RESUMO
The adult human breast is comprised of an intricate network of epithelial ducts and lobules that are embedded in connective and adipose tissue1-3. Although most previous studies have focused on the breast epithelial system4-6, many of the non-epithelial cell types remain understudied. Here we constructed the comprehensive Human Breast Cell Atlas (HBCA) at single-cell and spatial resolution. Our single-cell transcriptomics study profiled 714,331 cells from 126 women, and 117,346 nuclei from 20 women, identifying 12 major cell types and 58 biological cell states. These data reveal abundant perivascular, endothelial and immune cell populations, and highly diverse luminal epithelial cell states. Spatial mapping using four different technologies revealed an unexpectedly rich ecosystem of tissue-resident immune cells, as well as distinct molecular differences between ductal and lobular regions. Collectively, these data provide a reference of the adult normal breast tissue for studying mammary biology and diseases such as breast cancer.
Assuntos
Mama , Perfilação da Expressão Gênica , Análise de Célula Única , Adulto , Feminino , Humanos , Mama/citologia , Mama/imunologia , Mama/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Células Endoteliais/classificação , Células Endoteliais/metabolismo , Células Epiteliais/classificação , Células Epiteliais/metabolismo , Genômica , ImunidadeRESUMO
Abstract Angiotensin II (AngII) causes endothelial dysfunction. Eucommia ulmoides extract (EUE) is documented to manipulate AngII, but its impact on cardiac microvascular endothelial cell (CMVEC) function remains unknown. This study determines the effects of EUE on AngII-treated CMVECs. CMVECs were treated with different concentrations of AngII or EUE alone and/or the p53 protein activator, WR-1065, before AngII treatment, followed by examinations of the apoptotic, migratory, proliferative, and angiogenic capacities and nitric oxide (NO), p53, von Willebrand factor (vWF), endothelin (ET)-1, endothelial NO synthase (eNOS), manganese superoxide dismutase (MnSOD), hypoxia-inducible factor (HIF)-1α, and vascular endothelial growth factor (VEGF) levels. AngII induced CMVEC dysfunction in a concentration-dependent manner. EUE enhanced the proliferative, migratory, and angiogenic capacities and NO, MnSOD, and eNOS levels but repressed apoptosis and vWF and ET-1 levels in AngII-induced dysfunctional CMVECs. Moreover, AngII increased p53 mRNA levels, p-p53 levels in the nucleus, and p53 protein levels in the cytoplasm and diminishes HIF-1α and VEGF levels in CMVECs; however, these effects were counteracted by EUE treatment. Moreover, WR-1065 abrogated the mitigating effects of EUE on AngII-induced CMVEC dysfunction by activating p53 and decreasing HIF-1α and VEGF expression. In conclusion, EUE attenuates AngII-induced CMVEC dysfunction by upregulating HIF-1α and VEGF levels via p53 inactivation
Assuntos
Eucommiaceae/efeitos adversos , Extratos Vegetais/efeitos adversos , Células Endoteliais/classificação , Fator A de Crescimento do Endotélio Vascular/análiseRESUMO
BACKGROUND: Endothelial cells (ECs) play a critical role in angiogenesis and vascular remodeling. The heterogeneity of ECs has been reported at adult stages, yet it has not been fully investigated. This study aims to assess the transcriptional heterogeneity of developmental ECs at spatiotemporal level and to reveal the changes of embryonic ECs clustering when endothelium-enriched microRNA-126 (miR-126) was specifically knocked out. METHODS: C57BL/6J mice embryos at day 14.5 were harvested and digested, followed by fluorescence-activated cell sorting to enrich ECs. Then, single-cell RNA sequencing was applied to enriched embryonic ECs. Tie2 (Tek receptor tyrosine kinase)-cre-mediated ECs-specific miR-126 knockout mice were constructed, and ECs from Tie2-cre-mediated ECs-specific miR-126 knockout embryos were subjected to single-cell RNA sequencing. RESULTS: Embryonic ECs were clustered into 11 groups corresponding to anatomic characteristics. The vascular bed (arteries, capillaries, veins, lymphatics) exhibited transcriptomic similarity across the developmental stage. Embryonic ECs had higher proliferative potential than adult ECs. Integrating analysis showed that 3 ECs populations (hepatic, mesenchymal transition, and pulmonary ECs) were apparently disorganized after miR-126 being knocked out. Gene ontology analysis revealed that disrupted ECs were mainly related to hypoxia, glycometabolism, and vascular calcification. Additionally, in vivo experiment showed that Tie2-cre-mediated ECs-specific miR-126 knockout mice exhibited excessive intussusceptive angiogenesis; reductive glucose and pyruvate tolerance; and excessive accumulation of calcium. Agonist miR-126-3p agomir significantly rescued the phenotype of glucose metabolic dysfunction in Tie2-cre-mediated ECs-specific miR-126 knockout mice. CONCLUSIONS: The heterogeneity of ECs is established as early as the embryonic stage. The deficiency of miR-126 disrupts the differentiation and diversification of embryonic ECs, suggesting that miR-126 plays an essential role in the maintenance of ECs heterogeneity.
Assuntos
Células Endoteliais/citologia , Células Endoteliais/metabolismo , MicroRNAs/genética , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Animais , Apoptose/genética , Hipóxia Celular/genética , Linhagem da Célula/genética , Plasticidade Celular/genética , Proliferação de Células/genética , Células Endoteliais/classificação , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Idade Gestacional , Glucose/metabolismo , Fígado/irrigação sanguínea , Fígado/embriologia , Fígado/metabolismo , Redes e Vias Metabólicas/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/antagonistas & inibidores , MicroRNAs/metabolismo , Células-Tronco Embrionárias Murinas/classificação , Neovascularização Fisiológica/genética , Análise de Célula Única , Análise Espaço-Temporal , Calcificação Vascular/genética , Calcificação Vascular/metabolismo , Calcificação Vascular/patologiaRESUMO
Abstract Cerebrovascular disease is the second most serious disease in the world. It has the features of high morbidity, high mortality and recurrence rate. Numerous research on the compatibility of Chinese medicine with effective ingredients of cerebral ischemia has been made during the past decades. The purpose of this study is to quantitatively analyze the combined pharmacological effect of effective ingredients in Danshen and Honghua (Dan Hong) on rat microvascular endothelial cells after gradually oxygen-glucose deprivation. The experimental concentration range for the compatibility of two effective ingredients were determined in the preliminary experiments by Cell Counting kit-8 (CCK-8) method. Drugs were added to rat brain microvascular endothelial cells at a non-toxic dose level. After that, the cells were cultured for 12 h, and placed in a hypoxic environment. Finally, the cell survival rate was used as a measure of drug effect. In order to determine synergism or antagonism, the combination index (CI)-isobologram method was performed to analyze the data from the experiments. Based on this theory, the potencies of each drug and the shapes of their does-effect curves are both taken into account. The results show that the synergism or the antagonism between two effective ingredients compatibility change with different proportion and dosage. Furthermore, it can be seen from the results of these experiments that when these drugs are used in combination, the dosage required to achieve the same therapeutic effects is greatly reduced compared with the case of single one. It is worth mentioning that our experiments also prove that the median-effect equation and the CI method can be applied in the field of traditional Chinese medicine.
Assuntos
Animais , Masculino , Feminino , Ratos , Células Endoteliais/classificação , Estudos de Avaliação como Assunto , Preparações Farmacêuticas/administração & dosagem , Transtornos Cerebrovasculares/patologia , Carthamus tinctorius/efeitos adversosRESUMO
Abstract Drug resistance is a crucial obstacle to achieve satisfactory chemotherapeutic effects. Numerous studies have shown that the PI3K/Akt signaling pathway plays a significant role in various processes of cellular events and tumor progression, while few studies have focused on the PI3K/Akt signaling pathway in drug resistance of endothelial cells. The present study aims to explore the relationship of PI3K/Akt signaling and cellular resistance to anticancer drugs in human microvessel endothelial cells (HMEC-1). We established stable sunitinib-resiatant human microvessel endothelial cells (HMEC-su) after long-term exposure to sunitinib (a small-molecule tyrosine kinase receptor inhibitor) for 12 months. HMEC-su showed significant alternations of cell morphology and exhibited a 2.32-fold higher IC50 of sunitinib than parental HMEC-1 cells. Expression of P-glycoprotein (P-gp) and breast cancer-resistance protein (ABCG2) which mediates drug efflux, increased significantly in HMEC-su lines compared with HMEC-1 cells by western blots assay. Our study further demonstrates that LY294002 (blocking the PI3K/Akt pathway) enhances the sensibility of HMEC-su to suntinib and inhibits the gene transcription and protein expression of P-gp, ABCG2 in HMEC-su cells. In conclusion, these results indicate that LY294002 could reverse P-gp and ABCG2 mediated-drug resistance to sunitinib in HMEC-su cells by inhibiting PI3K/Akt signaling.
Assuntos
Resistência a Medicamentos , Células Endoteliais/classificação , Preparações Farmacêuticas/administração & dosagem , Western Blotting/instrumentação , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/efeitos adversos , Concentração Inibidora 50 , Células Endoteliais/patologia , Sunitinibe/agonistasRESUMO
Within the bone marrow microenvironment, endothelial cells (EC) exert important functions. Arterial EC support hematopoiesis while H-type capillaries induce bone formation. Here, we show that BM sinusoidal EC (BM-SEC) actively control erythropoiesis. Mice with stabilized ß-catenin in BM-SEC (Ctnnb1OE-SEC) generated by using a BM-SEC-restricted Cre mouse line (Stab2-iCreF3) develop fatal anemia. While activation of Wnt-signaling in BM-SEC causes an increase in erythroblast subsets (PII-PIV), mature erythroid cells (PV) are reduced indicating impairment of terminal erythroid differentiation/reticulocyte maturation. Transplantation of Ctnnb1OE-SEC hematopoietic stem cells into wildtype recipients confirms lethal anemia to be caused by cell-extrinsic, endothelial-mediated effects. Ctnnb1OE-SEC BM-SEC reveal aberrant sinusoidal differentiation with altered EC gene expression and perisinusoidal ECM deposition and angiocrine dysregulation with de novo endothelial expression of FGF23 and DKK2, elevated in anemia and involved in vascular stabilization, respectively. Our study demonstrates that BM-SEC play an important role in the bone marrow microenvironment in health and disease.
Assuntos
Anemia/genética , Medula Óssea/metabolismo , Moléculas de Adesão Celular Neuronais/genética , Endotélio Vascular/metabolismo , Eritroblastos/metabolismo , Eritropoese/genética , beta Catenina/genética , Anemia/metabolismo , Anemia/mortalidade , Anemia/patologia , Animais , Medula Óssea/irrigação sanguínea , Capilares/citologia , Capilares/metabolismo , Moléculas de Adesão Celular Neuronais/metabolismo , Diferenciação Celular , Células Endoteliais/classificação , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Endotélio Vascular/citologia , Eritroblastos/classificação , Eritroblastos/citologia , Feminino , Fator de Crescimento de Fibroblastos 23/genética , Fator de Crescimento de Fibroblastos 23/metabolismo , Regulação da Expressão Gênica , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Integrases/genética , Integrases/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Osteogênese , Reticulócitos/citologia , Reticulócitos/metabolismo , Análise de Sobrevida , Via de Sinalização Wnt , beta Catenina/metabolismoRESUMO
Aging is a significant risk factor for cardiovascular disease. Despite the fact that endothelial cells play critical roles in cardiovascular function and disease, the molecular impact of aging on this cell population in many organ systems remains unknown. In this study, we sought to determine age-associated transcriptional alterations in cardiac endothelial cells. Highly enriched populations of endothelial cells (ECs) isolated from the heart, brain, and kidney of young (3 mo) and aged (24 mo) C57/BL6 mice were profiled for RNA expression via bulk RNA sequencing. Approximately 700 cardiac endothelial transcripts significantly differ by age. Gene set enrichment analysis indicated similar patterns for cellular pathway perturbations. Receptor-ligand comparisons indicated parallel alterations in age-affected circulating factors and cardiac endothelial-expressed receptors. Gene and pathway enrichment analyses show that age-related transcriptional response of cardiac endothelial cells is distinct from that of endothelial cells derived from the brain or kidney vascular bed. Furthermore, single-cell analysis identified nine distinct EC subtypes and shows that the Apelin Receptor-enriched subtype is reduced with age in mouse heart. Finally, we identify age-dysregulated genes in specific aged cardiac endothelial subtypes.
Assuntos
Envelhecimento/genética , Células Endoteliais/fisiologia , Regulação da Expressão Gênica , Miocárdio/citologia , Molécula 1 de Adesão de Célula Vascular , Animais , Encéfalo/citologia , Células Endoteliais/classificação , Rim/citologia , Masculino , Camundongos Endogâmicos C57BL , Análise de Sequência de RNA , Análise de Célula Única , Molécula 1 de Adesão de Célula Vascular/genéticaRESUMO
BACKGROUND: The human heart requires a complex ensemble of specialized cell types to perform its essential function. A greater knowledge of the intricate cellular milieu of the heart is critical to increase our understanding of cardiac homeostasis and pathology. As recent advances in low-input RNA sequencing have allowed definitions of cellular transcriptomes at single-cell resolution at scale, we have applied these approaches to assess the cellular and transcriptional diversity of the nonfailing human heart. METHODS: Microfluidic encapsulation and barcoding was used to perform single nuclear RNA sequencing with samples from 7 human donors, selected for their absence of overt cardiac disease. Individual nuclear transcriptomes were then clustered based on transcriptional profiles of highly variable genes. These clusters were used as the basis for between-chamber and between-sex differential gene expression analyses and intersection with genetic and pharmacologic data. RESULTS: We sequenced the transcriptomes of 287 269 single cardiac nuclei, revealing 9 major cell types and 20 subclusters of cell types within the human heart. Cellular subclasses include 2 distinct groups of resident macrophages, 4 endothelial subtypes, and 2 fibroblast subsets. Comparisons of cellular transcriptomes by cardiac chamber or sex reveal diversity not only in cardiomyocyte transcriptional programs but also in subtypes involved in extracellular matrix remodeling and vascularization. Using genetic association data, we identified strong enrichment for the role of cell subtypes in cardiac traits and diseases. Intersection of our data set with genes on cardiac clinical testing panels and the druggable genome reveals striking patterns of cellular specificity. CONCLUSIONS: Using large-scale single nuclei RNA sequencing, we defined the transcriptional and cellular diversity in the normal human heart. Our identification of discrete cell subtypes and differentially expressed genes within the heart will ultimately facilitate the development of new therapeutics for cardiovascular diseases.
Assuntos
Miocárdio/citologia , Transcrição Gênica , Adipócitos/metabolismo , Adulto , Idoso , Fármacos Cardiovasculares/farmacologia , Fármacos Cardiovasculares/uso terapêutico , Células Endoteliais/classificação , Células Endoteliais/metabolismo , Fibroblastos/classificação , Fibroblastos/metabolismo , Ontologia Genética , Coração/inervação , Átrios do Coração/citologia , Cardiopatias/tratamento farmacológico , Ventrículos do Coração/citologia , Homeostase , Humanos , Subpopulações de Linfócitos/metabolismo , Macrófagos/classificação , Macrófagos/metabolismo , Técnicas Analíticas Microfluídicas , Pessoa de Meia-Idade , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos de Músculo Liso/metabolismo , Pericitos/metabolismo , RNA-Seq , Caracteres Sexuais , Análise de Célula Única , TranscriptomaRESUMO
The heterogeneity of endothelial cells (ECs) across tissues remains incompletely inventoried. We constructed an atlas of >32,000 single-EC transcriptomes from 11 mouse tissues and identified 78 EC subclusters, including Aqp7+ intestinal capillaries and angiogenic ECs in healthy tissues. ECs from brain/testis, liver/spleen, small intestine/colon, and skeletal muscle/heart pairwise expressed partially overlapping marker genes. Arterial, venous, and lymphatic ECs shared more markers in more tissues than did heterogeneous capillary ECs. ECs from different vascular beds (arteries, capillaries, veins, lymphatics) exhibited transcriptome similarity across tissues, but the tissue (rather than the vessel) type contributed to the EC heterogeneity. Metabolic transcriptome analysis revealed a similar tissue-grouping phenomenon of ECs and heterogeneous metabolic gene signatures in ECs between tissues and between vascular beds within a single tissue in a tissue-type-dependent pattern. The EC atlas taxonomy enabled identification of EC subclusters in public scRNA-seq datasets and provides a powerful discovery tool and resource value.
Assuntos
Células Endoteliais/metabolismo , Análise de Célula Única , Transcriptoma , Animais , Encéfalo/citologia , Sistema Cardiovascular/citologia , Células Endoteliais/classificação , Células Endoteliais/citologia , Trato Gastrointestinal/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculos/citologia , Especificidade de Órgãos , RNA-Seq , Testículo/citologiaRESUMO
The ovary is perhaps the most dynamic organ in the human body, only rivaled by the uterus. The molecular mechanisms that regulate follicular growth and regression, ensuring ovarian tissue homeostasis, remain elusive. We have performed single-cell RNA-sequencing using human adult ovaries to provide a map of the molecular signature of growing and regressing follicular populations. We have identified different types of granulosa and theca cells and detected local production of components of the complement system by (atretic) theca cells and stromal cells. We also have detected a mixture of adaptive and innate immune cells, as well as several types of endothelial and smooth muscle cells to aid the remodeling process. Our results highlight the relevance of mapping whole adult organs at the single-cell level and reflect ongoing efforts to map the human body. The association between complement system and follicular remodeling may provide key insights in reproductive biology and (in)fertility.
Assuntos
Células Endoteliais/classificação , Células da Granulosa/classificação , Miócitos de Músculo Liso/classificação , Folículo Ovariano/crescimento & desenvolvimento , Células Tecais/classificação , Adulto , Sequência de Bases , Feminino , Humanos , Folículo Ovariano/anatomia & histologia , Folículo Ovariano/citologia , Ovulação/fisiologia , Análise de Sequência de RNA , Útero/anatomia & histologia , Útero/citologia , Útero/crescimento & desenvolvimentoRESUMO
There are only a few studies regarding gut subepithelial telocytes (TCs). The telopodes, namely peculiar TCs' prolongations described on two-dimensional cuts, are not enough to differentiate this specific cell type. Subepithelial TCs were associated with the intestinal stem niche but a proper differential diagnosis with lymphatic endothelial cells (LECs) was not performed. In this study, we will critically review studies suggesting that distinctive TCs could be positioned within the lamina propria. Additionally, we performed an immunohistochemical study of human gastric mucosa to test the expression of D2-40, the lymphatic marker, as well as that of CD31, CD34, CD44, CD117/c-kit, α-smooth muscle actin (α-SMA) and vimentin in the gastric subepithelial niche. The results support the poorly investigated anatomy of intramural gastric lymphatics, with circumferential collectors located on both sides of the muscularis mucosae (mucosal and then submucosal) and myenteric collectors in the muscularis propria. We also found superficial epithelial prelymphatic channels bordered by D2-40+ but CD31-TC-like cells. Deep epithelial lymphatic collectors drain in collectors within the lamina propria. Blood endothelial cells expressed CD31, CD34, CD44, and vimentin. Therefore, the positive diagnosis of TC for subepithelial CD34+ cells should be regarded with caution, as they could also be artefacts, resulting from the two-dimensional examination of three dimensional structures, or as LECs. Lymphatic markers should be routinely used to discriminate TCs from LECs.
Assuntos
Células Endoteliais/classificação , Mucosa Gástrica/química , Mucosa Gástrica/imunologia , Telócitos/classificação , Diferenciação Celular , Células Endoteliais/fisiologia , Feminino , Mucosa Gástrica/patologia , Humanos , Imuno-Histoquímica/instrumentação , Imuno-Histoquímica/métodos , Masculino , Pessoa de Meia-Idade , Telócitos/fisiologiaRESUMO
Protein malnutrition (PM) causes anemia and leukopenia by reduction of hematopoietic precursors and impaired production of mediators that induce hematopoiesis, as well as structural and ultrastructural changes in the bone marrow (BM) extracellular matrix. Hematopoiesis occurs in the bone marrow (BM) in distinct regions called niches, which modulate the processes of differentiation, proliferation and self-renewal of the hematopoietic stem cell (HSC). The perivascular niche, composed mainly by mesenchymal stem cells (MSC) and endothelial cells (EC), is the major modulator of HSC and its function extends to the migration of mature hematopoietic cells into the peripheral blood through the production of cytokines and growth factors. Thus, our hypothesis is that PM changes the perivascular niche and our objective is to evaluate whether PM affects the modulatory capacity of MSC and EC on hematopoiesis. C57BL/6 male mice were divided into Control and Malnourished groups, which received for 5 weeks, respectively, a normal protein diet (12% casein) and a low protein diet (2% casein). After this period, animals were euthanized, nutritional and hematological evaluations were performed, featuring the PM. We performed leukemic myelo-monoblasts cells transplantation and observed that these cells have a lower proliferation rate and are rather in the cell cycle G0/G1 phases in malnourished mice, indicating that the BM microenvironment is compromised in PM. MSC were isolated, characterized and differentiated in vitro into EC cells, which were evidenced by CD31 and CD144 markers. We performed the quantification of HSC and hematopoietic progenitors, as well as some regulators of proliferation and differentiation, ex vivo and after cultures with MSC or EC. We observed that PM reduces HSC and hematopoietic progenitors ex vivo. In PM, MSC promote increase in HSC and suppress hematopoietic differentiation, whereas ECs induce cell cycle arrest. Additionally, we verified that PM affects granulopoesis by decreasing the expression of G-CSFr in granule-monocytic progenitors. Thus, we conclude that PD compromises hematopoiesis due to intrinsic alterations in HSC, as well as alterations in the medullary perivascular niche
A desnutrição proteica (DP) provoca anemia e leucopenia decorrente da redução de precursores hematopoéticos e comprometimento da produção de mediadores indutores da hematopoese. A hematopoese ocorre na medula óssea (MO) em regiões distintas chamadas de nichos, que modulam os processos de diferenciação, proliferação e auto renovação da célula tronco hematopoiética (CTH). O microambiente perivascular, composto principalmente por células tronco mesenquimais (CTM) e células endoteliais (CE), é o principal modulador das CTH e sua função se estende até a migração das células hematopoiéticas maduras para o sangue periférico, através da produção de citocinas e fatores de crescimento. Dessa forma, nossa hipótese é que a DP altera o microambiente perivascular e objetivamos avaliar se a DP afeta a capacidade modulatória das CTM e CE sobre a hematopoese. Utilizamos camundongos C57BL/6 machos, divididos em grupos Controle e Desnutrido, sendo que o grupo Controle recebeu ração normoproteica (12% caseína) e o grupo Desnutrido recebeu ração hipoproteica (2% caseína), ambos durante 5 semanas. Após este período, os animais foram eutanasiados, foi realizada a avaliação nutricional e hematológica, caracterizando a DP. Realizamos transplantes de mielomonoblastos leucêmicos e observamos que estas células apresentam menor taxa de proliferação e se encontram em maior quantidade nas fases G0/G1 do ciclo celular em camundongos desnutridos, indicando que o microambiente medular está comprometido. Isolamos CTM, que foram caracterizadas e diferenciadas in vitro em CE, o que foi evidenciado pelos marcadores CD31 e CD144. Quantificamos CTH e progenitores hematopoéticos, bem como reguladores de proliferação e diferenciação, ex vivo e após culturas com CTM ou CE. Observamos que a DP reduz CTH e progenitores hematopoéticos ex vivo. Na DP, as CTM promovem incremento de CTH e suprimem a diferenciação hematopoética, enquanto que as CE induzem parada no ciclo celular. Adicionalmente, observamos que a DP afeta a granulopoese por diminuição da expressão de G-CSFr nos progenitores grânulo-monocíticos. Dessa forma, concluímos que a DP compromete a hematopoese por alterações intrínsecas na CTH, como também por alterações ocasionadas no microambiente perivascular medular
Assuntos
Animais , Masculino , Camundongos , Deficiência de Proteína/complicações , Hematopoese , Células Endoteliais/classificação , Microambiente TumoralRESUMO
Evidence from preclinical research and clinical trials demonstrates the use of the stromal vascular fraction (SVF) as therapy for numerous indications. These results demonstrate that autologous SVF is not only safe and effective but provides robust anti-inflammatory, immunomodulatory, and reparative effects in vivo. The potency of the SVF is attributed to the cellular composition which includes adipose-derived stem cells (ASCs), adipocytes, endothelial cells, and various immune cells. As the name would suggest, these SVF cells are derived from the stromal compartment of adipose, or fat. Once digested, the cells that constitute adipose are released and collected as the SVF. The cellular frequencies within the SVF can then be assessed using a fluorescent antibody-based technique known as flow cytometry. The following chapter provides a standard operating protocol that describes the procedures from harvesting the fat tissue from experimental mice to isolating and characterizing the SVF.
Assuntos
Tecido Adiposo Branco/citologia , Fracionamento Celular , Separação Celular , Adipócitos/classificação , Animais , Biomarcadores/análise , Células Endoteliais/classificação , Citometria de Fluxo , Imunofluorescência , Humanos , Imunofenotipagem , Células-Tronco Mesenquimais/classificação , Camundongos , Camundongos Endogâmicos C57BLRESUMO
Cerebrovascular disease is the third most common cause of death in developed countries, but our understanding of the cells that compose the cerebral vasculature is limited. Here, using vascular single-cell transcriptomics, we provide molecular definitions for the principal types of blood vascular and vessel-associated cells in the adult mouse brain. We uncover the transcriptional basis of the gradual phenotypic change (zonation) along the arteriovenous axis and reveal unexpected cell type differences: a seamless continuum for endothelial cells versus a punctuated continuum for mural cells. We also provide insight into pericyte organotypicity and define a population of perivascular fibroblast-like cells that are present on all vessel types except capillaries. Our work illustrates the power of single-cell transcriptomics to decode the higher organizational principles of a tissue and may provide the initial chapter in a molecular encyclopaedia of the mammalian vasculature.
Assuntos
Vasos Sanguíneos/citologia , Encéfalo/irrigação sanguínea , Encéfalo/citologia , Células Endoteliais/classificação , Animais , Artérias/citologia , Arteríolas/citologia , Capilares/citologia , Feminino , Fibroblastos/classificação , Masculino , Camundongos , Miócitos de Músculo Liso/classificação , Especificidade de Órgãos , Pericitos/classificação , Análise de Célula Única , Transcriptoma , Veias/citologiaRESUMO
Endocrine and endothelial cells of the anterior pituitary gland frequently make close appositions or contacts, and the secretory granules of each endocrine cell tend to accumulate at the perivascular regions, which is generally considered to facilitate secretory functions of these cells. However, three-dimensional relationships between the localization pattern of secretory granules and blood vessels are not fully understood. To define and characterize these spatial relationships, we used scanning electron microscopy (SEM) three-dimensional reconstruction method based on focused ion-beam slicing and scanning electron microscopy (FIB/SEM). Full three-dimensional cellular architectures of the anterior pituitary tissue at ultrastructural resolution revealed that about 70% of endocrine cells were in apposition to the endothelial cells, while almost 30% of endocrine cells were entirely isolated from perivascular space in the tissue. Our three-dimensional analyses also visualized the distribution pattern of secretory granules in individual endocrine cells, showing an accumulation of secretory granules in regions in close apposition to the blood vessels in many cases. However, secretory granules in cells isolated from the perivascular region tended to distribute uniformly in the cytoplasm of these cells. These data suggest that the cellular interactions between the endocrine and endothelial cells promote an uneven cytoplasmic distribution of the secretory granules.
Assuntos
Grânulos Citoplasmáticos/metabolismo , Células Endócrinas/ultraestrutura , Células Endoteliais/ultraestrutura , Adeno-Hipófise/ultraestrutura , Animais , Simulação por Computador , Células Endócrinas/classificação , Células Endócrinas/patologia , Células Endoteliais/classificação , Células Endoteliais/patologia , Imuno-Histoquímica , Masculino , Microscopia Eletrônica de Varredura , Adeno-Hipófise/anatomia & histologia , Ratos , Ratos WistarRESUMO
Heart valvular endothelial cells (VECs) are distinct from vascular endothelial cells (ECs), but have an uncertain context within the spectrum of known endothelial phenotypes, including lymphatic ECs (LECs). Profiling the phenotypes of the heart valve surface VECs would facilitate identification of a proper seeding population for tissue-engineered valves, as well as elucidate mechanisms of valvular disease. Porcine VECs and porcine aortic ECs (AECs) were isolated from pig hearts and characterized to assess known EC and LEC markers. A transwell migration assay determined their propensity to migrate toward vascular endothelial growth factor, an angiogenic stimulus, over 24 h. Compared to AECs, Flt-1 was expressed on almost double the percentage of VECs, measured as 74 versus 38%. The expression of angiogenic EC markers CXCR4 and DLL4 was >90% on AECs, whereas VECs showed only 35% CXCR4+ and 47% DLL4+. AECs demonstrated greater migration (71.5 ± 11.0 cells per image field) than the VECs with 30.0 ± 15.3 cells per image field (p = 0.032). In total, 30% of VECs were positive for LYVE1+/Prox1+, while these markers were absent in AECs. In conclusion, the population of cells on the surface of heart valves is heterogeneous, consisting largely of nonangiogenic VECs and a subset of LECs. Previous studies have indicated the presence of LECs within the interior of the valves; however, this is the first study to demonstrate their presence on the surface. Identification of this unique endothelial mixture is a step forward in the development of engineered valve replacements as a uniform EC seeding population may not be the best option to maximize transplant success.
Assuntos
Células Endoteliais/classificação , Células Endoteliais/metabolismo , Endotélio/citologia , Valvas Cardíacas/citologia , Animais , Biomarcadores/metabolismo , Movimento Celular , Células Cultivadas , Células Endoteliais/citologia , Endotélio/metabolismo , Citometria de Fluxo , Proteínas de Homeodomínio/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Receptores CXCR4/metabolismo , Suínos , Proteínas Supressoras de Tumor/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteínas de Transporte Vesicular/metabolismoRESUMO
Higher organisms rely on a closed cardiovascular circulatory system with blood vessels supplying vital nutrients and oxygen to distant tissues. Not surprisingly, vascular pathologies rank among the most life-threatening diseases. At the crux of most of these vascular pathologies are (dysfunctional) endothelial cells (ECs), the cells lining the blood vessel lumen. ECs display the remarkable capability to switch rapidly from a quiescent state to a highly migratory and proliferative state during vessel sprouting. This angiogenic switch has long been considered to be dictated by angiogenic growth factors (eg, vascular endothelial growth factor) and other signals (eg, Notch) alone, but recent findings show that it is also driven by a metabolic switch in ECs. Furthermore, these changes in metabolism may even override signals inducing vessel sprouting. Here, we review how EC metabolism differs between the normal and dysfunctional/diseased vasculature and how it relates to or affects the metabolism of other cell types contributing to the pathology. We focus on the biology of ECs in tumor blood vessel and diabetic ECs in atherosclerosis as examples of the role of endothelial metabolism in key pathological processes. Finally, current as well as unexplored EC metabolism-centric therapeutic avenues are discussed.
Assuntos
Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Doenças Vasculares/metabolismo , Aminoácidos/metabolismo , Aterosclerose/metabolismo , Aterosclerose/patologia , Movimento Celular , Angiopatias Diabéticas/metabolismo , Células Endoteliais/classificação , Células Endoteliais/patologia , Metabolismo Energético , Ácidos Graxos/metabolismo , Glucose/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Humanos , Morfogênese , Neoplasias/irrigação sanguínea , Neovascularização Patológica/metabolismo , Neovascularização Fisiológica/fisiologia , Óxido Nítrico/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Células Estromais/metabolismo , Pesquisa Translacional Biomédica , Microambiente Tumoral , Doenças Vasculares/patologiaRESUMO
Cell population represents an intrinsically heterogeneous and stochastic system, in which individual cells often behave very differently in molecular contents, functions and even genotypes from the population average in response to uniform physiological stimuli. The traditional bulk cellular analysis often overlooks cellular heterogeneity and does not provide information on cell-cell variations. Single-cell measurements can reveal information obscured in population averages, and enable us to determine distributions rather than averaged properties within a cell population. The level of complexity, with numerous variables acting at the same time, requires multiparametric and dynamic investigation of a large number of single cells. Multiplexed study can provide quantitative correlations or inter-relationships among multiple cellular components and molecular markers within a protein network or family in biological processes. In this paper, we applied multiple fluorophore-conjugated primary antibodies to detect multiple proteins expressed on the same singe cells from a clonal population. To reveal cell-cell heterogeneity, we quantified the histograms of six proteins within a cell population as functions of TNF-α stimulation time. Then, we quantified noise and noise strength of these protein histograms as functions of TNF-α stimulation time. Thirdly, we quantified correlation coefficients of multiple proteins expressed on same single-cells as functions of TNF-α stimulation time. Above parameters demonstrated nonlinear relationships with TNF-α stimulation. Quantification of above parameters on independent cell subpopulations further reveals the cell-cell heterogeneity when exposed to identical environmental conditions. Such cellular heterogeneity will be useful to characterize the disease progression and disease diagnoses.
Assuntos
Algoritmos , Citocinas/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Análise Serial de Proteínas/métodos , Mapeamento de Interação de Proteínas/métodos , Células Cultivadas , Células Endoteliais/classificação , HumanosRESUMO
BACKGROUND: The endothelium lines blood and lymph vessels and protects underlying tissues against external agents such as viruses, bacteria and parasites. Yet, microbes and particularly viruses have developed sophisticated ways to bypass the endothelium in order to gain access to inner organs. De novo infection of the liver parenchyma by many viruses and notably hepatitis viruses, is thought to occur through recruitment of virions on the sinusoidal endothelial surface and subsequent transfer to the epithelium. Furthermore, the liver endothelium undergoes profound changes with age and in inflammation or infection. However, primary human liver sinusoidal endothelial cells (LSECs) are difficult to obtain due to scarcity of liver resections. Relevant derived cell lines are needed in order to analyze in a standardized fashion the transfer of pathogens across the liver endothelium. By lentiviral transduction with hTERT only, we have immortalized human LSECs isolated from a hereditary hemorrhagic telangiectasia (HHT) patient and established the non-transformed cell line TRP3. TRP3 express mesenchymal, endothelial and liver sinusoidal markers. Functional assessment of TRP3 cells demonstrated a high capacity of endocytosis, tube formation and reactivity to immune stimulation. However, TRP3 displayed few fenestrae and expressed C-type lectins intracellularly. All these findings were confirmed in the original primary LSECs from which TRP3 were derived suggesting that these features were already present in the liver donor. We consider TRP3 as a model to investigate the functionality of the liver endothelium in hepatic inflammation in infection.
Assuntos
Células Endoteliais/citologia , Células Endoteliais/fisiologia , Hepatócitos/citologia , Hepatócitos/fisiologia , Fígado/citologia , Fígado/fisiologia , Idoso , Técnicas de Cultura de Células/métodos , Linhagem Celular , Linhagem Celular Transformada , Proliferação de Células , Sobrevivência Celular , Células Endoteliais/classificação , Feminino , Hepatócitos/classificação , HumanosRESUMO
Aortic valve endothelial cells (ECs) function in vastly different levels of shear stress. The biomechanical characteristics of cells on each side of valve have not been investigated. We assessed the morphology and mechanical properties of cultured or native valve ECs on intact porcine aortic valve cusps using a scanning ion conductance microscope (SICM). The autocrine influence of several endothelial-derived mediators on cell compliance and the expression of actin were also examined. Cells on the aortic side of the valve are characterized by a more elongated shape and were aligned along a single axis. Measurement of EC membrane compliance using the SICM showed that the cells on the aortic side of intact valves were significantly softer than those on the ventricular side. A similar pattern was seen in cultured cells. Addition of 10(-6) M of the nitric oxide donor sodium nitroprusside caused a significant reduction in the compliance of ventricular ECs but had no effect on cells on the aortic side of the valve. Conversely, endothelin-1 (10(-10)-10(-8) M) caused an increase in the compliance of aortic cells but had no effect on cells on the ventricular side of the valve. Aortic side EC compliance was also increased by 10(-4) M of the nitric oxide synthase inhibitor NG-nitro-L-arginine methyl ester. Immunofluorescent staining of actin filaments revealed a great density of staining in ECs on the ventricular surface. The expression of actin and the relative membrane compliance of ECs on both side of the valve were not affected by ventricular and aortic patterns of flow. This study has shown side-specific differences in the biomechanics of aortic valve ECs. These differences can have important implications for valve function.