Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.071
Filtrar
1.
BMC Genom Data ; 25(1): 43, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38710997

RESUMO

BACKGROUND: Cadmium (Cd) is extremely toxic and non-essential for plants. Different soybean varieties differ greatly in their Cd accumulation ability, but little is known about the underlying molecular mechanisms. RESULTS: Here, we performed transcriptomic analysis using Illumina pair-end sequencing on root tissues from two soybean varieties (su8, high-Cd-accumulating (HAS) and su7, low Cd-accumulating (LAS)) grown with 0 or 50 µM CdSO4. A total of 18.76 million clean reads from the soybean root samples were obtained after quality assessment and data filtering. After Cd treatment, 739 differentially expressed genes (DEGs; 265 up and 474 down) were found in HAS; however, only 259 DEGs (88 up and 171 down) were found in LAS, and 64 genes were same between the two varieties. Pathway enrichment analysis suggested that after cadmium treatment, the DEGs between LAS and HAS were mainly enriched in glutathione metabolism and plant-pathogen interaction pathways. KEGG analysis showed that phenylalanine metabolism responding to cadmium stress in LAS, while ABC transporters responding to cadmium stress in HAS. Besides we found more differential expressed heavy metal transporters such as ABC transporters and zinc transporters in HAS than LAS, and there were more transcription factors differently expressed in HAS than LAS after cadmium treatment in two soybean varieties, eg. bHLH transcription factor, WRKY transcription factor and ZIP transcription factor. CONCLUSIONS: Findings from this study will shed new insights on the underlying molecular mechanisms behind the Cd accumulation in soybean.


Assuntos
Cádmio , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Glycine max , Estresse Fisiológico , Glycine max/genética , Glycine max/efeitos dos fármacos , Glycine max/metabolismo , Cádmio/toxicidade , Cádmio/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Genótipo , Transcriptoma/efeitos dos fármacos , Raízes de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética
2.
Water Sci Technol ; 89(9): 2523-2537, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38747965

RESUMO

Miscanthus sacchariflorus is previously demonstrated to be a potential candidate for remediation of cadmium (Cd) pollution. To explore its resistance strategy to Cd, a hydroponic experiment was conducted to determine the variations of photosynthetic activity in leaves and physiological response in roots of this plant. Results showed that the root of M. sacchariflorus was the primary location for Cd accumulation. The bioconcentration factor in the roots and rhizomes was >1, and the translocation factor from underground to aboveground was <1. Throughout the experimental period, treatment with 0.06 mM Cd2+ did not significantly alter the contents of chlorophyll a, chlorophyll b, or carotenoid. By contrast, treatment with 0.15 and 0.30 mM Cd2+ decreased the contents of chlorophyll a, chlorophyll b, and carotenoid; caused the deformation of the chlorophyll fluorescence transient curve; reduced the photochemical efficiency of photosystem II; and increased the contents of non-protein thiols, total flavone, and total phenol. These results indicate that M. sacchariflorus has good adaptability to 0.06 mM Cd2+. Moreover, the accumulation of the non-protein thiols, total flavone, and total phenol in roots may promote the chelation of Cd2+, thus alleviating Cd toxicity. This study provides theoretical support for using M. sacchariflorus to remediate Cd-polluted wetlands.


Assuntos
Cádmio , Fotossíntese , Poaceae , Compostos de Sulfidrila , Cádmio/toxicidade , Cádmio/metabolismo , Fotossíntese/efeitos dos fármacos , Poaceae/metabolismo , Poaceae/efeitos dos fármacos , Compostos de Sulfidrila/metabolismo , Clorofila/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Biodegradação Ambiental
3.
BMC Plant Biol ; 24(1): 359, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38698306

RESUMO

BACKGROUND: Selenium (Se) fertilizer and arbuscular mycorrhizal fungi (AMF) are known to modulate cadmium (Cd) toxicity in plants. However, the effects of their co-application on wheat growth and soil microbial communities in Cd-contaminated soil are unclear. RESULTS: A pot experiment inoculation with two types of AMF and the application of Se fertilizer under Cd stress in wheat showed that inoculation AMF alone or combined with Se fertilizer significantly increased wheat biomass. Se and AMF alone or in combination significantly reduced available Cd concentration in wheat and soil, especially in the Se combined with Ri treatment. High throughput sequencing of soil samples indicated that Se and AMF application had stronger influence on bacterial community compared to fungal community and the bacterial network seemed to have more complex interconnections than the fungal network, and finally shaped the formation of specific microflora to affect Cd availability. CONCLUSION: These results indicate that the application of Se and AMF, particularly in combination, could successfully decrease soil Cd availability and relieve the harm of Cd in wheat by modifying rhizosphere soil microbial communities.


Assuntos
Biomassa , Cádmio , Fertilizantes , Micorrizas , Rizosfera , Selênio , Microbiologia do Solo , Triticum , Triticum/crescimento & desenvolvimento , Triticum/microbiologia , Triticum/efeitos dos fármacos , Micorrizas/fisiologia , Cádmio/análise , Cádmio/toxicidade , Fertilizantes/análise , Selênio/metabolismo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade , Microbiota/efeitos dos fármacos
4.
BMC Plant Biol ; 24(1): 360, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38698342

RESUMO

BACKGROUND: Cadmium (Cd) pollution has declined crop yields and quality. Selenium (Se) is a beneficial mineral element that protects plants from oxidative damage, thereby improving crop tolerance to heavy metals. The molecular mechanism of Se-induced Cd tolerance in rice (Oryza sativa) is not yet understood. This study aimed to elucidate the beneficial mechanism of Se (1 mg/kg) in alleviating Cd toxicity in rice seedlings. RESULTS: Exogenous selenium addition significantly improved the toxic effect of cadmium stress on rice seedlings, increasing plant height and fresh weight by 20.53% and 34.48%, respectively, and increasing chlorophyll and carotenoid content by 16.68% and 15.26%, respectively. Moreover, the MDA, ·OH, and protein carbonyl levels induced by cadmium stress were reduced by 47.65%, 67.57%, and 56.43%, respectively. Cell wall metabolism, energy cycling, and enzymatic and non-enzymatic antioxidant systems in rice seedlings were significantly enhanced. Transcriptome analysis showed that the expressions of key functional genes psbQ, psbO, psaG, psaD, atpG, and PetH were significantly up-regulated under low-concentration Se treatment, which enhanced the energy metabolism process of photosystem I and photosystem II in rice seedlings. At the same time, the up-regulation of LHCA, LHCB family, and C4H1, PRX, and atp6 functional genes improved the ability of photon capture and heavy metal ion binding in plants. Combined with proteome analysis, the expression of functional proteins OsGSTF1, OsGSTU11, OsG6PDH4, OsDHAB1, CP29, and CabE was significantly up-regulated under Se, which enhanced photosynthesis and anti-oxidative stress mechanism in rice seedlings. At the same time, it regulates the plant hormone signal transduction pathway. It up-regulates the expression response process of IAA, ABA, and JAZ to activate the synergistic effect between each cell rapidly and jointly maintain the homeostasis balance. CONCLUSION: Our results revealed the regulation process of Se-mediated critical metabolic pathways, functional genes, and proteins in rice under cadmium stress. They provided insights into the expression rules and dynamic response process of the Se-mediated plant resistance mechanism. This study provided the theoretical basis and technical support for crop safety in cropland ecosystems and cadmium-contaminated areas.


Assuntos
Cádmio , Oryza , Proteínas de Plantas , Proteômica , Plântula , Selênio , Oryza/genética , Oryza/metabolismo , Oryza/efeitos dos fármacos , Selênio/farmacologia , Cádmio/toxicidade , Plântula/genética , Plântula/efeitos dos fármacos , Plântula/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Estresse Fisiológico/genética , Estresse Fisiológico/efeitos dos fármacos , Perfilação da Expressão Gênica , Transcriptoma , Genes de Plantas
5.
Plant Cell Rep ; 43(6): 139, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38735908

RESUMO

KEY MESSAGE: Nitric oxide functions downstream of the melatonin in adjusting Cd-induced osmotic and oxidative stresses, upregulating the transcription of D4H and DAT genes, and increasing total alkaloid and vincristine contents. A few studies have investigated the relationship between melatonin (MT) and nitric oxide (NO) in regulating defensive responses. However, it is still unclear how MT and NO interact to regulate the biosynthesis of alkaloids and vincristine in leaves of Catharanthus roseus (L.) G. Don under Cd stress. Therefore, this context was explored in the present study. Results showed that Cd toxicity (200 µM) induced oxidative stress, decreased biomass, Chl a, and Chl b content, and increased the content of total alkaloid and vinblastine in the leaves. Application of both MT (100 µM) and sodium nitroprusside (200 µM SNP, as NO donor) enhanced endogenous NO content and accordingly increased metal tolerance index, the content of total alkaloid and vinblastine. It also upregulated the transcription of two respective genes (D4H and DAT) under non-stress and Cd stress conditions. Moreover, the MT and SNP treatments reduced the content of H2O2 and malondialdehyde, increased the activities of superoxide dismutase and ascorbate peroxidase, enhanced proline accumulation, and improved relative water content in leaves of Cd-exposed plants. The scavenging NO by 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxy l-3-oxide (cPTIO) averted the effects of MT on the content of total alkaloid and vinblastine and antioxidative responses. Still, the effects conferred by NO on attributes mentioned above were not significantly impaired by p-chlorophenylalanine (p-CPA as an inhibitor of MT biosynthesis). These findings and multivariate analyses indicate that MT motivated terpenoid indole alkaloid biosynthesis and mitigated Cd-induced oxidative stress in the leaves of periwinkle in a NO-dependent manner.


Assuntos
Cádmio , Catharanthus , Regulação da Expressão Gênica de Plantas , Melatonina , Óxido Nítrico , Estresse Oxidativo , Folhas de Planta , Vimblastina , Catharanthus/metabolismo , Catharanthus/genética , Catharanthus/efeitos dos fármacos , Óxido Nítrico/metabolismo , Cádmio/metabolismo , Cádmio/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Vimblastina/metabolismo , Melatonina/metabolismo , Melatonina/farmacologia , Folhas de Planta/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Antioxidantes/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética
6.
J Hazard Mater ; 471: 134262, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38640678

RESUMO

Cadmium (Cd) hazard is a serious limitation to plants, soils and environments. Cd-toxicity causes stunted growth, chlorosis, necrosis, and plant yield loss. Thus, ecofriendly strategies with understanding of molecular mechanisms of Cd-tolerance in plants is highly demandable. The Cd-toxicity caused plant growth retardation, leaf chlorosis and cellular damages, where the glutathione (GSH) enhanced plant fitness and Cd-toxicity in Brassica through Cd accumulation and antioxidant defense. A high-throughput proteome approach screened 4947 proteins, wherein 370 were differently abundant, 164 were upregulated and 206 were downregulated. These proteins involved in energy and carbohydrate metabolism, CO2 assimilation and photosynthesis, signal transduction and protein metabolism, antioxidant defense response, heavy metal detoxification, cytoskeleton and cell wall structure, and plant development in Brassica. Interestingly, several key proteins including glutathione S-transferase F9 (A0A078GBY1), ATP sulfurylase 2 (A0A078GW82), cystine lyase CORI3 (A0A078FC13), ferredoxin-dependent glutamate synthase 1 (A0A078HXC0), glutaredoxin-C5 (A0A078ILU9), glutaredoxin-C2 (A0A078HHH4) actively involved in antioxidant defense and sulfur assimilation-mediated Cd detoxification process confirmed by their interactome analyses. These candidate proteins shared common gene networks associated with plant fitness, Cd-detoxification and tolerance in Brassica. The proteome insights may encourage breeders for enhancing multi-omics assisted Cd-tolerance in Brassica, and GSH-mediated hazard free oil seed crop production for global food security.


Assuntos
Brassica napus , Cádmio , Glutationa , Proteínas de Plantas , Proteômica , Cádmio/toxicidade , Brassica napus/efeitos dos fármacos , Brassica napus/genética , Brassica napus/metabolismo , Glutationa/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Poluentes do Solo/toxicidade , Proteoma/efeitos dos fármacos , Proteoma/metabolismo , Antioxidantes/metabolismo
7.
J Hazard Mater ; 471: 134276, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38640682

RESUMO

Environmental pollution from cadmium (Cd) presents a serious threat to plant growth and development. Therefore, it's crucial to find out how plants resist this toxic metal to develop strategies for remediating Cd-contaminated soils. In this study, we identified CIP1, a transporter protein, by screening interactors of the protein kinase CIPK23. CIP1 is located in vesicles membranes and can transport Cd2+ when expressed in yeast cells. Cd stress specifically induced the accumulation of CIP1 transcripts and functional proteins, particularly in the epidermal cells of the root tip. CIKP23 could interact directly with the central loop region of CIP1, phosphorylating it, which is essential for the efficient transport of Cd2+. A loss-of-function mutation of CIP1 in wild-type plants led to increased sensitivity to Cd stress. Conversely, tobacco plants overexpressing CIP1 exhibited improved Cd tolerance and increased Cd accumulation capacity. Interestingly, this Cd accumulation was restricted to roots but not shoots, suggesting that manipulating CIP1 does not risk Cd contamination of plants' edible parts. Overall, this study characterizes a novel Cd transporter, CIP1, with potential to enhance plant tolerance to Cd toxicity while effectively eliminating environmental contamination without economic losses.


Assuntos
Biodegradação Ambiental , Cádmio , Nicotiana , Cádmio/toxicidade , Cádmio/metabolismo , Nicotiana/metabolismo , Nicotiana/genética , Nicotiana/efeitos dos fármacos , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/efeitos dos fármacos , Raízes de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Poluentes do Solo/toxicidade , Poluentes do Solo/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Membrana Transportadoras/genética , Plantas Geneticamente Modificadas/metabolismo
8.
J Hazard Mater ; 471: 134313, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38669927

RESUMO

Secondary lignification of the root exodermis of Kandelia obovata is crucial for its response to adversity such as high salinity and anaerobic environment, and this lignification is also effective in blocking cadmium transport to the roots. However, how the differences in lignification of root exodermis at different developmental stages respond to Cd stress and its regulatory mechanisms have not been revealed. In this study, after analyzing the root structure and cell wall thickness using a Phenom scanning electron microscope as well as measuring cadmium content in the root cell wall, we found that the exodermis of young and mature roots of K. obovata responded to Cd stress through the polymerization of different lignin monomers, forming two different mechanisms: chelation and blocking. Through small RNA sequencing, RLM-5'-RACE and dual luciferase transient expression system, we found that miR397 targets and regulates KoLAC4/17/7 expression. The expression of KoLAC4/17 promoted the accumulation of guaiacyl lignin during lignification and enhanced the binding of cadmium to the cell wall. Meanwhile, KoLAC7 expression promotes the accumulation of syringyl lignin during lignification, which enhances the obstruction of cadmium and improves the tolerance to cadmium. These findings enhance our understanding of the molecular mechanisms underlying the differential lignification of the root exodermis of K. obovata in response to cadmium stress, and provide scientific guidance for the conservation of mangrove forests under heavy metal pollution.


Assuntos
Cádmio , Lignina , MicroRNAs , Raízes de Plantas , Lignina/química , Cádmio/toxicidade , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , MicroRNAs/metabolismo , MicroRNAs/genética , Estresse Fisiológico/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Polimerização/efeitos dos fármacos , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo , Araceae/efeitos dos fármacos , Araceae/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética
9.
Cell Signal ; 119: 111170, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38604344

RESUMO

Cadmium (Cd) is an environmental risk factor of cardiovascular diseases. Researchers have found that Cd exposure causes energy metabolic disorders in the heart decades ago. However, the underlying molecular mechanisms are still elusive. In this study, male C57BL/6 J mice were exposed to cadmium chloride (CdCl2) through drinking water for 4 weeks. We found that exposure to CdCl2 increased glucose uptake and utilization, and disrupted normal metabolisms in the heart. In vitro studies showed that CdCl2 specifically increased endothelial glucose uptake without affecting cardiomyocytic glucose uptake and endothelial fatty acid uptake. The glucose transporter 1 (GLUT1) as well as its transcription factor HIF1A was significantly increased after CdCl2 treatment in endothelial cells. Further investigations found that CdCl2 treatment upregulated HIF1A expression by inhibiting its degradation through ubiquitin-proteasome pathway, thereby promoted its transcriptional activation of SLC2A1. Administration of HIF1A small molecule inhibitor echinomycin and A-485 reversed CdCl2-mediated increase of glucose uptake in endothelial cells. In accordance with this, intravenous injection of echinomycin effectively ameliorated CdCl2-mediated metabolic disruptions in the heart. Our study uncovered the molecular mechanisms of Cd in contributing cardiac metabolic disruption by inhibiting HIF1A degradation and increasing GLUT1 transcriptional expression. Inhibition of HIF1A could be a potential strategy to ameliorate Cd-mediated cardiac metabolic disorders and Cd-related cardiovascular diseases.


Assuntos
Transportador de Glucose Tipo 1 , Glucose , Subunidade alfa do Fator 1 Induzível por Hipóxia , Camundongos Endogâmicos C57BL , Animais , Transportador de Glucose Tipo 1/metabolismo , Transportador de Glucose Tipo 1/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Masculino , Camundongos , Glucose/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/efeitos dos fármacos , Cádmio/toxicidade , Miocárdio/metabolismo , Humanos , Transdução de Sinais/efeitos dos fármacos , Cloreto de Cádmio
10.
Sci Total Environ ; 929: 172392, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38608885

RESUMO

Cadmium (Cd) is a widely distributed environmental pollutant, primarily causing nephrotoxicity through renal proximal tubular cell impairment. Pyroptosis is an inflammation-related nucleotide-binding oligomerization segment-like receptor family 3 (NLRP3)-dependent pathway for programmed cell death. We previously reported that inappropriate inflammation caused by Cd is a major contributor to kidney injury. Therefore, research on Cd-induced inflammatory response and pyroptosis may clarify the mechanisms underlying Cd-induced nephrotoxicity. In this study, we observed that Cd-induced nephrotoxicity is associated with NLRP3 inflammasome activation, leading to an increase in proinflammatory cytokine expression and secretion, as well as pyroptosis-related gene upregulation, both in primary rat proximal tubular (rPT) cells and kidney tissue from Cd-treated rats. In vitro, these effects were significantly abrogated through siRNA-based Nlrp3 silencing; thus, Cd may trigger pyroptosis through an NLRP3 inflammasome-dependent pathway. Moreover, Cd exposure considerably elevated reactive oxygen species (ROS) content. N-acetyl-l-cysteine, an ROS scavenger, mitigated Cd-induced NLRP3 inflammasome activation and subsequent pyroptosis. Mechanistically, Cd hindered the expression and deacetylase activity of SIRT1, eventually leading to a decline in SIRT1-p65 interactions, followed by an elevation in acetylated p65 levels. The administration of resveratrol (a SIRT1 agonist) or overexpression of Sirt1 counteracted Cd-induced RELA/p65/NLRP3 pathway activation considerably, leading to pyroptosis. This is the first study to reveal significant contributions of SIRT1-triggered p65 deacetylation to pyroptosis and its protective effects against Cd-induced chronic kidney injury. Our results may aid in developing potential therapeutic strategies for preventing Cd-induced pyroptosis through SIRT1-mediated p65 deacetylation.


Assuntos
Cádmio , Células Epiteliais , Piroptose , Sirtuína 1 , Animais , Sirtuína 1/metabolismo , Piroptose/efeitos dos fármacos , Cádmio/toxicidade , Ratos , Células Epiteliais/efeitos dos fármacos , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Túbulos Renais , Fator de Transcrição RelA/metabolismo , Acetilação , Inflamassomos/metabolismo , Túbulos Renais Proximais
11.
Environ Int ; 186: 108656, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38621321

RESUMO

Cadmium (Cd) is an accumulative toxic metal which poses a serious threat to human health, even in trace amounts. One of the most important steps in the pathophysiology of lung cancer (LC) is the epithelial-mesenchymal transition (EMT). In this investigation, a cell malignant transformation model was established by exposing human bronchial epithelial cells (16HBE) to a low dose of Cd for 30 weeks, after which a highly expressed circular RNA (circ_000999) was identified. Cd-induced EMT was clearly observed in rat lungs and 16HBE cells, which was further enhanced following circ_000999-overexpression. Furthermore, upregulated EIF4A3 interacted with the parental gene AGTPBP1 to promote high expression of circ_000999. Subsequent experiments confirmed that circ_000999 could regulate the EMT process by competitively binding miR-205-5p and inhibiting its activity, consequently upregulating expression of zinc finger E-box binding protein 1 (ZEB1). Importantly, the circ_000999 expression level in LC tissues was significantly increased, exhibiting a strong correlation with EMT indicators. Overall, these findings provide a new objective and research direction for reversing lung EMT and subsequent treatment and prevention of LC.


Assuntos
Cádmio , Transição Epitelial-Mesenquimal , MicroRNAs , RNA Circular , Homeobox 1 de Ligação a E-box em Dedo de Zinco , Animais , Humanos , Ratos , Cádmio/toxicidade , Transformação Celular Neoplásica , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Fator de Iniciação 4A em Eucariotos/genética , Fator de Iniciação 4A em Eucariotos/metabolismo , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , Masculino
12.
J Proteomics ; 300: 105178, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38636824

RESUMO

Employing microbial systems for the bioremediation of contaminated waters represent a potential option, however, limited understanding of the underlying mechanisms hampers the implication of microbial-mediated bioremediation. The omics tools offer a promising approach to explore the molecular basis of the bioremediation process. Here, a mass spectrometry-based quantitative proteome profiling approach was conducted to explore the differential protein levels in cadmium-treated Paramecium multimicronucleatum. The Proteome Discoverer software was used to identify and quantify differentially abundant proteins. The proteome profiling generated 7,416 peptide spectral matches, yielding 2824 total peptides, corresponding to 989 proteins. The analysis revealed that 29 proteins exhibited significant (p ≤ 0.05) differential levels, including a higher abundance of 6 proteins and reduced levels of 23 proteins in Cd2+ treated samples. These differentially abundant proteins were associated with stress response, energy metabolism, protein degradation, cell growth, and hormone processing. Briefly, a comprehensive proteome profile in response to cadmium stress of a newly isolated Paramecium has been established that will be useful in future studies identifying critical proteins involved in the bioremediation of metals in ciliates. SIGNIFICANCE: Ciliates are considered a good biological indicator of chemical pollution and relatively sensitive to heavy metal contamination. A prominent ciliate, Paramecium is a promising candidate for the bioremediation of polluted water. The proteins related to metal resistance in Paramecium species are still largely unknown and need further exploration. In order to identify and reveal the proteins related to metal resistance in Paramecia, we have reported differential protein abundance in Paramecium multimicronucleatum in response to cadmium stress. The proteins found in our study play essential roles during stress response, hormone processing, protein degradation, energy metabolism, and cell growth. It seems likely that Paramecia are not a simple sponge for metals but they could also transform them into less toxic derivatives or by detoxification by protein binding. This data will be helpful in future studies to identify critical proteins along with their detailed mechanisms involved in the bioremediation and detoxification of metal ions in Paramecium species.


Assuntos
Cádmio , Paramecium , Proteoma , Proteínas de Protozoários , Cádmio/toxicidade , Cádmio/farmacologia , Proteoma/metabolismo , Proteoma/efeitos dos fármacos , Paramecium/metabolismo , Paramecium/efeitos dos fármacos , Proteínas de Protozoários/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Biodegradação Ambiental , Proteômica/métodos
13.
Sci Rep ; 14(1): 8608, 2024 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-38615032

RESUMO

This study investigated the influence of cadmium (Cd) and copper (Cu) heavy metals on germination, metabolism, and growth of zucchini seedlings (Cucurbita pepo L.). Zucchini seeds were subjected to two concentrations (100 and 200 µM) of CdCl2 and CuCl2. Germination parameters, biochemical and phytochemical attributes of embryonic axes were assessed. Results revealed that germination rate remained unaffected by heavy metals (Cd, Cu). However, seed vigor index (SVI) notably decreased under Cd and Cu exposure. Embryonic axis length and dry weight exhibited significant reductions, with variations depending on the type of metal used. Malondialdehyde and H2O2 content, as well as catalase activity, did not show a significant increase at the tested Cd and Cu concentrations. Superoxide dismutase activity decreased in embryonic axis tissues. Glutathione S-transferase activity significantly rose with 200 µM CdCl2, while glutathione content declined with increasing Cd and Cu concentrations. Total phenol content and antioxidant activity increased at 200 µM CuCl2. In conclusion, Cd and Cu heavy metals impede zucchini seed germination efficiency and trigger metabolic shifts in embryonic tissue cells. Response to metal stress is metal-specific and concentration-dependent. These findings contribute to understanding the intricate interactions between heavy metals and plant physiology, aiding strategies for mitigating their detrimental effects on plants.


Assuntos
Cádmio , Cucurbita , Cádmio/toxicidade , Cobre/toxicidade , Peróxido de Hidrogênio , Estresse Oxidativo , Sementes
14.
J Hazard Mater ; 470: 134227, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38581879

RESUMO

Phosphate-mineralizing bacteria (PMBs) have been widely studied by inducing phosphate heavy metal precipitation, but current researches neglect to study their effects on soil-microbe-crop systems on cadmium (Cd) contaminated. Based on this, a strain PMB, Enterobacter sp. PMB-5, was inoculated into Cd contaminated pots to detect soil characteristics, Cd occurrence forms, soil biological activities, plant physiological and biochemical indicators. The results showed that the inoculation of strain PMB-5 significantly increased the available phosphorus content (85.97%-138.64%), Cd-residual fraction (11.04%-29.73%), soil enzyme activities (31.94%-304.63%), plant biomass (6.10%-59.81%), while decreased the state of Cd-HOAc (11.50%-31.17%) and plant bioconcentration factor (23.76%-44.24%). These findings indicated that strain PMB-5 could perform the function of phosphorus solubilization to realize the immobilization of Cd in the complex soil environment. Moreover, SEM-EDS, FTIR, XPS, and XRD analysis revealed that strain PMB-5 does not significantly alter the soil morphology, structure, elemental distribution, and chemical composition, which suggested that remediation of Cd contamination using strain PMB-5 would not further burden the soil. This research implies that PMB-5 could be a safe and effective bioinoculant for remediating Cd-contaminated soils, contributing to the sustainable management of soil health in contaminated environments.


Assuntos
Biodegradação Ambiental , Cádmio , Enterobacter , Fósforo , Microbiologia do Solo , Poluentes do Solo , Poluentes do Solo/metabolismo , Enterobacter/metabolismo , Cádmio/metabolismo , Cádmio/toxicidade , Fósforo/metabolismo , Fósforo/química , Produtos Agrícolas/metabolismo , Produtos Agrícolas/microbiologia , Solo/química
15.
Cells ; 13(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38667301

RESUMO

Phytohormones, particularly cytokinin trans-zeatin (tZ), were studied for their impact on the green alga Desmodesmus armatus under cadmium (Cd) stress, focusing on growth, metal accumulation, and stress response mechanisms. Using atomic absorption spectroscopy for the Cd level and high-performance liquid chromatography for photosynthetic pigments and phytochelatins, along with spectrophotometry for antioxidants and liquid chromatography-mass spectrometry for phytohormones, we found that tZ enhances Cd uptake in D. armatus, potentially improving phycoremediation of aquatic environments. Cytokinin mitigates Cd toxicity by regulating internal phytohormone levels and activating metal tolerance pathways, increasing phytochelatin synthase activity and phytochelatin accumulation essential for Cd sequestration. Treatment with tZ and Cd also resulted in increased cell proliferation, photosynthetic pigment and antioxidant levels, and antioxidant enzyme activities, reducing oxidative stress. This suggests that cytokinin-mediated mechanisms in D. armatus enhance its capacity for Cd uptake and tolerance, offering promising avenues for more effective aquatic phycoremediation techniques.


Assuntos
Antioxidantes , Cádmio , Clorófitas , Zeatina , Cádmio/toxicidade , Zeatina/metabolismo , Zeatina/farmacologia , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Clorófitas/efeitos dos fármacos , Clorófitas/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Fitoquelatinas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Reguladores de Crescimento de Plantas/metabolismo
16.
Int J Mol Sci ; 25(8)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38674035

RESUMO

In the face of flourishing industrialization and global trade, heavy metal and metalloid contamination of the environment is a growing concern throughout the world. The widespread presence of highly toxic compounds of arsenic, antimony, and cadmium in nature poses a particular threat to human health. Prolonged exposure to these toxins has been associated with severe human diseases, including cancer, diabetes, and neurodegenerative disorders. These toxins are known to induce analogous cellular stresses, such as DNA damage, disturbance of redox homeostasis, and proteotoxicity. To overcome these threats and improve or devise treatment methods, it is crucial to understand the mechanisms of cellular detoxification in metal and metalloid stress. Membrane proteins are key cellular components involved in the uptake, vacuolar/lysosomal sequestration, and efflux of these compounds; thus, deciphering the multilevel regulation of these proteins is of the utmost importance. In this review, we summarize data on the mechanisms of arsenic, antimony, and cadmium detoxification in the context of membrane proteome. We used yeast Saccharomyces cerevisiae as a eukaryotic model to elucidate the complex mechanisms of the production, regulation, and degradation of selected membrane transporters under metal(loid)-induced stress conditions. Additionally, we present data on orthologues membrane proteins involved in metal(loid)-associated diseases in humans.


Assuntos
Metaloides , Saccharomyces cerevisiae , Estresse Fisiológico , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Metaloides/metabolismo , Metaloides/toxicidade , Humanos , Estresse Fisiológico/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Arsênio/toxicidade , Arsênio/metabolismo , Cádmio/toxicidade , Cádmio/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
17.
Ecotoxicol Environ Saf ; 277: 116337, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38640798

RESUMO

The intricate architecture of the intestinal epithelium, crucial for nutrient absorption, is constantly threatened by environmental factors. The epithelium undergoes rapid turnover, which is essential for maintaining homeostasis, under the control of intestinal stem cells (ISCs). The central regulator, Wnt/ß-catenin signaling plays a key role in intestinal integrity and turnover. Despite its significance, the impact of environmental factors on this pathway has been largely overlooked. This study, for the first time, investigates the influence of Cd on the intestinal Wnt signaling pathway using a mouse model. In this study, male BALB/c mice were administered an environmentally relevant Cd dose (0.98 mg/kg) through oral gavage to investigate the intestinal disruption and Wnt signaling pathway. Various studies, including histopathology, immunohistochemistry, RT-PCR, western blotting, ELISA, intestinal permeability assay, and flow cytometry, were conducted to study Cd-induced changes in the intestine. The canonical Wnt signaling pathway experienced significant downregulation as a result of sub-chronic Cd exposure, which caused extensive damage throughout the small intestine. Increased intestinal permeability and a skewed immune response were also observed. To confirm that Wnt signaling downregulation is the key driver of Cd-induced gastrointestinal toxicity, mice were co-exposed to LiCl (a recognized Wnt activator) and Cd. The results clearly showed that the harmful effects of Cd could be reversed, which is strong evidence that Cd mostly damages the intestine through the Wnt/ß-catenin signalling axis. In conclusion, this research advances the current understanding of the role of Wnt/ß catenin signaling in gastrointestinal toxicity caused by diverse environmental pollutants.


Assuntos
Cádmio , Mucosa Intestinal , Camundongos Endogâmicos BALB C , Via de Sinalização Wnt , Animais , Masculino , Via de Sinalização Wnt/efeitos dos fármacos , Camundongos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Cádmio/toxicidade , Inflamação/induzido quimicamente , Inflamação/patologia , beta Catenina/metabolismo , Intestinos/efeitos dos fármacos , Intestinos/patologia
18.
Sci Total Environ ; 929: 172701, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38657811

RESUMO

This study evaluated the effects of cadmium (Cd) exposure on the passive and active lethal efficiency of Beauveria bassiana (Bb) to Lymantria dispar larvae and analyzed the corresponding mechanism from mycelial vegetative growth, fungal and host nutrient competition, and fungal spore performance. The results showed that the passive lethal efficiency of Bb to Cd-exposed L. dispar larvae was significantly higher than that of larvae not exposed to Cd. After Bb infection, the fungal biomass in living larvae and the mycelium encapsulation index of dead larvae were significantly decreased under Cd exposure. Cd exposure damaged the mycelial structure, as well as inhibited the mycelial growth and sporulation quantity. A total of 15 and 39 differentially accumulated mycotoxin metabolites were identified in Bb mycelia treated with low Cd and high Cd, respectively, and the contents of these differentially accumulated mycotoxins in the low Cd and high Cd treatment groups were overall lower than those in the control group. Nutrient content and energy metabolism-related gene expression were significantly decreased in Cd-exposed larvae, both before and after Bb infection. Trehalose supplementation alleviated the nutritional deficiency of larvae under the combined treatment of Cd and Bb and decreased the larval susceptibility to Bb. Compared with untreated Bb, the lethal efficiency of low Cd-exposed Bb to larvae increased significantly, while high Cd-exposed Bb was significantly less lethal to larvae. Cd exposure promoted at low concentrations but inhibited the hydrophobicity and adhesion of spores at higher concentrations. Spore germination rate and stress resistance of Bb decreased significantly under the treatment of both Cd concentrations. Taken together, heavy metals can be regarded as an abiotic environmental factor that directly affects the lethal efficiency of Bb to insect pests.


Assuntos
Beauveria , Cádmio , Larva , Mariposas , Beauveria/fisiologia , Animais , Cádmio/toxicidade , Mariposas/fisiologia , Controle Biológico de Vetores , Ecossistema , Agricultura Florestal , Esporos Fúngicos/efeitos dos fármacos , Micotoxinas , Agricultura/métodos , Complexo de Mariposas do Gênero Lymantria
19.
Sci Total Environ ; 929: 172554, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38657824

RESUMO

Soil oligotrophy in areas heavily contaminated with heavy metals poses a significant challenge to vegetation establishment and phytoremediation processes. Phosphorus (P) cycling plays a critical role in global biogeochemical cycles, but there is limited understanding of its response to varying fertilization strategies and its correlation with phytoremediation effectiveness. This study primarily investigated the effects of various fertilization strategies, including nitrogen (N, 300 mg·kg-1), P (100 mg·kg-1), NP (combined N and P at 300 mg·kg-1 and 100 mg·kg-1, respectively), and HP (high P, 300 mg·kg-1) application, on rhizosphere soil P fractions and P-solubilizing microbial community (harboring phoD and phoC genes, respectively) of Salix psammophila under cadmium contamination. Application of NP significantly enhanced plant growth and cadmium accumulation, whereas HP inhibited cadmium bioaccumulation but promoted its translocation. Compared to untreated soil, N application promoted P cycling, leading to increases of 141.9 %, 60.4 %, and 10.3 % in Resin-Pi, diluted HCl-Pi, and conc.HCl-Pi, respectively. P application decreased organic phosphorus (Po) fractions by 24.4 % - 225.8 %, but N incorporation mitigated the declining trend in Po and augmented alkaline phosphatase activity. Fertilization strategies significantly regulated phoC- or phoD-harboring bacterial community structure, but their differential nutrient demands resulted in distinct responses. The phoD-harboring bacteria exhibited higher diversity and network complexity, with numerous biomarkers and fertilizer-sensitive OTUs discovered across treatments. Structural equation modeling (SEM) analysis indicated that phytoremediation efficiency was directly affected by Pi fractions, and phoD-harboring bacteria exhibited stronger associations with Pi fractions than phoC-harboring bacteria. In conclusion, our results reveal potential pathways through which fertilization strategies influence phytoremediation by affecting the structure of P-solubilizing microbial community. Furthermore, our study emphasizes the importance of combined N and P application in promoting Cd accumulation in plants, with high P levels appearing as an ideal fertilization strategy for phytoremediation targeting the harvest of aboveground biomass.


Assuntos
Biodegradação Ambiental , Cádmio , Fertilizantes , Fósforo , Rizosfera , Salix , Poluentes do Solo , Solo , Cádmio/metabolismo , Cádmio/toxicidade , Poluentes do Solo/metabolismo , Salix/efeitos dos fármacos , Solo/química , Microbiologia do Solo
20.
Environ Geochem Health ; 46(5): 149, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578493

RESUMO

There is limited evidence linking exposure to heavy metals, especially mixed metals, to stress urinary incontinence (SUI). This study aimed to explore the relationship between multiple metals exposure and SUI in women. The data were derived from the National Health and Nutrition Examination Survey (NHANES), 2007-2020. In the study, a total of 13 metals were analyzed in blood and urine. In addition, 5155 adult women were included, of whom 2123 (41.2%) suffered from SUI. The logistic regression model and restricted cubic spline (RCS) were conducted to assess the association of single metal exposure with SUI risk. The Bayesian kernel machine regression (BKMR) and weighted quantile sum (WQS) were used to estimate the combined effect of multiple metals exposure on SUI. First, we observed that blood Pb, Hg and urinary Pb, Cd were positively related to SUI risk, whereas urinary W was inversely related by multivariate logistic regression (all p-FDR < 0.05). Additionally, a significant non-linear relationship between blood Hg and SUI risk was observed by RCS analysis. In the co-exposure models, WQS model showed that exposure to metal mixtures in blood [OR (95%CI) = 1.18 (1.06, 1.31)] and urine [OR (95%CI) = 1.18 (1.03, 1.34)] was positively associated with SUI risk, which was consistent with the results of BKMR model. A potential interaction was identified between Hg and Cd in urine. Hg and Cd were the main contributors to the combined effects. In summary, our study indicates that exposure to heavy metal mixtures may increase SUI risk in women.


Assuntos
Mercúrio , Metais Pesados , Incontinência Urinária por Estresse , Adulto , Feminino , Humanos , Inquéritos Nutricionais , Teorema de Bayes , Cádmio/toxicidade , Chumbo , Incontinência Urinária por Estresse/induzido quimicamente , Incontinência Urinária por Estresse/epidemiologia , Metais Pesados/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA