Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.233
Filtrar
1.
Inhal Toxicol ; 36(4): 261-274, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38836331

RESUMO

OBJECTIVE: Our work is focused on tungsten, considered as an emerging contaminant. Its environmental dispersion is partly due to mining and military activities. Exposure scenario can also be occupational, in areas such as the hard metal industry and specific nuclear facilities. Our study investigated the cerebral effects induced by the inhalation of tungsten particles. METHODS: Inhalation exposure campaigns were carried out at two different concentrations (5 and 80 mg/m3) in single and repeated modes (4 consecutive days) in adult rats within a nose-only inhalation chamber. Processes involved in brain toxicity were investigated 24 h after exposure. RESULTS AND DISCUSSION: Site-specific effects in terms of neuroanatomy and concentration-dependent changes in specific cellular actors were observed. Results obtained in the olfactory bulb suggest a potential early effect on the survival of microglial cells. Depending on the mode of exposure, these cells showed a decrease in density accompanied by an increase in an apoptotic marker. An abnormal phenotype of the nuclei of mature neurons, suggesting neuronal suffering, was also observed in the frontal cortex, and can be linked to the involvement of oxidative stress. The differential effects observed according to exposure patterns could involve two components: local (brain-specific) and/or systemic. Indeed, tungsten, in addition to being found in the lungs and kidneys, was present in the brain of animals exposed to the high concentration. CONCLUSION: Our data question the perceived innocuity of tungsten relative to other metals and raise hypotheses regarding possible adaptive or neurotoxic mechanisms that could ultimately alter neuronal integrity.


Assuntos
Encéfalo , Exposição por Inalação , Ratos Wistar , Tungstênio , Animais , Tungstênio/toxicidade , Masculino , Exposição por Inalação/efeitos adversos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Ratos , Biomarcadores/metabolismo , Microglia/efeitos dos fármacos , Microglia/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Bulbo Olfatório/efeitos dos fármacos , Bulbo Olfatório/metabolismo , Apoptose/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos
2.
Int J Mol Sci ; 25(10)2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38791326

RESUMO

Chronic environmental exposure to toxic heavy metals, which often occurs as a mixture through occupational and industrial sources, has been implicated in various neurological disorders, including Parkinsonism. Vanadium pentoxide (V2O5) typically presents along with manganese (Mn), especially in welding rods and high-capacity batteries, including electric vehicle batteries; however, the neurotoxic effects of vanadium (V) and Mn co-exposure are largely unknown. In this study, we investigated the neurotoxic impact of MnCl2, V2O5, and MnCl2-V2O5 co-exposure in an animal model. C57BL/6 mice were intranasally administered either de-ionized water (vehicle), MnCl2 (252 µg) alone, V2O5 (182 µg) alone, or a mixture of MnCl2 (252 µg) and V2O5 (182 µg) three times a week for up to one month. Following exposure, we performed behavioral, neurochemical, and histological studies. Our results revealed dramatic decreases in olfactory bulb (OB) weight and levels of tyrosine hydroxylase, dopamine, and 3,4-dihydroxyphenylacetic acid in the treatment groups compared to the control group, with the Mn/V co-treatment group producing the most significant changes. Interestingly, increased levels of α-synuclein expression were observed in the substantia nigra (SN) of treated animals. Additionally, treatment groups exhibited locomotor deficits and olfactory dysfunction, with the co-treatment group producing the most severe deficits. The treatment groups exhibited increased levels of the oxidative stress marker 4-hydroxynonenal in the striatum and SN, as well as the upregulation of the pro-apoptotic protein PKCδ and accumulation of glomerular astroglia in the OB. The co-exposure of animals to Mn/V resulted in higher levels of these metals compared to other treatment groups. Taken together, our results suggest that co-exposure to Mn/V can adversely affect the olfactory and nigral systems. These results highlight the possible role of environmental metal mixtures in the etiology of Parkinsonism.


Assuntos
Compostos de Manganês , Manganês , Camundongos Endogâmicos C57BL , Vanádio , Animais , Camundongos , Manganês/toxicidade , Vanádio/toxicidade , Masculino , Bulbo Olfatório/metabolismo , Bulbo Olfatório/efeitos dos fármacos , Bulbo Olfatório/patologia , Dopamina/metabolismo , Compostos de Vanádio , Estresse Oxidativo/efeitos dos fármacos , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/induzido quimicamente , alfa-Sinucleína/metabolismo , Cloretos/toxicidade , Cloretos/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Aldeídos/metabolismo , Substância Negra/metabolismo , Substância Negra/efeitos dos fármacos , Substância Negra/patologia , Modelos Animais de Doenças , Ácido 3,4-Di-Hidroxifenilacético/metabolismo
3.
Front Neural Circuits ; 18: 1408187, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38818309

RESUMO

Fetal Alcohol Spectrum Disorders (FASD), resulting from maternal alcohol consumption during pregnancy, are a prominent non-genetic cause of physical disabilities and brain damage in children. Alongside common symptoms like distinct facial features and neurocognitive deficits, sensory anomalies, including olfactory dysfunction, are frequently noted in FASD-afflicted children. However, the precise mechanisms underpinning the olfactory abnormalities induced by prenatal alcohol exposure (PAE) remain elusive. Utilizing rodents as a model organism with varying timing, duration, dosage, and administration routes of alcohol exposure, prior studies have documented impairments in olfactory system development caused by PAE. Many reported a reduction in the olfactory bulb (OB) volume accompanied by reduced OB neuron counts, suggesting the OB is a brain region vulnerable to PAE. In contrast, no significant olfactory system defects were observed in some studies, though subtle alterations might exist. These findings suggest that the timing, duration, and extent of fetal alcohol exposure can yield diverse effects on olfactory system development. To enhance comprehension of PAE-induced olfactory dysfunctions, this review summarizes key findings from previous research on the olfactory systems of offspring prenatally exposed to alcohol.


Assuntos
Transtornos do Espectro Alcoólico Fetal , Efeitos Tardios da Exposição Pré-Natal , Gravidez , Animais , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Feminino , Transtornos do Espectro Alcoólico Fetal/fisiopatologia , Transtornos do Espectro Alcoólico Fetal/patologia , Humanos , Etanol/efeitos adversos , Etanol/administração & dosagem , Etanol/farmacologia , Bulbo Olfatório/efeitos dos fármacos , Bulbo Olfatório/crescimento & desenvolvimento , Condutos Olfatórios/efeitos dos fármacos , Condutos Olfatórios/crescimento & desenvolvimento
4.
Neurotoxicology ; 102: 96-105, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38582332

RESUMO

BACKGROUND: Manganese (Mn) is an essential micronutrient as well as a well-established neurotoxicant. Occupational and environmental exposures may bypass homeostatic regulation and lead to increased systemic Mn levels. Translocation of ultrafine ambient airborne particles via nasal neuronal pathway to olfactory bulb and tract may be an important pathway by which Mn enters the central nervous system. OBJECTIVE: To measure olfactory tract/bulb tissue metal concentrations in Mn-exposed and non-exposed mineworkers. METHODS: Using inductively coupled plasma-mass spectrometry (ICP-MS), we measured and compared tissue metal concentrations in unilateral olfactory tracts/bulbs of 24 Mn-exposed and 17 non-exposed South African mineworkers. We used linear regression to investigate the association between cumulative Mn exposures and olfactory tract/bulb Mn concentration. RESULTS: The difference in mean olfactory tract/bulb Mn concentrations between Mn-exposed and non-Mn exposed mineworkers was 0.16 µg/g (95% CI -0.11, 0.42); but decreased to 0.09 µg/g (95% CI 0.004, 0.18) after exclusion of one influential observation. Olfactory tract/bulb metal concentration and cumulative Mn exposure suggested there may be a positive association; for each mg Mn/m3-year there was a 0.05 µg/g (95% CI 0.01, 0.08) greater olfactory tract/bulb Mn concentration overall, but -0.003 (95% CI -0.02, 0.02) when excluding the three influential observations. Recency of Mn exposure was not associated with olfactory tract/bulb Mn concentration. CONCLUSIONS: Our findings suggest that Mn-exposed mineworkers might have higher olfactory tract/bulb tissue Mn concentrations than non-Mn exposed mineworkers, and that concentrations might depend more on cumulative dose than recency of exposure.


Assuntos
Manganês , Exposição Ocupacional , Bulbo Olfatório , Humanos , Adulto , Masculino , Exposição Ocupacional/efeitos adversos , Pessoa de Meia-Idade , Bulbo Olfatório/efeitos dos fármacos , Bulbo Olfatório/metabolismo , Condutos Olfatórios/efeitos dos fármacos , Condutos Olfatórios/metabolismo , Feminino , Mineração , África do Sul , Adulto Jovem
5.
Auris Nasus Larynx ; 51(3): 517-524, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38522356

RESUMO

OBJECTIVE: Periglomerular and granule cells in the adult mammalian olfactory bulb modulate olfactory signal transmission. These cells originate from the subventricular zone, migrate to the olfactory bulb via the Rostral Migratory Stream (RMS), and differentiate into mature cells within the olfactory bulb throughout postnatal life. While the regulation of neuroblast development is known to be affected by external stimuli, there is a lack of information concerning changes that occur during the recovery process after injury caused by external stimuli. To address this gap in research, the present study conducted histological observations to investigate changes in the olfactory bulb and RMS occurring after the degeneration and regeneration of olfactory neurons. METHODS: To create a model of olfactory neurodegeneration, adult mice were administered methimazole intraperitoneally. Nasal tissue and whole brains were removed 3, 7, 14 and 28 days after methimazole administration, and EdU was administered 2 and 4 h before removal of these tissues to monitor dividing cells in the RMS. Methimazole-untreated mice were used as controls. Olfactory nerve fibers entering the olfactory glomerulus were observed immunohistochemically using anti-olfactory marker protein. In the brain tissue, the entire RMS was observed and the volume and total number of cells in the RMS were measured. In addition, the number of neuroblasts and dividing neuroblasts passing through the RMS were measured using anti-doublecortin and anti-EdU antibodies, respectively. Statistical analysis was performed using the Tukey test. RESULTS: Olfactory epithelium degenerated was observed after methimazole administration, and recovered after 28 days. In the olfactory glomeruli, degeneration of OMP fibers began after methimazole administration, and after day 14, OMP fibers were reduced or absent by day 28, and overall OMP positive fibers were less than 20%. Glomerular volume tended to decrease after methimazole administration and did not appear to recover, even 28 days after recovery of the olfactory epithelium. In the RMS, EdU-positive cells decreased on day 3 and began to increase on day 7. However, they did not recover to the same levels as the control methimazole-untreated mice even after 28 days. CONCLUSION: These results suggest that the division and maturation of neuroblasts migrating from the RMS was suppressed by olfactory nerve degeneration or the disruption of olfactory input.


Assuntos
Movimento Celular , Metimazol , Bulbo Olfatório , Animais , Bulbo Olfatório/patologia , Bulbo Olfatório/efeitos dos fármacos , Bulbo Olfatório/citologia , Metimazol/farmacologia , Camundongos , Antitireóideos/farmacologia , Nervo Olfatório/patologia , Proteína de Marcador Olfatório/metabolismo , Modelos Animais de Doenças , Masculino
6.
Horm Behav ; 162: 105527, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38492348

RESUMO

Olfactory communication is triggered by pheromones that profoundly influence neuroendocrine responses to drive social interactions. Two principal olfactory systems process pheromones: the main and the vomeronasal or accessory system. Prolactin receptors are expressed in both systems suggesting a participation in the processing of olfactory information. We previously reported that prolactin participates in the sexual and olfactory bulb maturation of females. Therefore, we explored the expression of prolactin receptors within the olfactory bulb during sexual maturation and the direct responses of prolactin upon pheromonal exposure. Additionally, we assessed the behavioral response of adult females exposed to male sawdust after prolactin administration and the consequent activation of main and accessory olfactory bulb and their first central relays, the piriform cortex and the medial amygdala. Last, we investigated the intracellular pathway activated by prolactin within the olfactory bulb. Here, prolactin receptor expression remained constant during all maturation stages within the main olfactory bulb but decreased in adulthood in the accessory olfactory bulb. Behaviorally, females that received prolactin actively explored the male stimulus. An increased cFos activation in the amygdala and in the glomerular cells of the whole olfactory bulb was observed, but an augmented response in the mitral cells was only found within the main olfactory bulb after prolactin administration and the exposure to male stimulus. Interestingly, the ERK pathway was upregulated in the main olfactory bulb after exposure to a male stimulus. Overall, our results suggest that, in female mice, prolactin participates in the processing of chemosignals and behavioral responses by activating the main olfactory system and diminishing the classical vomeronasal response to pheromones.


Assuntos
Bulbo Olfatório , Prolactina , Comportamento Sexual Animal , Animais , Bulbo Olfatório/efeitos dos fármacos , Bulbo Olfatório/metabolismo , Bulbo Olfatório/fisiologia , Feminino , Prolactina/metabolismo , Prolactina/farmacologia , Camundongos , Masculino , Comportamento Sexual Animal/fisiologia , Comportamento Sexual Animal/efeitos dos fármacos , Receptores da Prolactina/metabolismo , Maturidade Sexual/fisiologia , Comportamento Social , Feromônios/farmacologia , Tonsila do Cerebelo/efeitos dos fármacos , Tonsila do Cerebelo/metabolismo
7.
Niger J Physiol Sci ; 38(2): 135-143, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38696691

RESUMO

The African giant rat, AGR (Cricetomys gambianus) is a unique rodent known for its keen sense of smell which has enabled its use in the diagnosis of tuberculosis and demining activities in war torn countries. This keen sense of smell and the ability to navigate tight spaces are skills modulated by the olfactory bulb and cerebellum. While the brain is generally susceptible to environmental pollutants such as heavy metals, vanadium has predilection for these two brain regions. This work was thus designed to investigate the probable neurotoxic effect of vanadium on the neuronal cytoarchitecture of the cerebellum and olfactory bulb in this rodent. To achieve this, twelve adults male AGRs were divided into two groups (vanadium and control groups) and were given intraperitoneal injections of 3mg/kg body weight sodium metavanadate and normal saline respectively for 14 days. After which they were sacrificed, and brains harvested for histological investigations using Nissl and Golgi staining techniques. Results from our experiment revealed Purkinje cell degeneration and pyknosis as revealed by a lower intact-pyknotic cell (I-P) ratio, higher pyknotic Purkinje cell density and poor dendritic arborizations in the molecular layer of the cerebellum in the vanadium treated group. In the olfactory bulb, neuronal loss in the glomerular layer was observed as shrunken glomeruli. These neuronal changes have been linked to deficits in motor function and disruption of odor transduction in the olfactory bulb. This work has further demonstrated the neurotoxic effects of vanadium on the cerebellum and olfactory bulb of the AGR and the likely threat it may pose to the translational potentials of this rodent. We therefore propose the use of this rodent as a suitable model for better understanding vanadium induced olfactory and cerebellar dysfunctions.


Assuntos
Cerebelo , Bulbo Olfatório , Vanádio , Animais , Bulbo Olfatório/efeitos dos fármacos , Bulbo Olfatório/patologia , Masculino , Vanádio/toxicidade , Cerebelo/efeitos dos fármacos , Cerebelo/patologia , Síndromes Neurotóxicas/patologia , Síndromes Neurotóxicas/fisiopatologia , Ratos , Células de Purkinje/efeitos dos fármacos , Células de Purkinje/patologia
8.
Toxins (Basel) ; 14(2)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35202123

RESUMO

Olfactory deficits occur as early non-motor symptoms of idiopathic Parkinson's disease (PD) in humans. The first central relay of the olfactory pathway, the olfactory bulb (OB), depends, among other things, on an intact, functional crosstalk between dopaminergic interneurons and dopamine receptors (D2/D3R). In rats, hemiparkinsonism (hemi-PD) can be induced by unilateral injection of 6-hydroxydopamine (6-OHDA) into the medial forebrain bundle (MFB), disrupting dopaminergic neurons of the substantia nigra pars compacta (SNpc). In a previous study, we showed that subsequent injection of botulinum neurotoxin-A (BoNT-A) into the striatum can reverse most of the pathological motor symptoms and normalize the D2/D3R availability. To determine whether this rat model is suitable to explain olfactory deficits that occur in humans with PD, we examined the availability of D2/D3R by longitudinal [18F]fallypride-PET/CT, the density of tyrosine hydroxylase immunoreactivity in the OB, olfactory performance by an orienting odor identification test adapted for rats, and a connectome analysis. PET/CT and immunohistochemical data remained largely unchanged after 6-OHDA lesion in experimental animals, suggesting that outcomes of the 6-OHDA hemi-PD rat model do not completely explain olfactory deficits in humans. However, after subsequent ipsilateral BoNT-A injection into the striatum, a significant 8.5% increase of the D2/D3R availability in the ipsilateral OB and concomitant improvement of olfactory performance were detectable. Based on tract-tracing meta-analysis, we speculate that this may be due to indirect connections between the striatum and the OB.


Assuntos
Toxinas Botulínicas Tipo A/administração & dosagem , Bulbo Olfatório/efeitos dos fármacos , Transtornos Parkinsonianos/metabolismo , Receptores de Dopamina D2/metabolismo , Anfetamina , Animais , Apomorfina , Comportamento Animal/efeitos dos fármacos , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Injeções , Masculino , Bulbo Olfatório/metabolismo , Oxidopamina , Transtornos Parkinsonianos/induzido quimicamente , Ratos Wistar
9.
Development ; 149(1)2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-35023540

RESUMO

Estrogens are well-known to regulate development of sexual dimorphism of the brain; however, their role in embryonic brain development prior to sex-differentiation is unclear. Using estrogen biosensor zebrafish models, we found that estrogen activity in the embryonic brain occurs from early neurogenesis specifically in a type of glia in the olfactory bulb (OB), which we name estrogen-responsive olfactory bulb (EROB) cells. In response to estrogen, EROB cells overlay the outermost layer of the OB and interact tightly with olfactory sensory neurons at the olfactory glomeruli. Inhibiting estrogen activity using an estrogen receptor antagonist, ICI182,780 (ICI), and/or EROB cell ablation impedes olfactory glomerular development, including the topological organisation of olfactory glomeruli and inhibitory synaptogenesis in the OB. Furthermore, activation of estrogen signalling inhibits both intrinsic and olfaction-dependent neuronal activity in the OB, whereas ICI or EROB cell ablation results in the opposite effect on neuronal excitability. Altering the estrogen signalling disrupts olfaction-mediated behaviour in later larval stage. We propose that estrogens act on glia to regulate development of OB circuits, thereby modulating the local excitability in the OB and olfaction-mediated behaviour.


Assuntos
Estrogênios/metabolismo , Neurogênese , Neuroglia/citologia , Bulbo Olfatório/embriologia , Animais , Antagonistas do Receptor de Estrogênio/farmacologia , Fulvestranto/farmacologia , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Bulbo Olfatório/citologia , Bulbo Olfatório/efeitos dos fármacos , Neurônios Receptores Olfatórios/citologia , Neurônios Receptores Olfatórios/metabolismo , Receptores de Estrogênio/antagonistas & inibidores , Sinapses/metabolismo , Sinapses/fisiologia , Peixe-Zebra
10.
Behav Brain Res ; 417: 113597, 2022 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-34563601

RESUMO

Volatile solvents exposure can result in various behavioral impairments that have been partly associated to altered adult hippocampal neurogenesis. Despite recent evidence supporting this association, few studies have been devoted to examine the impact on olfactory functioning and olfactory bulb (OB) neurogenesis, although olfactory system is directly in contact with volatile molecules. Thus, this study was designed to evaluate in adult mice the potential modifications of the olfactory functioning after acute (1 day), subchronic (6 weeks) and chronic (12 weeks) exposure to thinner vapor at both behavioral and cellular levels. Firstly, behavioral evaluations showed that chronic thinner exposure impacts on odor detection ability of treated mice but does not affect mice ability to efficiently discriminate between two different odors. Moreover, chronic thinner exposure produces impairment in the olfactory-mediated associative memory. Secondly, analysis of the effects of thinner exposure in the subventricular zone (SVZ) of the lateral ventricle and in the OB revealed that thinner treatments do not induce apoptosis nor glial activation. Thirdly, immunohistochemical quantification of different markers of adult olfactory neurogenesis showed that inhalant treatments do not change the number of proliferating progenitors in the SVZ and the rostral migratory stream (RMS), as well as the number of newborn cells reaching and integrating in the OB circuitry. Altogether, our data highlight that the impaired olfactory performances in chronically-exposed mice are not associated to an alteration of adult neurogenesis in the SVZ-OB system.


Assuntos
Abuso de Inalantes/fisiopatologia , Neurogênese/efeitos dos fármacos , Transtornos do Olfato/fisiopatologia , Bulbo Olfatório/efeitos dos fármacos , Compostos Orgânicos Voláteis/toxicidade , Animais , Ventrículos Laterais/efeitos dos fármacos , Camundongos , Olfato/efeitos dos fármacos
11.
J Neurochem ; 160(3): 305-324, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34905223

RESUMO

Extracellular adenosine plays prominent roles in the brain in both physiological and pathological conditions. Adenosine can be generated following the degradation of extracellular nucleotides by various types of ectonucleotidases. Several ectonucleotidases are present in the brain parenchyma: ecto-nucleotide triphosphate diphosphohydrolases 1 and 3 (NTPDase 1 and 3), ecto-nucleotide pyrophosphatase/phosphodiesterase 1 (NPP 1), ecto-5'-nucleotidase (eN), and tissue non-specific alkaline phosphatase (TNAP, whose function in the brain has received little attention). Here we examined, in a living brain preparation, the role of these ectonucleotidases in generating extracellular adenosine. We recorded local field potentials evoked by electrical stimulation of the lateral olfactory tract in the mouse piriform cortex in vitro. Variations in adenosine level were evaluated by measuring changes in presynaptic inhibition generated by adenosine A1 receptors (A1Rs) activation. A1R-mediated presynaptic inhibition was present endogenously and was enhanced by bath-applied AMP and ATP. We hypothesized that inhibiting ectonucleotidases would reduce extracellular adenosine concentration, which would result in a weakening of presynaptic inhibition. However, inhibiting TNAP had no effect in controlling endogenous adenosine action and no effect on presynaptic inhibition induced by bath-applied AMP. Furthermore, contrary to our expectation, inhibiting TNAP reinforced, rather than reduced, presynaptic inhibition induced by bath-applied ATP. Similarly, inhibition of NTPDase 1 and 3, NPP1, and eN induced stronger, rather than weaker, presynaptic inhibition, both in endogenous condition and with bath-applied ATP and AMP. Consequently, attempts to suppress the functions of extracellular adenosine by blocking its extracellular synthesis in living brain tissue could have functional impacts opposite to those anticipated.


Assuntos
Córtex Cerebral/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Nucleotidases/antagonistas & inibidores , Transmissão Sináptica/efeitos dos fármacos , 5'-Nucleotidase/antagonistas & inibidores , Adenosina/metabolismo , Agonistas do Receptor A1 de Adenosina/farmacologia , Monofosfato de Adenosina/farmacologia , Trifosfato de Adenosina/farmacologia , Fosfatase Alcalina/antagonistas & inibidores , Animais , Estimulação Elétrica , Potenciais Evocados/efeitos dos fármacos , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Bulbo Olfatório/efeitos dos fármacos , Receptor A1 de Adenosina/efeitos dos fármacos , Receptor A1 de Adenosina/metabolismo
12.
Cell Rep ; 37(13): 110165, 2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-34965425

RESUMO

Ongoing neural activity has been observed across several brain regions and is thought to reflect the internal state of the brain. Yet, it is important to understand how ongoing neural activity interacts with sensory experience and shapes sensory representations. Here, we show that the projection neurons of the fruit fly antennal lobe exhibit spatiotemporally organized ongoing activity. After repeated exposure to odors, we observe a gradual and cumulative decrease in the amplitude and number of calcium events occurring in the absence of odor stimulation, as well as a reorganization of correlations between olfactory glomeruli. Accompanying these plastic changes, we find that repeated odor experience decreases trial-to-trial variability and enhances the specificity of odor representations. Our results reveal an odor-experience-dependent modulation of ongoing and sensory-evoked activity at peripheral levels of the fruit fly olfactory system.


Assuntos
Antenas de Artrópodes/fisiologia , Drosophila melanogaster/fisiologia , Interneurônios/fisiologia , Plasticidade Neuronal , Odorantes/análise , Bulbo Olfatório/fisiologia , Olfato , Animais , Antenas de Artrópodes/efeitos dos fármacos , Cálcio/metabolismo , Drosophila melanogaster/efeitos dos fármacos , Feminino , Interneurônios/efeitos dos fármacos , Bulbo Olfatório/efeitos dos fármacos , Condutos Olfatórios
13.
Neurotoxicology ; 87: 174-181, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34624383

RESUMO

Available evidence indicates that dopamine D2 receptor modulates the neurotoxic effects induced by glutamate. However, neurotoxicity mediated by AMPA-subtype glutamate receptor has rarely been studied in the olfactory bulb. This study mainly explores the neuroprotective effects of dopamine D2 receptor agonist on AMPA receptor-mediated neurotoxicity in the olfactory bulb in a mouse model of allergic rhinitis (AR) with olfactory dysfunction (OD). In our study, we found that AR with OD was closely associated with increased surface expression of the AMPA receptor GluR1, reduced surface expression of GluR2, and apoptosis damage in the olfactory bulb in vivo. Quinpirole (a dopamine D2 receptor agonist) improved olfactory function in mice, ameliorated apoptosis injury in the olfactory bulb but not in the olfactory mucosa, and inhibited the internalization of GluR2-containing AMPA receptor in vitro and in vivo. In addition, phosphorylation plays a crucial role in the regulation of AMPA receptor trafficking. Our results showed that quinpirole reduced the phosphorylation of GluR1 S845 and GluR2 S880 in olfactory bulb neurons in vitro, but it had no obvious effect on GluR1 S831. Therefore, dopamine D2 receptor agonist may inhibit the phosphorylation of GluR1 S845 and GluR2 S880, thereby reducing AMPA receptor-mediated neurotoxicity and alleviating neurotoxic injury to the olfactory bulb caused by AR.


Assuntos
Doenças Neuroinflamatórias/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Bulbo Olfatório/efeitos dos fármacos , Receptores de Dopamina D2/agonistas , Rinite Alérgica/tratamento farmacológico , Animais , Western Blotting , Técnicas de Cocultura , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Feminino , Imunofluorescência , Marcação In Situ das Extremidades Cortadas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Doenças Neuroinflamatórias/etiologia , Doenças Neuroinflamatórias/patologia , Neurônios/efeitos dos fármacos , Bulbo Olfatório/patologia , Quimpirol/uso terapêutico , Receptores de AMPA/efeitos dos fármacos , Rinite Alérgica/complicações , Rinite Alérgica/patologia , Olfato/efeitos dos fármacos
14.
Eur J Pharm Biopharm ; 167: 189-200, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34333085

RESUMO

Both dopamine (DA) loaded Solid Lipid Nanoparticles (SLN) and liposomes (Lip), designed for intranasal administration of the neurotransmitter as an innovative Parkinson disease treatment, were already characterized in vitro in some extent by us (Trapani et al., 2018a and Cometa et al., 2020, respectively). Herein, to gain insight into the structure of SLN, X-ray Photoelectron Spectroscopy Analysis was carried out and DA-SLN (SLN 1) were found to exhibit high amounts of the neurotransmitter on the surface, whereas the external side of Glycol Chitosan (GCS) containing SLN (SLN 2) possessed only few amounts. However, SLN 2 were characterized by the highest encapsulation DA efficiency (i.e., 81%). Furthermore, in view of intranasal administration, mucoadhesion tests in vitro were also conducted for SLN and Lip formulations, evidencing high muchoadesive effect exerted by SLN 2. Concerning ex-vivo studies, SLN and Lip were found to be safe for Olfactory Ensheathing Cells and fluorescent SLN 2 were taken up in a dose-dependent manner reaching the 100% of positive cells, while Lip 2 (chitosan-glutathione-coated) were internalised by 70% OECs with six-times more lipid concentration. Hence, SLN 2 formulation containing DA and GCS may constitute interesting formulations for further studies and promising dosage form for non-invasive nose-to-brain neurotransmitter delivery.


Assuntos
Dopaminérgicos/administração & dosagem , Dopamina/administração & dosagem , Portadores de Fármacos/química , Lipossomos , Nanopartículas , Adesividade , Administração Intranasal , Animais , Células Cultivadas , Quitosana/química , Dopamina/farmacocinética , Dopamina/toxicidade , Dopaminérgicos/farmacocinética , Dopaminérgicos/toxicidade , Relação Dose-Resposta a Droga , Lipídeos/química , Camundongos , Bulbo Olfatório/citologia , Bulbo Olfatório/efeitos dos fármacos , Bulbo Olfatório/metabolismo , Espectroscopia Fotoeletrônica
15.
J Neurochem ; 158(5): 1186-1198, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34338310

RESUMO

During adult rodent life, newborn neurons are added to the olfactory bulb (OB) in a tightly controlled manner. Upon arrival in the OB, input synapses from the local bulbar network and the higher olfactory cortex precede the formation of functional output synapses, indicating a possible role for these regions in newborn neuron survival. An interplay between the environment and the piriform cortex in the regulation of newborn neuron survival has been suggested. However, the specific network and the neuronal cell types responsible for this effect have not been elucidated. Furthermore, the role of the other olfactory cortical areas in this process is not known. Here we demonstrate that pyramidal neurons in the mouse anterior olfactory nucleus, the first cortical area for odor processing, have a key role in the survival of newborn neurons. Using DREADD (Designer Receptors Exclusively Activated by Designer Drugs) technology, we applied chronic stimulation to the anterior olfactory nucleus and observed a decrease in newborn neurons in the OB through induction of apoptosis. These findings provide further insight into the network regulating neuronal survival in adult neurogenesis and strengthen the importance of the surrounding network for sustained integration of new neurons.


Assuntos
Neurogênese/fisiologia , Neurônios/fisiologia , Bulbo Olfatório/citologia , Bulbo Olfatório/fisiologia , Córtex Olfatório/citologia , Córtex Olfatório/fisiologia , Fatores Etários , Animais , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Neurogênese/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Odorantes , Bulbo Olfatório/efeitos dos fármacos , Córtex Olfatório/efeitos dos fármacos , Condutos Olfatórios/citologia , Condutos Olfatórios/efeitos dos fármacos , Condutos Olfatórios/fisiologia , Olfato/fisiologia
16.
Front Neural Circuits ; 15: 662349, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34305536

RESUMO

Our sensory systems such as the olfactory and visual systems are the target of neuromodulatory regulation. This neuromodulation starts at the level of sensory receptors and extends into cortical processing. A relatively new group of neuromodulators includes cannabinoids. These form a group of chemical substances that are found in the cannabis plant. Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) are the main cannabinoids. THC acts in the brain and nervous system like the chemical substances that our body produces, the endogenous cannabinoids or endocannabinoids, also nicknamed the brain's own cannabis. While the function of the endocannabinoid system is understood fairly well in limbic structures such as the hippocampus and the amygdala, this signaling system is less well understood in the olfactory pathway and the visual system. Here, we describe and compare endocannabinoids as signaling molecules in the early processing centers of the olfactory and visual system, the olfactory bulb, and the retina, and the relevance of the endocannabinoid system for synaptic plasticity.


Assuntos
Canabinoides/metabolismo , Plasticidade Neuronal/fisiologia , Bulbo Olfatório/metabolismo , Olfato/fisiologia , Vias Visuais/metabolismo , Percepção Visual/fisiologia , Animais , Canabinoides/administração & dosagem , Humanos , Plasticidade Neuronal/efeitos dos fármacos , Bulbo Olfatório/efeitos dos fármacos , Receptor CB1 de Canabinoide/agonistas , Receptor CB1 de Canabinoide/metabolismo , Retina/efeitos dos fármacos , Retina/metabolismo , Olfato/efeitos dos fármacos , Vias Visuais/efeitos dos fármacos , Percepção Visual/efeitos dos fármacos
17.
Int J Mol Sci ; 22(14)2021 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-34299000

RESUMO

Parkinson's disease (PD) is the most common movement disorder, characterized by progressive degeneration of the nigrostriatal pathway, which consists of dopaminergic cell bodies in substantia nigra and their neuronal projections to the striatum. Moreover, PD is associated with an array of non-motor symptoms such as olfactory dysfunction, gastrointestinal dysfunction, impaired regulation of the sleep-wake cycle, anxiety, depression, and cognitive impairment. Inflammation and concomitant oxidative stress are crucial in the pathogenesis of PD. Thus, this study aimed to model PD via intrastriatal injection of the inflammagen lipopolysaccharide (LPS)to investigate if the lesion causes olfactory and motor impairments, inflammation, oxidative stress, and alteration in synaptic proteins in the olfactory bulb, striatum, and colon. Ten µg of LPS was injected unilaterally into the striatum of 27 male C57BL/6 mice, and behavioural assessment was conducted at 4 and 8 weeks post-treatment, followed by tissue collection. Intrastriatal LPS induced motor impairment in C57BL/6 mice at 8 weeks post-treatment evidenced by reduced latency time in the rotarod test. LPS also induced inflammation in the striatum characterized by increased expression of microglial marker Iba-1 and astrocytic marker GFAP, with degeneration of dopaminergic neuronal fibres (reduced tyrosine hydroxylase immunoreactivity), and reduction of synaptic proteins and DJ-1 protein. Additionally, intrastriatal LPS induced inflammation, oxidative stress and alterations in synaptic proteins within the olfactory bulb, although this did not induce a significant impairment in olfactory function. Intrastriatal LPS induced mild inflammatory changes in the distal colon, accompanied by increased protein expression of 3-nitrotyrosine-modified proteins. This model recapitulated the major features of PD such as motor impairment and degeneration of dopaminergic neuronal fibres in the striatum, as well as some pathological changes in the olfactory bulb and colon; thus, this model could be suitable for understanding clinical PD and testing neuroprotective strategies.


Assuntos
Astrócitos/metabolismo , Colo/metabolismo , Corpo Estriado/metabolismo , Neurônios Dopaminérgicos/metabolismo , Lipopolissacarídeos/metabolismo , Bulbo Olfatório/metabolismo , Doença de Parkinson/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/patologia , Escala de Avaliação Comportamental , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Colo/patologia , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/patologia , Modelos Animais de Doenças , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/patologia , Proteína Glial Fibrilar Ácida/metabolismo , Imuno-Histoquímica , Inflamação/metabolismo , Inflamação/patologia , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos/metabolismo , Microglia/metabolismo , Microglia/patologia , Bulbo Olfatório/efeitos dos fármacos , Bulbo Olfatório/patologia , Estresse Oxidativo/efeitos dos fármacos , Doença de Parkinson/patologia , Doença de Parkinson/psicologia , Proteína Desglicase DJ-1/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Substância Negra/metabolismo , Substância Negra/patologia , Tirosina 3-Mono-Oxigenase/metabolismo , alfa-Sinucleína/metabolismo
18.
Biol Pharm Bull ; 44(6): 789-797, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34078810

RESUMO

Sleep curtailment negatively affects cardiac activities and thus should be ameliorated by pharmacological methods. One of the therapeutic targets is melatonin receptors, which tune circadian rhythms. Ramelteon, a melatonin MT1/MT2 receptor agonist, has recently been developed to modulate sleep-wake rhythms. To date, the sleep-promoting effect of ramelteon has been widely delineated, but whether ramelteon treatment physiologically influences cardiac function is not well understood. To address this question, we recorded electrocardiograms, electromyograms, and electrocorticograms in the frontal cortex and the olfactory bulb of unrestrained rats treated with either ramelteon or vehicle. We detected vigilance states based on physiological measurements and analyzed cardiac and muscular activities. We found that during non-rapid eye movement (non-REM) sleep, heartrate variability was maintained by ramelteon treatment. Analysis of the electromyograms confirmed that neither microarousal during non-REM sleep nor the occupancy of phasic periods during REM sleep was altered by ramelteon. Our results indicate that ramelteon has a remedial effect on cardiac activity by keeping the heartrate variability and may reduce cardiac dysfunction during sleep.


Assuntos
Frequência Cardíaca/efeitos dos fármacos , Indenos/farmacologia , Sono REM/efeitos dos fármacos , Animais , Eletrocardiografia , Eletrocorticografia , Eletromiografia , Lobo Frontal/efeitos dos fármacos , Lobo Frontal/fisiologia , Masculino , Bulbo Olfatório/efeitos dos fármacos , Bulbo Olfatório/fisiologia , Ratos Wistar , Sono REM/fisiologia
19.
Behav Brain Res ; 408: 113283, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-33819530

RESUMO

Deficits in olfaction are associated with neurodegenerative disorders such as Alzheimer's disease. A recent study reported that intranasal zinc sulfate (ZnSO4)-treated mice show olfaction and memory deficits. However, it remains unknown whether olfaction deficit-induced learning and memory impairment is associated with the cholinergic system in the brain. In this study, we evaluated olfactory function by the buried food find test, and learning and memory function by the Y-maze and passive avoidance tests in ZnSO4-treated mice. The expression of choline acetyltransferase (ChAT) protein in the olfactory bulb (OB), prefrontal cortex, hippocampus, and amygdala was assessed by western blotting. Moreover, we observed the effect of the acetylcholinesterase inhibitor physostigmine on ZnSO4-induced learning and memory deficits. We found that intranasal ZnSO4-treated mice exhibited olfactory dysfunction, while this change was recovered on day 14 after treatment. Both short-term and long-term learning and memory were impaired on days 4 and 7 after treatment with ZnSO4, whereas the former, but not the latter, was recovered on day 14 after treatment. A significant correlation was observed between olfactory function and short-term memory, but not long-term memory. Treatment with ZnSO4 decreased the ChAT level in the OB on day 4, and increased and decreased the ChAT levels in the OB and hippocampus on day 7, respectively. Physostigmine improved the ZnSO4-induced deficit in short-term, but not long-term, memory. Taken together, the present results suggest that short-term memory may be closely associated with olfactory function via the cholinergic system.


Assuntos
Colina O-Acetiltransferase/metabolismo , Inibidores da Colinesterase/farmacologia , Hipocampo , Transtornos da Memória , Memória de Longo Prazo , Memória de Curto Prazo , Transtornos do Olfato , Bulbo Olfatório , Animais , Adstringentes/farmacologia , Modelos Animais de Doenças , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/fisiopatologia , Memória de Longo Prazo/efeitos dos fármacos , Memória de Longo Prazo/fisiologia , Memória de Curto Prazo/efeitos dos fármacos , Memória de Curto Prazo/fisiologia , Camundongos , Transtornos do Olfato/induzido quimicamente , Transtornos do Olfato/tratamento farmacológico , Transtornos do Olfato/fisiopatologia , Bulbo Olfatório/efeitos dos fármacos , Bulbo Olfatório/metabolismo , Fisostigmina/farmacologia , Sulfato de Zinco/farmacologia
20.
J Neurosci ; 41(16): 3610-3621, 2021 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-33687961

RESUMO

Local interneurons of the olfactory bulb (OB) are densely innervated by long-range GABAergic neurons from the basal forebrain (BF), suggesting that this top-down inhibition regulates early processing in the olfactory system. However, how GABAergic inputs modulate the OB output neurons, the mitral/tufted cells, is unknown. Here, in male and female mice acute brain slices, we show that optogenetic activation of BF GABAergic inputs produced distinct local circuit effects that can influence the activity of mitral/tufted cells in the spatiotemporal domains. Activation of the GABAergic axons produced a fast disinhibition of mitral/tufted cells consistent with a rapid and synchronous release of GABA onto local interneurons in the glomerular and inframitral circuits of the OB, which also reduced the spike precision of mitral/tufted cells in response to simulated stimuli. In addition, BF GABAergic inhibition modulated local oscillations in a layer-specific manner. The intensity of locally evoked θ oscillations was decreased on activation of top-down inhibition in the glomerular circuit, while evoked γ oscillations were reduced by inhibition of granule cells. Furthermore, BF GABAergic input reduced dendrodendritic inhibition in mitral/tufted cells. Together, these results suggest that long-range GABAergic neurons from the BF are well suited to influence temporal and spatial aspects of processing by OB circuits.SIGNIFICANCE STATEMENT Disruption of GABAergic inhibition from the basal forebrain (BF) to the olfactory bulb (OB) impairs the discrimination of similar odors, yet how this centrifugal inhibition influences neuronal circuits in the OB remains unclear. Here, we show that the BF GABAergic neurons exclusively target local inhibitory neurons in the OB, having a functional disinhibitory effect on the output neurons, the mitral cells. Phasic inhibition by BF GABAergic neurons reduces spike precision of mitral cells and lowers the intensity of oscillatory activity in the OB, while directly modulating the extent of dendrodendritic inhibition. These circuit-level effects of this centrifugal inhibition can influence the temporal and spatial dynamics of odor coding in the OB.


Assuntos
Antagonistas GABAérgicos/farmacologia , Neurônios GABAérgicos/efeitos dos fármacos , Bulbo Olfatório/citologia , Bulbo Olfatório/efeitos dos fármacos , Animais , Dendritos/fisiologia , Potenciais Evocados/fisiologia , Feminino , Neurônios GABAérgicos/ultraestrutura , Ritmo Gama/fisiologia , Interneurônios/fisiologia , Interneurônios/ultraestrutura , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Inibição Neural , Optogenética , Técnicas de Patch-Clamp , Área Pré-Óptica/fisiologia , Prosencéfalo/citologia , Prosencéfalo/fisiologia , Ritmo Teta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA