Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 686
Filtrar
1.
Chemosphere ; 364: 143065, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39128778

RESUMO

In this study, a novel strain Burkholderia stabilis TF-2 capable of assimilatory and co-metabolic degradation of chlorobenzenes was obtained. The interaction between chlorobenzene (CB) and target enzymes, as well as the metabolic pathways in TF-2, were elucidated using multi-omics and molecular docking techniques. Results of degradation experiments indicated that TF-2 assimilated CB at a rate of 0.22-0.66 mg·gcell-1·h-1 in concentrations of 20-200 mg L-1. Additionally, TF-2 also used sodium succinate and sodium citrate as substrates to co-metabolize CB, with degradation rates of 0.26-2.00 and 0.31-1.72 mol·gcell-1·h-1, respectively. Whole-genome sequencing revealed over 18 novel genes associated with aromatic hydrocarbon degradation in TF-2. Transcriptomic analysis showed that CB induced the high expression of 119 genes involved in CB metabolism and late mineralization. The significant up-regulation of the bedC1 (encoding a ring-hydroxylated dioxygenase), CatA (chlorocatechol 1,2-dioxygenase), pcaJ (3-oxoadipate CoA-transferase alpha subunit) and fadA (acetyl-CoA acyltransferase) genes facilitated CB metabolism. Based on these findings, a metabolic pathway for CB was constructed, with the key step involving ortho cleavage of the aromatic ring under the action of the catA gene. Furthermore, molecular docking revealed that CB bound to bedC1 with -4.5 kcal mol-1 through hydrophobic bonds, π-stacking, and a halogen bond. These results provide strong support for development of efficient strains to enhance the removal of chlorinated organic compounds.


Assuntos
Biodegradação Ambiental , Burkholderia , Clorobenzenos , Simulação de Acoplamento Molecular , Clorobenzenos/metabolismo , Burkholderia/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Dioxigenases/metabolismo , Dioxigenases/genética
2.
Environ Sci Pollut Res Int ; 31(38): 50513-50528, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39096459

RESUMO

Cadmium (Cd) is a harmful metal in soil, and reducing Cd accumulation in plants has become a vital prerequisite for maintaining food safety. Phosphate-solubilizing bacteria (PSB) can not only improve plant growth but also inhibit the transportation of metals to roots. However, data on gene expression in PSB Burkholderia sp. strain 'N3' and grafted watermelon plants dealing with Cd remain to be elucidated. In this study, core genes and metabolic pathways of strain 'N3' and grafted plants were analyzed by Illumina sequencing. Results showed that 356 and 2527 genes were upregulated in 'N3' and grafted watermelon plants, respectively, whereas 514 and 1540 genes were downregulated in 'N3' and grafted watermelon plants, respectively. Gene ontology enrichment analysis showed that signal transduction, inorganic ion transport, cell motility, amino acid transport, and metabolism pathways were marked in 'N3'. However, pathways such as secondary metabolite biosynthesis, oxidation-reduction process, electron transfer activity, and channel regulator activity were marked in the grafted plants. Six genes related to pentose phosphate, glycolysis, and gluconeogenesis metabolism were upregulated in the grafted plants. This study paves the way for developing potential strategies to improve plant growth under Cd toxicity.


Assuntos
Cádmio , Citrullus , Fosfatos , Cádmio/toxicidade , Citrullus/genética , Transcriptoma/efeitos dos fármacos , Poluentes do Solo/toxicidade , Perfilação da Expressão Gênica , Burkholderia/genética , Burkholderia/metabolismo
3.
Mikrochim Acta ; 191(8): 492, 2024 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-39066907

RESUMO

The development and application of an electrochemical sensor is reported for detection of poly(3-hydroxybutyrate) (P3HB) - a bioplastic derived from agro-industrial residues. To overcome the challenges of molecular imprinting of macromolecules such as P3HB, this study employed methanolysis reaction to break down the P3HB biopolymer chains into methyl 3-hydroxybutyrate (M3HB) monomers. Thereafter, M3HB were employed as the target molecules in the construction of molecularly imprinted sensors. The electrochemical device was then prepared by electropolymerizing a molecularly imprinted poly (indole-3-acetic acid) thin film on a glassy carbon electrode surface modified with reduced graphene oxide (GCE/rGO-MIP) in the presence of M3HB. Electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), scanning electron microscopy with field emission gun (SEM-FEG), Raman spectroscopy, attenuated total reflection Fourier-transform infrared (ATR-FTIR) and X-ray Photoelectron Spectroscopy (XPS) were employed to characterize the electrode surface. Under ideal conditions, the MIP sensor exhibited a wide linear working range of 0.1 - 10 nM and a detection limit of 0.3 pM (n = 3). The sensor showed good repeatability, selectivity, and stability over time. For the sensor application, the bioproduction of P3HB was carried out in a bioreactor containing the Burkholderia glumae MA13 strain and sugarcane byproducts as a supplementary carbon source. The analyses were validated through recovery assays, yielding recovery values between 102 and 104%. These results indicate that this MIP sensor can present advantages in the monitoring of P3HB during the bioconversion process.


Assuntos
Burkholderia , Técnicas Eletroquímicas , Eletrodos , Grafite , Hidroxibutiratos , Polímeros Molecularmente Impressos , Poliésteres , Grafite/química , Poliésteres/química , Hidroxibutiratos/química , Burkholderia/química , Burkholderia/metabolismo , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Polímeros Molecularmente Impressos/química , Limite de Detecção , Oxirredução , Poli-Hidroxibutiratos
4.
Int J Mol Sci ; 25(11)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38892282

RESUMO

The rhizobacterial strain BJ3 showed 16S rDNA sequence similarity to species within the Burkholderia genus. Its complete genome sequence revealed a 97% match with Burkholderia contaminans and uncovered gene clusters essential for plant-growth-promoting traits (PGPTs). These clusters include genes responsible for producing indole acetic acid (IAA), osmolytes, non-ribosomal peptides (NRPS), volatile organic compounds (VOCs), siderophores, lipopolysaccharides, hydrolytic enzymes, and spermidine. Additionally, the genome contains genes for nitrogen fixation and phosphate solubilization, as well as a gene encoding 1-aminocyclopropane-1-carboxylate (ACC) deaminase. The treatment with BJ3 enhanced root architecture, boosted vegetative growth, and accelerated early flowering in Arabidopsis. Treated seedlings also showed increased lignin production and antioxidant capabilities, as well as notably increased tolerance to water deficit and high salinity. An RNA-seq transcriptome analysis indicated that BJ3 treatment significantly activated genes related to immunity induction, hormone signaling, and vegetative growth. It specifically activated genes involved in the production of auxin, ethylene, and salicylic acid (SA), as well as genes involved in the synthesis of defense compounds like glucosinolates, camalexin, and terpenoids. The expression of AP2/ERF transcription factors was markedly increased. These findings highlight BJ3's potential to produce various bioactive metabolites and its ability to activate auxin, ethylene, and SA signaling in Arabidopsis, positioning it as a new Burkholderia strain that could significantly improve plant growth, stress resilience, and immune function.


Assuntos
Arabidopsis , Burkholderia , Estresse Fisiológico , Burkholderia/genética , Burkholderia/metabolismo , Burkholderia/crescimento & desenvolvimento , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/microbiologia , Estresse Fisiológico/genética , Desenvolvimento Vegetal/genética , Ácidos Indolacéticos/metabolismo , Regulação da Expressão Gênica de Plantas , Genômica/métodos , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/microbiologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Etilenos/metabolismo
5.
J Environ Manage ; 362: 121250, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38833921

RESUMO

To investigate the impact and mechanism of Cd-tolerant bacteria in soil on promoting Cd accumulation in Ageratum conyzoides L., we verified the impact of inoculating two strains, B-1 (Burkholderia contaminans HA09) and B-7 (Arthrobacter humicola), on Cd accumulation in A. conyzoides through a pot experiment. Additionally, we investigated the dissolution of CdCO3 and nutrient elements, as well as the release of indoleacetic acid (IAA) by the two strains. The results showed that both strains can significantly improve the dissolution of CdCO3. Strains B-1 and B-7 had obvious effect of dissolving phosphorus, which was 5.63 and 2.76 times higher than that of the control group, respectively. Strain B-7 had significant effect of dissolution potassium, which was 1.79 times higher than that of the control group. Strains B-1 and B-7 had significant nitrogen fixation effect, which was 29.53 and 44.39 times higher than that of the control group, respectively. In addition, inoculating with strain B-1 and B-7 significantly increased the Cd extraction efficiency of A. conyzoides (by 114% and 45% respectively) through enhancing Cd accumulation and the biomass of A. conyzoides. Furthermore, the inoculation of strain B-1 and B-7 led to a significant increase in the activities of CAT and SOD, as well as the content of chlorophyll a and total chlorophyll in the leaves of A. conyzoides. To sum up, strain B-1 and B-7 can promote the phytoremediation efficiency of A. conyzoides on Cd by promoting the biomass and Cd accumulation of A. conyzoides.


Assuntos
Ageratum , Arthrobacter , Biodegradação Ambiental , Cádmio , Poluentes do Solo , Cádmio/metabolismo , Arthrobacter/metabolismo , Poluentes do Solo/metabolismo , Ageratum/metabolismo , Burkholderia/metabolismo , Ácidos Indolacéticos/metabolismo
6.
Sci Rep ; 14(1): 13350, 2024 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858437

RESUMO

Lignin, a heterogeneous aromatic polymer present in plant biomass, is intertwined with cellulose and hemicellulose fibrils, posing challenges to its effective utilization due to its phenolic nature and recalcitrance to degradation. In this study, three lignin utilizing bacteria, Klebsiella sp. LEA1, Pseudomonas sp. LEA2, and Burkholderia sp. LEA3, were isolated from deciduous forest soil samples in Nan province, Thailand. These isolates were capable of growing on alkali lignin and various lignin-associated monomers at 40 °C under microaerobic conditions. The presence of Cu2+ significantly enhanced guaiacol oxidation in Klebsiella sp. LEA1 and Pseudomonas sp. LEA2. Lignin-related monomers and intermediates such as 2,6-dimethoxyphenol, 4-vinyl guaiacol, 4-hydroxybenzoic acid, benzoic acid, catechol, and succinic acid were detected mostly during the late stage of incubation of Klebsiella sp. LEA1 and Pseudomonas sp. LEA2 in lignin minimal salt media via GC-MS analysis. The intermediates identified from Klebsiella sp. LEA1 degradation suggested that conversion and utilization occurred through the ß-ketoadipate (ortho-cleavage) pathway under limited oxygen conditions. The ability of these bacteria to thrive on alkaline lignin and produce various lignin-related intermediates under limited oxygen conditions suggests their potential utility in oxygen-limited processes and the production of renewable chemicals from plant biomass.


Assuntos
Florestas , Klebsiella , Lignina , Oxigênio , Pseudomonas , Microbiologia do Solo , Lignina/metabolismo , Pseudomonas/metabolismo , Pseudomonas/isolamento & purificação , Oxigênio/metabolismo , Klebsiella/metabolismo , Klebsiella/isolamento & purificação , Burkholderia/metabolismo , Burkholderia/isolamento & purificação , Biodegradação Ambiental
7.
J Hazard Mater ; 475: 134936, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38889456

RESUMO

Biotic-abiotic hybrid systems have recently emerged as a potential technique for stable and efficient removal of persistent contaminants due to coupling of microbial catabolic with abiotic adsorption/redox processes. In this study, Burkholderia vietnamensis C09V (B.V.C09V) was successfully integrated with a Zeolitic Imidazolate Framework-8 (ZIF-8) to construct a state-of-art biotic-abiotic system using polyvinyl alcohol/ sodium alginate (PVA/SA) as media. The biotic-abiotic system (PVA/SA-ZIF-8 @B.V.C09V) was able to remove 99.0 % of 2,4-DCP within 168 h, which was much higher than either PVA/SA, PVA/SA-ZIF-8 or PVA/SA@B.V.C09V (53.8 %, 72.6 % and 67.2 %, respectively). Electrochemical techniques demonstrated that the carrier effect of PVA/SA and the driving effect of ZIF-8 collectively accelerated electron transfer processes associated with enzymatic reactions. In addition, quantitative-PCR (Q-PCR) revealed that ZIF-8 stimulated B.V.C09V to up-regulate expression of tfdB, tfdC, catA, and catC genes (2.40-, 1.68-, 1.58-, and 1.23-fold, respectively), which encoded the metabolism of related enzymes. Furthermore, the effect of key physical, chemical, and biological properties of PVA/SA-ZIF-8 @B.V.C09V on 2,4-DCP removal were statistically investigated by Spearman correlation analysis to identify the key factors that promoted synergistic removal of 2,4-DCP. Overall, this study has created an innovative new strategy for the sustainable remediation of 2,4-DCP in aquatic environments.


Assuntos
Clorofenóis , Álcool de Polivinil , Poluentes Químicos da Água , Zeolitas , Clorofenóis/química , Poluentes Químicos da Água/química , Álcool de Polivinil/química , Zeolitas/química , Alginatos/química , Burkholderia/metabolismo , Burkholderia/genética , Adsorção , Imidazóis/química , Biodegradação Ambiental , Estruturas Metalorgânicas/química
8.
World J Microbiol Biotechnol ; 40(8): 242, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38869634

RESUMO

Lignocellulosic biomass is a valuable, renewable substrate for the synthesis of polyhydroxybutyrate (PHB), an ecofriendly biopolymer. In this study, bacterial strain E5-3 was isolated from soil in Japan; it was identified as Burkholderia ambifaria strain E5-3 by 16 S rRNA gene sequencing. The strain showed optimal growth at 37 °C with an initial pH of 9. It demonstrated diverse metabolic ability, processing a broad range of carbon substrates, including xylose, glucose, sucrose, glycerol, cellobiose, and, notably, palm oil. Palm oil induced the highest cellular growth, with a PHB content of 65% wt. The strain exhibited inherent tolerance to potential fermentation inhibitors derived from lignocellulosic hydrolysate, withstanding 3 g/L 5-hydroxymethylfurfural and 1.25 g/L acetic acid. Employing a fed-batch fermentation strategy with a combination of glucose, xylose, and cellobiose resulted in PHB production 2.7-times that in traditional batch fermentation. The use of oil palm trunk hydrolysate, without inhibitor pretreatment, in a fed-batch fermentation setup led to significant cell growth with a PHB content of 45% wt, equivalent to 10 g/L. The physicochemical attributes of xylose-derived PHB produced by strain E5-3 included a molecular weight of 722 kDa, a number-average molecular weight of 191 kDa, and a polydispersity index of 3.78. The amorphous structure of this PHB displayed a glass transition temperature of 4.59 °C, while its crystalline counterpart had a melting point of 171.03 °C. This research highlights the potential of lignocellulosic feedstocks, especially oil palm trunk hydrolysate, for PHB production through fed-batch fermentation by B. ambifaria strain E5-3, which has high inhibitor tolerance.


Assuntos
Biomassa , Burkholderia , Fermentação , Hidroxibutiratos , Lignina , Óleo de Palmeira , RNA Ribossômico 16S , Xilose , Lignina/metabolismo , Óleo de Palmeira/metabolismo , Hidroxibutiratos/metabolismo , Burkholderia/metabolismo , Burkholderia/genética , Burkholderia/crescimento & desenvolvimento , Xilose/metabolismo , RNA Ribossômico 16S/genética , Microbiologia do Solo , Glucose/metabolismo , Poliésteres/metabolismo , Concentração de Íons de Hidrogênio , Furaldeído/metabolismo , Furaldeído/análogos & derivados , Celobiose/metabolismo
9.
Enzyme Microb Technol ; 179: 110469, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38878426

RESUMO

Esomeprazole is the most popular proton pump inhibitor for treating gastroesophageal reflux disease. Previously, a phenylacetone monooxygenase mutant LnPAMOmu15 (LM15) was obtained by protein engineering for asymmetric synthesis of esomeprazole using pyrmetazole as substrate. To scale up the whole cell asymmetric synthesis of esomeprazole and reduce the cost, in this work, an Escherichia coli whole-cell catalyst harboring LM15 and formate dehydrogenase from Burkholderia stabilis 15516 (BstFDH) were constructed through optimized gene assembly patterns. CRISPR/Cas9 mediated insertion of Ptrc promoter in genome was done to enhance the expression of key genes to increase the cellular NADP supply in the whole cell catalyst, by which the amount of externally added NADP+ for the asymmetric synthesis of esomeprazole decreased to 0.05 mM from 0.3 mM for reducing the cost. After the optimization of reaction conditions in the reactor, the scalable synthesis of esomeprazole was performed using the efficient LM15-BstFDH whole-cell as catalyst, which showed the highest reported space-time yield of 3.28 g/L/h with 50 mM of pyrmetazole loading. Isolation procedure was conducted to obtain esomeprazole sodium of 99.55 % purity and > 99.9 % ee with 90.1 % isolation yield. This work provides the basis for production of enantio-pure esomeprazole via cost-effective whole cell biocatalysis.


Assuntos
Biocatálise , Burkholderia , Escherichia coli , Esomeprazol , Esomeprazol/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Burkholderia/genética , Burkholderia/enzimologia , Burkholderia/metabolismo , Coenzimas/metabolismo , Vias Biossintéticas , Engenharia Metabólica , Formiato Desidrogenases/metabolismo , Formiato Desidrogenases/genética , Sistemas CRISPR-Cas , Oxigenases de Função Mista/metabolismo , Oxigenases de Função Mista/genética
10.
Microb Genom ; 10(6)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38860878

RESUMO

Endofungal Mycetohabitans (formerly Burkholderia) spp. rely on a type III secretion system to deliver mostly unidentified effector proteins when colonizing their host fungus, Rhizopus microsporus. The one known secreted effector family from Mycetohabitans consists of homologues of transcription activator-like (TAL) effectors, which are used by plant pathogenic Xanthomonas and Ralstonia spp. to activate host genes that promote disease. These 'Burkholderia TAL-like (Btl)' proteins bind corresponding specific DNA sequences in a predictable manner, but their genomic target(s) and impact on transcription in the fungus are unknown. Recent phenotyping of Btl mutants of two Mycetohabitans strains revealed that the single Btl in one Mycetohabitans endofungorum strain enhances fungal membrane stress tolerance, while others in a Mycetohabitans rhizoxinica strain promote bacterial colonization of the fungus. The phenotypic diversity underscores the need to assess the sequence diversity and, given that sequence diversity translates to DNA targeting specificity, the functional diversity of Btl proteins. Using a dual approach to maximize capture of Btl protein sequences for our analysis, we sequenced and assembled nine Mycetohabitans spp. genomes using long-read PacBio technology and also mined available short-read Illumina fungal-bacterial metagenomes. We show that btl genes are present across diverse Mycetohabitans strains from Mucoromycota fungal hosts yet vary in sequences and predicted DNA binding specificity. Phylogenetic analysis revealed distinct clades of Btl proteins and suggested that Mycetohabitans might contain more species than previously recognized. Within our data set, Btl proteins were more conserved across M. rhizoxinica strains than across M. endofungorum, but there was also evidence of greater overall strain diversity within the latter clade. Overall, the results suggest that Btl proteins contribute to bacterial-fungal symbioses in myriad ways.


Assuntos
Burkholderia , Rhizopus , Simbiose , Rhizopus/genética , Rhizopus/metabolismo , Burkholderia/genética , Burkholderia/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Filogenia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Variação Genética
11.
Ecotoxicol Environ Saf ; 278: 116425, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38723385

RESUMO

The biogenic synthesis of silver nanoparticles (AgNPs) by microorganisms has been a subject of increasing attention. Despite extensive studies on this biosynthetic pathway, the mechanisms underlying the involvement of proteins and enzymes in AgNPs production have not been fully explored. Herein, we reported that Burkholderia contaminans ZCC was able to reduce Ag+ to AgNPs with a diameter of (10±5) nm inside the cell. Exposure of B. contaminans ZCC to Ag+ ions led to significant changes in the functional groups of cellular proteins, with approximately 5.72% of the (C-OH) bonds being converted to (C-C/C-H) (3.61%) and CO (2.11%) bonds, and 4.52% of the CO (carbonyl) bonds being converted to (C-OH) bonds. Furthermore, the presence of Ag+ and AgNPs induced the ability of extracellular electron transfer for ZCC cells via specific membrane proteins, but this did not occur in the absence of Ag+ ions. Proteomic analysis of the proteins and enzymes involved in heavy metal efflux systems, protein secretion system, oxidative phosphorylation, intracellular electron transfer chain, and glutathione metabolism suggests that glutathione S-transferase and ubiquinol-cytochrome c reductase iron-sulfur subunit play importance roles in the biosynthesis of AgNPs. These findings contribute to a deeper understanding of the functions exerted by glutathione S-transferase and ferredoxin-thioredoxin reductase iron-sulfur subunits in the biogenesis of AgNPs, thereby hold immense potential for optimizing biotechnological techniques aimed at enhancing the yield and purity of biosynthetic AgNPs.


Assuntos
Burkholderia , Nanopartículas Metálicas , Proteoma , Prata , Prata/química , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Proteoma/metabolismo , Burkholderia/metabolismo , Proteômica , Proteínas de Bactérias/metabolismo
12.
Cell Host Microbe ; 32(5): 676-692.e5, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38640929

RESUMO

To spread within a host, intracellular Burkholderia form actin tails to generate membrane protrusions into neighboring host cells and use type VI secretion system-5 (T6SS-5) to induce cell-cell fusions. Here, we show that B. thailandensis also uses T6SS-5 to lyse protrusions to directly spread from cell to cell. Dynamin-2 recruitment to the membrane near a bacterium was followed by a short burst of T6SS-5 activity. This resulted in the polymerization of the actin of the newly invaded host cell and disruption of the protrusion membrane. Most protrusion lysis events were dependent on dynamin activity, caused no cell-cell fusion, and failed to be recognized by galectin-3. T6SS-5 inactivation decreased protrusion lysis but increased galectin-3, LC3, and LAMP1 accumulation in host cells. Our results indicate that B. thailandensis specifically activates T6SS-5 assembly in membrane protrusions to disrupt host cell membranes and spread without alerting cellular responses, such as autophagy.


Assuntos
Burkholderia , Sistemas de Secreção Tipo VI , Burkholderia/metabolismo , Burkholderia/fisiologia , Sistemas de Secreção Tipo VI/metabolismo , Humanos , Membrana Celular/metabolismo , Proteínas de Membrana Lisossomal/metabolismo , Proteínas de Bactérias/metabolismo , Actinas/metabolismo , Dinamina II/metabolismo , Autofagia , Galectinas/metabolismo , Interações Hospedeiro-Patógeno , Extensões da Superfície Celular/metabolismo , Animais , Proteínas Associadas aos Microtúbulos , Proteína 1 de Membrana Associada ao Lisossomo
13.
Pest Manag Sci ; 80(8): 4125-4136, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38578571

RESUMO

BACKGROUND: Maize stalk rot (MSR) caused by Fusarium graminearum is the primary factor contributing to the reduction in maize yield and quality. However, this soil-borne disease presents a significant challenge for sustainable control through field management and chemical agents. The screening of novel biocontrol agents can aid in developing innovative and successful strategies for MSR control. RESULTS: A total of 407 strains of bacteria were isolated from the rhizosphere soil of a resistant maize inbred line. One strain exhibited significant antagonistic activity in plate and pot experiments, and was identified as Burkholderia ambifaria H8. The strain could significantly inhibit the mycelial growth and spore germination of F. graminearum, induce resistance to stalk rot, and promote plant growth. The volatile compounds produced by strain H8 and its secondary metabolites in the sterile fermentation broth exhibited antagonistic activity. The primary volatile compound produced by strain H8 was identified as dimethyl disulfide (DMDS) using gas chromatography tandem mass spectrometry. Through in vitro antagonistic activity assays and microscopic observation, it was confirmed that DMDS was capable of inhibiting mycelial growth and disrupting the mycelial structure of F. graminearum, suggesting it may be the major active compound for strain H8. The transcriptome data of F. graminearum further indicated that strain H8 and its volatile compounds could alter pathogenic fungi metabolism, influence the related metabolic pathways, and potentially induce cell apoptosis within F. graminearum. CONCLUSION: Our results showed that B. ambifaria H8 was capable of producing the volatile substance dimethyl disulfide, which influenced the synthesis and permeability of cell membranes in pathogens. Thus, B. ambifaria H8 was found to be a promising biological control agent against MSR. © 2024 Society of Chemical Industry.


Assuntos
Burkholderia , Dissulfetos , Fusarium , Doenças das Plantas , Compostos Orgânicos Voláteis , Zea mays , Fusarium/fisiologia , Zea mays/microbiologia , Dissulfetos/farmacologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Burkholderia/fisiologia , Burkholderia/metabolismo , Compostos Orgânicos Voláteis/farmacologia , Compostos Orgânicos Voláteis/metabolismo , Controle Biológico de Vetores , Agentes de Controle Biológico/farmacologia
14.
Biol Res ; 57(1): 12, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561836

RESUMO

BACKGROUND: Bacterial aromatic degradation may cause oxidative stress. The long-chain flavodoxin FldX1 of Paraburkholderia xenovorans LB400 counteracts reactive oxygen species (ROS). The aim of this study was to evaluate the protective role of FldX1 in P. xenovorans LB400 during the degradation of 4-hydroxyphenylacetate (4-HPA) and 3-hydroxyphenylacetate (3-HPA). METHODS: The functionality of FldX1 was evaluated in P. xenovorans p2-fldX1 that overexpresses FldX1. The effects of FldX1 on P. xenovorans were studied measuring growth on hydroxyphenylacetates, degradation of 4-HPA and 3-HPA, and ROS formation. The effects of hydroxyphenylacetates (HPAs) on the proteome (LC-MS/MS) and gene expression (qRT-PCR) were quantified. Bioaugmentation with strain p2-fldX1 of 4-HPA-polluted soil was assessed, measuring aromatic degradation (HPLC), 4-HPA-degrading bacteria, and plasmid stability. RESULTS: The exposure of P. xenovorans to 4-HPA increased the formation of ROS compared to 3-HPA or glucose. P. xenovorans p2-fldX1 showed an increased growth on 4-HPA and 3-HPA compared to the control strain WT-p2. Strain p2-fldX1 degraded faster 4-HPA and 3-HPA than strain WT-p2. Both WT-p2 and p2-fldX1 cells grown on 4-HPA displayed more changes in the proteome than cells grown on 3-HPA in comparison to glucose-grown cells. Several enzymes involved in ROS detoxification, including AhpC2, AhpF, AhpD3, KatA, Bcp, CpoF1, Prx1 and Prx2, were upregulated by hydroxyphenylacetates. Downregulation of organic hydroperoxide resistance (Ohr) and DpsA proteins was observed. A downregulation of the genes encoding scavenging enzymes (katE and sodB), and gstA and trxB was observed in p2-fldX1 cells, suggesting that FldX1 prevents the antioxidant response. More than 20 membrane proteins, including porins and transporters, showed changes in expression during the growth of both strains on hydroxyphenylacetates. An increased 4-HPA degradation by recombinant strain p2-fldX1 in soil microcosms was observed. In soil, the strain overexpressing the flavodoxin FldX1 showed a lower plasmid loss, compared to WT-p2 strain, suggesting that FldX1 contributes to bacterial fitness. Overall, these results suggest that recombinant strain p2-fldX1 is an attractive bacterium for its application in bioremediation processes of aromatic compounds. CONCLUSIONS: The long-chain flavodoxin FldX1 improved the capability of P. xenovorans to degrade 4-HPA in liquid culture and soil microcosms by protecting cells against the degradation-associated oxidative stress.


Assuntos
Burkholderia , Burkholderiaceae , Flavodoxina , Gliceraldeído/análogos & derivados , Fenilacetatos , Propano , Biodegradação Ambiental , Flavodoxina/metabolismo , Flavodoxina/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Proteoma/metabolismo , Proteoma/farmacologia , Cromatografia Líquida , Burkholderia/genética , Burkholderia/metabolismo , Espectrometria de Massas em Tandem , Estresse Oxidativo , Glucose/metabolismo , Solo
15.
J Bacteriol ; 206(4): e0044123, 2024 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-38501654

RESUMO

Antibiotic activity is limited by the physical construction of the Gram-negative cell envelope. Species of the Burkholderia cepacia complex (Bcc) are known as intrinsically multidrug-resistant opportunistic pathogens with low permeability cell envelopes. Here, we re-examined a previously performed chemical-genetic screen of barcoded transposon mutants in B. cenocepacia K56-2, focusing on cell envelope structural and functional processes. We identified structures mechanistically important for resistance to singular and multiple antibiotic classes. For example, susceptibility to novobiocin, avibactam, and the LpxC inhibitor, PF-04753299, was linked to the BpeAB-OprB efflux pump, suggesting these drugs are substrates for this pump in B. cenocepacia. Defects in peptidoglycan precursor synthesis specifically increased susceptibility to cycloserine and revealed a new putative amino acid racemase, while defects in divisome accessory proteins increased susceptibility to multiple ß-lactams. Additionally, disruption of the periplasmic disulfide bond formation system caused pleiotropic defects on outer membrane integrity and ß-lactamase activity. Our findings highlight the layering of resistance mechanisms in the structure and function of the cell envelope. Consequently, we point out processes that can be targeted for developing antibiotic potentiators.IMPORTANCEThe Gram-negative cell envelope is a double-layered physical barrier that protects cells from extracellular stressors, such as antibiotics. The Burkholderia cell envelope is known to contain additional modifications that reduce permeability. We investigated Burkholderia cell envelope factors contributing to antibiotic resistance from a genome-wide view by re-examining data from a transposon mutant library exposed to an antibiotic panel. We identified susceptible phenotypes for defects in structures and functions in the outer membrane, periplasm, and cytoplasm. Overall, we show that resistance linked to the cell envelope is multifaceted and provides new targets for the development of antibiotic potentiators.


Assuntos
Burkholderia cenocepacia , Complexo Burkholderia cepacia , Burkholderia , Burkholderia cenocepacia/genética , Farmacorresistência Bacteriana Múltipla/genética , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Complexo Burkholderia cepacia/genética , Burkholderia/metabolismo
16.
Biodegradation ; 35(5): 719-737, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38517619

RESUMO

Bioremediation is considered to be an effective treatment for hydrocarbon removal from polluted soils. However, the effectiveness of this treatment is often limited by the low availability of targeted contaminants. Biosurfactants produced by some microorganisms can increase organic compound solubility and might then overcome this limitation. Two different inocula producers of biosurfactants (Burkholderia thailandensis E264 and SHEMS1 microbial consortium isolated from a hydrocarbon-contaminated soil) were incubated in Bushnell-Haas medium supplemented with hydrocarbons to investigate their biodegradation potential. Experimental results showed their ability to degrade 9.1 and 6.1% of hydrocarbons respectively after 65 days of incubation with an initial total hydrocarbon concentration of 16 g L-1. The biodegradation was more effective for the light and medium fractions (C10 to C36). B. thailandensis and SHEMS1 consortium produced surfactants after 14 days of culture during the stationary phase with hydrocarbons as the sole carbon and energy source. However, biosurfactant production did not appear to directly increase hydrocarbon degradation efficiency. The complexity and recalcitrance of hydrocarbon mixture used in this study appeared to continue to limit its biodegradation even in the presence of biosurfactants. In conclusion, B. thailandensis and SHEMS1 consortium can degrade recalcitrant hydrocarbon compounds and are therefore good candidates for the bioremediation of environments polluted by total hydrocarbons.


Assuntos
Biodegradação Ambiental , Burkholderia , Hidrocarbonetos , Consórcios Microbianos , Poluentes do Solo , Tensoativos , Tensoativos/metabolismo , Hidrocarbonetos/metabolismo , Burkholderia/metabolismo , Poluentes do Solo/metabolismo , Microbiologia do Solo
17.
J Hazard Mater ; 470: 134134, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38554514

RESUMO

Microbial remediation of cadmium-contaminated soil offers advantages like environmental friendliness, cost-effectiveness, and simple operation. However, the efficacy of this remediation process relies on obtaining dominant strains and a comprehensive understanding of their Cd adsorption mechanisms. This study identified two Cd-resistant bacteria, Burkholderia sp. 1-22 and Bacillus sp. 6-6, with significant growth-promoting effects from rice rhizosphere soil. The strains showed remarkable Cd resistance up to ∼200 mg/L and alleviated Cd toxicity by regulating pH and facilitating bacterial adsorption of Cd. FTIR analysis showed crucial surface functional groups, like carboxyl and amino groups, on bacteria played significant roles in Cd adsorption. The strains could induce CdCO3 formation via a microbially induced calcium precipitation (MICP) mechanism, confirmed by SEM-EDS, X-ray analysis, and elemental mapping. Pot experiments showed these strains significantly increased organic matter and enzyme activity (e.g., urease, sucrase, peroxidase) in the rhizosphere soil versus the control group. These changes are crucial for restricting Cd mobility. Furthermore, strains 6-6 and 1-22 significantly enhance plant root detoxification of Cd, alleviating toxicity. Notably, increased pH likely plays a vital role in enhancing Cd precipitation and adsorption by strains, converting free Cd into non-bioavailable forms.


Assuntos
Bacillus , Burkholderia , Cádmio , Oryza , Rizosfera , Microbiologia do Solo , Poluentes do Solo , Oryza/microbiologia , Oryza/crescimento & desenvolvimento , Cádmio/toxicidade , Cádmio/metabolismo , Poluentes do Solo/metabolismo , Poluentes do Solo/toxicidade , Burkholderia/metabolismo , Adsorção , Bacillus/metabolismo , Biodegradação Ambiental , Concentração de Íons de Hidrogênio , Raízes de Plantas/microbiologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo
18.
J Nat Prod ; 87(4): 1268-1284, 2024 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-38390739

RESUMO

Bacteria are social microorganisms that use communication systems known as quorum sensing (QS) to regulate diverse cellular behaviors including the production of various secreted molecules. Bacterial secondary metabolites are widely studied for their bioactivities including antibiotic, antifungal, antiparasitic, and cytotoxic compounds. Besides playing a crucial role in natural bacterial niches and intermicrobial competition by targeting neighboring organisms and conferring survival advantages to the producer, these bioactive molecules may be of prime interest to develop new antimicrobials or anticancer therapies. This review focuses on bioactive compounds produced under acyl homoserine lactone-based QS regulation by Gram-negative bacteria that are pathogenic to humans and animals, including the Burkholderia, Serratia, Pseudomonas, Chromobacterium, and Pseudoalteromonas genera. The synthesis, regulation, chemical nature, biocidal effects, and potential applications of these identified toxic molecules are presented and discussed in light of their role in microbial interactions.


Assuntos
Acil-Butirolactonas , Percepção de Quorum , Percepção de Quorum/efeitos dos fármacos , Acil-Butirolactonas/metabolismo , Acil-Butirolactonas/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Bactérias Gram-Negativas/efeitos dos fármacos , Estrutura Molecular , Humanos , Burkholderia/metabolismo , Chromobacterium/efeitos dos fármacos
19.
J Appl Microbiol ; 135(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38364306

RESUMO

AIM: The increased availability of genome sequences has enabled the development of valuable tools for the prediction and identification of bacterial natural products. Burkholderia catarinensis 89T produces siderophores and an unknown potent antifungal metabolite. The aim of this work was to identify and purify natural products of B. catarinensis 89T through a genome-guided approach. MATERIALS AND METHODS: The analysis of B. catarinensis 89T genome revealed 16 clusters putatively related to secondary metabolism and antibiotics production. Of particular note was the identification of a nonribosomal peptide synthetase (NRPS) cluster related to the production of the siderophore ornibactin, a hybrid NRPS-polyketide synthase Type 1 cluster for the production of the antifungal glycolipopeptide burkholdine, and a gene cluster encoding homoserine lactones (HSL), probably involved in the regulation of both metabolites. We were able to purify high amounts of the ornibactin derivatives D/C6 and F/C8, while also detecting the derivative B/C4 in mass spectrometry investigations. A group of metabolites with molecular masses ranging from 1188 to 1272 Da could be detected in MS experiments, which we postulate to be new burkholdine analogs produced by B. catarinensis. The comparison of B. catarinensis BGCs with other Bcc members corroborates the hypothesis that this bacterium could produce new derivatives of these metabolites. Moreover, the quorum sensing metabolites C6-HSL, C8-HSL, and 3OH-C8-HSL were observed in LC-MS/MS analysis. CONCLUSION: The new species B. catarinensis is a potential source of new bioactive secondary metabolites. Our results highlight the importance of genome-guided purification and identification of metabolites of biotechnological importance.


Assuntos
4-Butirolactona/análogos & derivados , Produtos Biológicos , Complexo Burkholderia cepacia , Burkholderia , Lipopeptídeos , Sideróforos/metabolismo , Antifúngicos/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem , Burkholderia/genética , Burkholderia/metabolismo , Complexo Burkholderia cepacia/metabolismo , Produtos Biológicos/metabolismo , Proteínas de Bactérias/genética
20.
Appl Environ Microbiol ; 89(12): e0063023, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-38054732

RESUMO

IMPORTANCE: Fusaric acid (FA) is an important virulence factor produced by several Fusarium species. These fungi are responsible for wilt and rot diseases in a diverse range of crops. FA is toxic for animals, humans and soil-borne microorganisms. This mycotoxin reduces the survival and competition abilities of bacterial species able to antagonize Fusarium spp., due to its negative effects on viability and the production of antibiotics effective against these fungi. FA biodegradation is not a common characteristic among bacteria, and the determinants of FA catabolism have not been identified so far in any microorganism. In this study, we identified genes, enzymes, and metabolic pathways involved in the degradation of FA in the soil bacterium Burkholderia ambifaria T16. Our results provide insights into the catabolism of a pyridine-derivative involved in plant pathogenesis by a rhizosphere bacterium.


Assuntos
Complexo Burkholderia cepacia , Burkholderia , Fusarium , Micotoxinas , Animais , Humanos , Micotoxinas/metabolismo , Ácido Fusárico/metabolismo , Burkholderia/metabolismo , Complexo Burkholderia cepacia/metabolismo , Fungos/metabolismo , Solo , Fusarium/metabolismo , Doenças das Plantas/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA