin. The effects of AHSA1 on cellular proliferation and drug resistance were determined by MTT, western blot, flow cytometry, immunohistochemistry staining and xenograft model in vivo. The potential mechanisms of Bufalin and KU-177 in AHSA1/HSP90 were verified by co-immunoprecipitation, mass spectrometry, site mutation and microscale thermophoresis assay. RESULTS: AHSA1 expression was increased in MM samples compared to normal controls, which was significantly associated with MM relapse and poor outcomes. Furthermore, AHSA1 promoted MM cell proliferation and proteasome inhibitor (PI) resistance in vitro and in vivo. Mechanism exploration indicated that AHSA1 acted as a co-chaperone of HSP90A to activate CDK6 and PSMD2, which were key regulators of MM proliferation and PI resistance respectively. Additionally, we identified AHSA1-K137 as the specific binding site of Bufalin on AHSA1, mutation of which decreased the interaction of AHSA1 with HSP90A and suppressed the function of AHSA1 on mediating CDK6 and PSMD2. Intriguingly, we discovered KU-177, an AHSA1 selective inhibitor, and found KU-177 targeting the same site as Bufalin. Bufalin and KU-177 treatments hampered the proliferation of flow MRD-positive cells in both primary MM and recurrent MM patient samples. Moreover, KU-177 abrogated the cellular proliferation and PI resistance induced by elevated AHSA1, and decreased the expression of CDK6 and PSMD2. CONCLUSIONS: We demonstrate that AHSA1 may serve as a promising therapeutic target for cellular proliferation and proteasome inhibitor resistance in multiple myeloma.
Assuntos
Antineoplásicos/uso terapêutico , Bufanolídeos/uso terapêutico , Perfilação da Expressão Gênica/métodos , Chaperonas Moleculares/metabolismo , Mieloma Múltiplo/tratamento farmacológico , Inibidores de Proteassoma/uso terapêutico , Animais , Antineoplásicos/farmacologia , Bufanolídeos/farmacologia , Proliferação de Células , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Endogâmicos NOD , Mieloma Múltiplo/patologia , Inibidores de Proteassoma/farmacologia , TransfecçãoRESUMO
DNA topoisomerases are proved cancer therapeutic targets with clinically successful anticancer drugs for decades. However, the role of RNA topoisomerase (TOP3ß) remained mysterious especially in cancer, and no targeted agent has been reported yet. In a target identification assay of anti-cancer compound using a modified DrugTargetSeqR strategy, mutation of TOP3B was detected in cancer cells acquired resistance to cinobufagin (CBG), a key compound of Huachansu that has been approved for cancer therapy in China. We demonstrated that CBG directly engaged with TOP3ß, and promoted TOP3ß depletion in wildtype but not mutant cancer cells. Notably, knockout of TOP3ß in cancer cells significantly reduced tumor enlargement but not initiation, and inhibited colony formation upon nutrient deprivation. We also demonstrated that CBG induced formation of stress granule, RNA-loop and asymmetric DNA damages in cancer cells, and all these phenotypes were significantly attenuated in TOP3B knockout cells. Of note, examination of a panel of cancer cell lines revealed associations among cell growth inhibition and induction of DNA damage as well as TOP3B depletion upon CBG treatment. Our findings not only highlighted TOP3ß as a promising therapeutic target of cancer, but also identified CBG as a lead chemical inhibitor of TOP3ß for cancer therapy.
Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Bufanolídeos/uso terapêutico , DNA Topoisomerases Tipo I , Neoplasias/tratamento farmacológico , Inibidores da Topoisomerase I/uso terapêutico , Animais , Antineoplásicos Fitogênicos/farmacologia , Bufanolídeos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , DNA Topoisomerases Tipo I/genética , DNA Topoisomerases Tipo I/metabolismo , Humanos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Inibidores da Topoisomerase I/farmacologiaRESUMO
Hepatocellular carcinoma (HCC) is the major type of primary liver cancer and a leading cause of cancer-related deaths worldwide. Cinobufotalin (CBF) is extracted from the skin secretion of the giant toad and clinically used for the treatment of liver cancer, but its molecular mechanism of anti-cancer in HCC has not yet been elucidated. Here, we showed CBF effectively promoted cell apoptosis, induced cell cycle G2-M arrest, inhibited cell proliferation and lipogenesis. Consistently, the lipogenesis ability of xenograft examined by 11C-acetate micro-PET/CT imaging, and the tumor growth rate was notably declined in a centration-dependent manner. The fatty acid profiles showed saturated and mono-unsaturated fatty acid significantly decreased after CBF treatment. Mechanistically, CBF selectively inhibited the expression of SREBP1 and interacted with SREBP1 to prevent it from sterol regulatory elements (SREs), thus inhibiting the expression of lipogenic enzymes. Collectively, our study demonstrates that CBF is a potent native compound that remarkably inhibits HCC lipogenesis and tumorigenesis. CBF may possess this therapeutic potential though interfering with de novo lipid synthesis via SREBP1.
Assuntos
Bufanolídeos/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Lipogênese/efeitos dos fármacos , Neoplasias Hepáticas/tratamento farmacológico , Proteína de Ligação a Elemento Regulador de Esterol 1/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Bufanolídeos/uso terapêutico , Carcinogênese/efeitos dos fármacos , Carcinogênese/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem da Fase G2 do Ciclo Celular/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Lipogênese/genética , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Simulação de Acoplamento Molecular , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Syndecan-4 (SDC4) functions as a major endogenous membrane-associated receptor and widely regulates cytoskeleton, cell adhesion, and cell migration in human tumorigenesis and development, which represents a charming anti-cancer therapeutic target. Here, SDC4 was identified as a direct cellular target of small-molecule bufalin with anti-hepatocellular carcinoma (HCC) activity. Mechanism studies revealed that bufalin directly bond to SDC4 and selectively increased SDC4 interaction with substrate protein DEAD-box helicase 23 (DDX23) to induce HCC genomic instability. Meanwhile, pharmacological promotion of SDC4/DDX23 complex formation also inactivated matrix metalloproteinases (MMPs) and augmented p38/JNK MAPKs phosphorylation, which are highly associated with HCC proliferation and migration. Notably, specific knockdown of SDC4 or DDX23 markedly abolished bufalin-dependent inhibition of HCC proliferation and migration, indicating SDC4/DDX23 signaling axis is highly involved in the HCC process. Our results indicate that membrane-spanning proteoglycan SDC4 is a promising druggable target for HCC, and pharmacological regulation of SDC4/DDX23 signaling axis with small-molecule holds great potential to benefit HCC patients.