RESUMO
Objective.The energy deposition of photons and protons differs. It depends on the position in the proton Bragg peak (BP) and the linear energy transfer (LET) leading to a variable relative biological effectiveness (RBE). Here, we investigate LET dependent alterations on metabolic viability and proliferation of sarcoma and endothelium cell lines following proton irradiation in comparison to photon exposure.Approach.Using a multi-step range shifter, each column of a 96-well plate was positioned in a different depth along four BP curves with increasing intensities. The high-throughput experimental setup covers dose, LET, and RBE changes seen in a treatment field. Photon irradiation was performed to calculate the RBE along the BP curve. Two biological information out of one experiment were extracted allowing a correlation between metabolic viability and proliferation of the cells.Main results.The metabolic viability and cellular proliferation were column-wise altered showing a depth-dose profile. Endothelium cell viability recovers within 96 h post BP irradiation while sarcoma cell viability remains reduced. Highest RBE values were observed at the BP distal fall-off regarding proliferation of the sarcoma and endothelial cells.Significance.The high-throughput experimental setup introduced here (I) covers dose, LET, and RBE changes seen in a treatment field, (II) measures short-term effects within 48 h to 96 h post irradiation, and (III) can additionally be transferred to various cell types without time consuming experimental adaptations. Traditionally, RBE values are calculated from clonogenic cell survival. Measured RBE profiles strongly depend on physical characteristics such as dose and LET and biological characteristics for example cell type and time point. Metabolic viability and proliferation proofed to be in a similar effect range compared to clonogenic survival results. Based on limited data of combined irradiation with doxorubicin, future experiments will test combined treatment with systemic therapies applied in clinics e.g. cyclin-dependent inhibitors.
Assuntos
Proliferação de Células , Sobrevivência Celular , Transferência Linear de Energia , Sarcoma , Proliferação de Células/efeitos da radiação , Sobrevivência Celular/efeitos da radiação , Sarcoma/radioterapia , Humanos , Eficiência Biológica Relativa , Linhagem Celular Tumoral , Fótons , Células Endoteliais/efeitos da radiação , Células Endoteliais/citologiaRESUMO
Radiation exposure in a therapeutic setting or during a mass casualty event requires improved medical triaging, where the time to delivery and quantity of medical countermeasures are critical to survival. Radiation-induced liver injury (RILI) and fibrosis can lead to death, but clinical symptoms manifest late in disease pathogenesis and there is no simple diagnostic test to determine RILI. Because animal models do not completely recapitulate clinical symptoms, we used a human liver-on-a-chip model to identify biomarkers of RILI. The goals of this study were: 1. to establish a microfluidic liver-on-a-chip device as a physiologically relevant model for studying radiation-induced tissue damage; and 2. to determine acute changes in RNA expression and biological pathway regulation that identify potential biomarkers and mechanisms of RILI. To model functional human liver tissue, we used the Emulate organ-on-a-chip system to establish a co-culture of human liver sinusoidal endothelial cells (LSECs) and hepatocytes. The chips were subject to 0 Gy (sham), 1 Gy, 4 Gy, or 10 Gy irradiation and cells were collected at 6 h, 24 h, or 7 days postirradiation for RNA isolation. To identify significant expression changes in messenger RNA (mRNA) and long non-coding RNA (lncRNA), we performed RNA sequencing (RNASeq) to conduct whole transcriptome analysis. We found distinct differences in expression patterns by time, dose, and cell type, with higher doses of radiation resulting in the most pronounced expression changes, as anticipated. Ingenuity Pathway Analysis indicated significant inhibition of the cell viability pathway 24 h after 10 Gy exposure in LSECs but activation of this pathway in hepatocytes, highlighting differences between cell types despite receiving the same radiation dose. Overall, hepatocytes showed fewer gene expression changes in response to radiation, with only 3 statistically significant differentially expressed genes at 7 days: APOBEC3H, PTCHD4, and GDNF. We further highlight lncRNA of interest including DINO and PURPL in hepatocytes and TMPO-AS1 and PRC-AS1 in LSECs, identifying potential biomarkers of RILI. We demonstrated the potential utility of a human liver-on-a-chip model with primary cells to model organ-specific radiation injury, establishing a model for radiation medical countermeasure development and further biomarker validation. Furthermore, we identified biomarkers that differentiate radiation dose and defined cell-specific targets for potential radiation mitigation therapies.
Assuntos
Dispositivos Lab-On-A-Chip , Fígado , Lesões por Radiação , Humanos , Fígado/efeitos da radiação , Fígado/metabolismo , Fígado/patologia , Lesões por Radiação/genética , Lesões por Radiação/patologia , Hepatócitos/efeitos da radiação , Hepatócitos/metabolismo , RNA/genética , RNA/metabolismo , Biomarcadores/metabolismo , Células Endoteliais/efeitos da radiação , Células Endoteliais/metabolismoRESUMO
BACKGROUND: Radiation therapy is the standard of care for central nervous system tumours. Despite the success of radiation therapy in reducing tumour mass, irradiation (IR)-induced vasculopathies and neuroinflammation contribute to late-delayed complications, neurodegeneration, and premature ageing in long-term cancer survivors. Mesenchymal stromal cells (MSCs) are adult stem cells that facilitate tissue integrity, homeostasis, and repair. Here, we investigated the potential of the iPSC-derived MSC (iMSC) secretome in immunomodulation and vasculature repair in response to radiation injury utilizing human cell lines. METHODS: We generated iPSC-derived iMSC lines and evaluated the potential of their conditioned media (iMSC CM) to treat IR-induced injuries in human monocytes (THP1) and brain vascular endothelial cells (hCMEC/D3). We further assessed factors in the iMSC secretome, their modulation, and the molecular pathways they elicit. RESULTS: Increasing doses of IR disturbed endothelial tube and spheroid formation in hCMEC/D3. When IR-injured hCMEC/D3 (IR ≤ 5 Gy) were treated with iMSC CM, endothelial cell viability, adherence, spheroid compactness, and proangiogenic sprout formation were significantly ameliorated, and IR-induced ROS levels were reduced. iMSC CM augmented tube formation in cocultures of hCMEC/D3 and iMSCs. Consistently, iMSC CM facilitated angiogenesis in a zebrafish model in vivo. Furthermore, iMSC CM suppressed IR-induced NFκB activation, TNF-α release, and ROS production in THP1 cells. Additionally, iMSC CM diminished NF-kB activation in THP1 cells cocultured with irradiated hCMEC/D3, iMSCs, or HMC3 microglial lines. The cytokine array revealed that iMSC CM contains the proangiogenic and immunosuppressive factors MCP1/CCL2, IL6, IL8/CXCL8, ANG (Angiogenin), GROα/CXCL1, and RANTES/CCL5. Common promoter regulatory elements were enriched in TF-binding motifs such as androgen receptor (ANDR) and GATA2. hCMEC/D3 phosphokinome profiling revealed increased expression of pro-survival factors, the PI3K/AKT/mTOR modulator PRAS40 and ß-catenin in response to CM. The transcriptome analysis revealed increased expression of GATA2 in iMSCs and the enrichment of pathways involved in RNA metabolism, translation, mitochondrial respiration, DNA damage repair, and neurodevelopment. CONCLUSIONS: The iMSC secretome is a comodulated composite of proangiogenic and immunosuppressive factors that has the potential to alleviate radiation-induced vascular endothelial cell damage and immune activation.
Assuntos
Células Endoteliais , Células-Tronco Pluripotentes Induzidas , Células-Tronco Mesenquimais , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Células Endoteliais/metabolismo , Células Endoteliais/efeitos da radiação , Secretoma/metabolismo , Animais , Peixe-Zebra , Meios de Cultivo Condicionados/farmacologia , Neovascularização Fisiológica/efeitos da radiaçãoRESUMO
Pulsed dye lasers are used effectively in the treatment of psoriasis with long remission time and limited side effects. It is, however, not completely understood which biological processes underlie its favorable outcome. Pulsed dye laser treatment at 585-595 nm targets hemoglobin in the blood, inducing local hyperthermia in surrounding blood vessels and adjacent tissues. While the impact of destructive temperatures on blood vessels has been well studied, the effects of lower temperatures on the function of several cell types within the blood vessel wall and its periphery are not known. The aim of our study is to assess the functionality of isolated blood vessels after exposure to moderate hyperthermia (45 to 60°C) by evaluating the function of endothelial cells, smooth muscle cells, and vascular nerves. We measured blood vessel functionality of rat mesenteric arteries (n=19) by measuring vascular contraction and relaxation before and after heating vessels in a wire myograph. To this end, we elicited vascular contraction by addition of either high potassium solution or the thromboxane analogue U46619 to stimulate smooth muscle cells, and electrical field stimulation (EFS) to stimulate nerves. For measurement of endothelium-dependent relaxation, we used methacholine. Each vessel was exposed to one temperature in the range of 45-60°C for 30 seconds and a relative change in functional response after hyperthermia was determined by comparison with the response per stimulus before heating. Non-linear regression was used to fit our dataset to obtain the temperature needed to reduce blood vessel function by 50% (Half maximal effective temperature, ET50). Our findings demonstrate a substantial decrease in relative functional response for all three cell types following exposure to 55°C-60°C. There was no significant difference between the ET50 values of the different cell types, which was between 55.9°C and 56.9°C (P>0.05). Our data show that blood vessel functionality decreases significantly when exposed to temperatures between 55°C-60°C for 30 seconds. The results show functionality of endothelial cells, smooth muscle cells, and vascular nerves is similarly impaired. These results help to understand the biological effects of hyperthermia and may aid in tailoring laser and light strategies for selective photothermolysis that contribute to disease modification of psoriasis after pulsed dye laser treatment.
Assuntos
Lasers de Corante , Animais , Ratos , Masculino , Lasers de Corante/uso terapêutico , Miócitos de Músculo Liso/fisiologia , Miócitos de Músculo Liso/efeitos da radiação , Vasodilatação/efeitos da radiação , Vasodilatação/fisiologia , Temperatura , Músculo Liso Vascular/efeitos da radiação , Músculo Liso Vascular/fisiologia , Células Endoteliais/efeitos da radiação , Células Endoteliais/fisiologia , Vasoconstrição/efeitos da radiação , Vasoconstrição/fisiologia , Endotélio Vascular/efeitos da radiação , Ratos WistarRESUMO
PURPOSE: The objective of this study was to investigate the senescent phenotypes of human corneal endothelial cells (hCEnCs) upon treatment with ultraviolet (UV)-A. METHODS: We assessed cell morphology, senescence-associated ß-galactosidase (SA-ß-gal) activity, cell proliferation and expression of senescence markers (p16 and p21) in hCEnCs exposed to UV-A radiation, and senescent hCEnCs induced by ionizing radiation (IR) were used as positive controls. We performed RNA sequencing and proteomics analyses to compare gene and protein expression profiles between UV-A- and IR-induced senescent hCEnCs, and we also compared the results to non-senescent hCEnCs. RESULTS: Cells exposed to 5 J/cm2 of UV-A or to IR exhibited typical senescent phenotypes, including enlargement, increased SA-ß-gal activity, decreased cell proliferation and elevated expression of p16 and p21. RNA-Seq analysis revealed that 83.9% of the genes significantly upregulated and 82.6% of the genes significantly downregulated in UV-A-induced senescent hCEnCs overlapped with the genes regulated in IR-induced senescent hCEnCs. Proteomics also revealed that 93.8% of the proteins significantly upregulated in UV-A-induced senescent hCEnCs overlapped with those induced by IR. In proteomics analyses, senescent hCEnCs induced by UV-A exhibited elevated expression levels of several factors part of the senescence-associated secretory phenotype. CONCLUSIONS: In this study, where senescence was induced by UV-A, a more physiological stress for hCEnCs compared to IR, we determined that UV-A modulated the expression of many genes and proteins typically altered upon IR treatment, a more conventional method of senescence induction, even though UV-A also modulated specific pathways unrelated to IR.
Assuntos
Proliferação de Células , Senescência Celular , Células Endoteliais , Raios Ultravioleta , Humanos , Senescência Celular/efeitos da radiação , Raios Ultravioleta/efeitos adversos , Proliferação de Células/efeitos da radiação , Células Endoteliais/efeitos da radiação , Células Endoteliais/metabolismo , Endotélio Corneano/efeitos da radiação , Endotélio Corneano/metabolismo , Células Cultivadas , Proteômica , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , beta-Galactosidase/metabolismo , beta-Galactosidase/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/genéticaRESUMO
PURPOSE: People are exposed to low-dose radiation in medical diagnosis, occupational, or life circumstances, but the effect of low-dose radiation on human health is still controversial. The biological effects of radiation below 100 mGy are still unproven. In this study, we observed the effects of low-dose radiation (100 mGy) on gene expression in human coronary artery endothelial cells (HCAECs) and its effect on molecular signaling. MATERIALS AND METHODS: HCAECs were exposed to 100 mGy ionizing radiation at 6 mGy/h (low-dose-rate) or 288 mGy/h (high-dose-rate). After 72 h, total RNA was extracted from sham or irradiated cells for Quant-Seq 3'mRNA-Seq, and bioinformatic analyses were performed using Metascape. Gene profiling was validated using qPCR. RESULTS: Compared to the non-irradiated control group, 100 mGy of ionizing radiation at 6 mGy/h altered the expression of 194 genes involved in signaling pathways related to heart contraction, blood circulation, and cardiac myofibril assembly differentially. However, 100 mGy at 288 mGy/h altered expression of 450 genes involved in cell cycle-related signaling pathways, including cell division, nuclear division, and mitosis differentially. Additionally, gene signatures responding to low-dose radiation, including radiation dose-specific gene profiles (HIST1H2AI, RAVER1, and POTEI) and dose-rate-specific gene profiles (MYL2 for the low-dose-rate and DHRS9 and CA14 for the high-dose-rate) were also identified. CONCLUSIONS: We demonstrated that 100 mGy low-dose radiation could alter gene expression and molecular signaling pathways at the low-dose-rate and the high-dose-rate differently. Our findings provide evidence for further research on the potential impact of low-dose radiation on cardiovascular function.
Assuntos
Biologia Computacional , Vasos Coronários , Relação Dose-Resposta à Radiação , Células Endoteliais , Transcriptoma , Humanos , Vasos Coronários/efeitos da radiação , Vasos Coronários/citologia , Células Endoteliais/efeitos da radiação , Células Endoteliais/metabolismo , Transcriptoma/efeitos da radiação , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos da radiação , Doses de Radiação , Transdução de Sinais/efeitos da radiaçãoRESUMO
PURPOSE: Radiation-induced pneumonitis (RIP) seriously limits the application of radiation therapy in the treatment of thoracic tumors, and its etiology and pathogenesis remain elusive. This study aimed to elucidate the role of ubiquitin-specific peptidase 11 (USP11) in the progression of RIP and the associated underlying mechanisms. METHODS AND MATERIALS: Changes in cytokines and infiltrated immune cells were detected by enzyme-linked immunosorbent assays and immunohistochemistry after exposure to 20 Gy x-ray with whole-thorax irradiation. The effects of USP11 expression on endothelial cell proliferation and apoptosis were analyzed by costaining of CD31/Ki67 and CD31/caspase-3 in vivo, and the production of cytokines and reactive oxygen species was confirmed by reverse-transcription polymerase chain reaction and flow cytometry in vitro. Comprehensive proteome and ubiquitinome analyses were used for USP11 substrate screening after radiation. Results were verified by Western blotting and coimmunoprecipitation experiments. Recombinant adeno-associated virus lung vectors expressing OTUD5 were used for localized overexpression of OTUD5 in mouse pulmonary tissue, and immunohistochemistry was conducted to analyze cytokine expression. RESULTS: The progression of RIP was significantly alleviated by reduced expression of proinflammatory cytokines in both Usp11-knockout (Usp11-/-) mice and in mice treated with the USP11 inhibitor mitoxantrone. Likewise, the absence of USP11 resulted in decreased permeability of pulmonary vessels and neutrophils and macrophage infiltration. The proliferation rates of endothelial cells were prominently increased in the Usp11-/- lung, whereas apoptosis in Usp11-/- lungs decreased after irradiation compared with that observed in Usp11+/+ lungs. Conversely, USP11 overexpression increased proinflammatory cytokine expression and reactive oxygen species production in endothelial cells after radiation. Comprehensive proteome and ubiquitinome analyses indicated that USP11 overexpression upregulates the expression of several deubiquitinating enzymes, including USP22, USP33, and OTUD5. We demonstrate that USP11 deubiquitinates OTUD5 and implicates the OTUD5-STING signaling pathway in the progression of the inflammatory response in endothelial cells. CONCLUSIONS: USP11 exacerbates RIP by triggering an inflammatory response in endothelial cells both in vitro and in vivo, and the OTUD5-STING pathway is involved in the USP11-dependent promotion of RIP. This study provides experimental support for the development of precision intervention strategies targeting USP11 to mitigate RIP.
Assuntos
Células Endoteliais , Pneumonite por Radiação , Transdução de Sinais , Animais , Humanos , Camundongos , Apoptose , Proliferação de Células , Citocinas/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/efeitos da radiação , Inflamação/metabolismo , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pneumonite por Radiação/metabolismo , Pneumonite por Radiação/patologia , Espécies Reativas de Oxigênio/metabolismo , Tioléster Hidrolases/metabolismo , Tioléster Hidrolases/genéticaRESUMO
OBJECTIVE: This study aimed to investigate the effects of low-dose radiation on the abdominal aorta of mice and vascular endothelial cells. METHODS: Wild-type and tumor-bearing mice were exposed to 15 sessions of low-dose irradiation, resulting in cumulative radiation doses of 187.5, 375, and 750 mGy. The effect on the cardiovascular system was assessed. Immunohistochemistry analyzed protein expressions of PAPP-A, CD62, P65, and COX-2 in the abdominal aorta. Microarray technology, Gene Ontology analysis, and pathway enrichment analysis evaluated gene expression changes in endothelial cells exposed to 375 mGy X-ray. Cell viability was assessed using the Cell Counting Kit 8 assay. Immunofluorescence staining measured γ-H2AX levels, and real-time polymerase chain reaction quantified mRNA levels of interleukin-6 (IL-6), ICAM-1, and Cx43. RESULTS: Hematoxylin and eosin staining revealed thickening of the inner membranes and irregular arrangement of smooth muscle cells in the media membrane at 375 and 750 mGy. Inflammation was observed in the inner membranes at 750 mGy, with a clear inflammatory response in the hearts of tumor-bearing mice. Immunohistochemistry indicated increased levels of PAPP-A, P65, and COX-2 post-irradiation. Microarray analysis showed 425 up-regulated and 235 down-regulated genes, associated with processes like endothelial cell-cell adhesion, IL-6, and NF-κB signaling. Cell Counting Kit 8 assay results indicated inhibited viability at 750 mGy in EA.hy926 cells. Immunofluorescence staining demonstrated a dose-dependent increase in γ-H2AX foci. Reverse transcription quantitative PCR results showed increased expression of IL6, ICAM-1, and Cx43 in EA.hy926 cells post 750 mGy X-ray exposure. CONCLUSION: Repeated low-dose ionizing radiation exposures triggered the development of pro-atherosclerotic phenotypes in mice and damage to vascular endothelial cells.
Assuntos
Células Endoteliais , Neoplasias , Humanos , Células Endoteliais/metabolismo , Células Endoteliais/efeitos da radiação , Molécula 1 de Adesão Intercelular/metabolismo , Conexina 43/genética , Interleucina-6/genética , Ciclo-Oxigenase 2/genética , Proteína Plasmática A Associada à Gravidez , Radiação Ionizante , FenótipoRESUMO
PURPOSE: Radiation therapy (RT) significantly increased the incidence of coronary artery diseases, especially atherosclerosis. Endothelial dysfunction has been the major side effect of RT among tumor patients who received RT. However, the involvement between endothelial dysfunction and radiation-induced atherosclerosis (RIA) remains unclear. Here, we constructed a murine model of RIA, aiming to uncover its underlying mechanisms and identify novel strategies for RIA prevention and treatment. METHODS AND MATERIALS: Eight-week-old ApoE-/- mice that were fed a Western diet were subjected to partial carotid ligation (PCL). Four weeks later, ionizing radiation (IR) of 10 Gy was performed to verify the detrimental role of IR on atherogenesis. Ultrasound imaging, RT quantitative polymerase chain reaction, histopathology and immunofluorescence, and biochemical analysis were performed 4 weeks after IR. To study the involvement of endothelial ferroptosis induced by IR in RIA, mice after IR were administrated with ferroptosis agonist (cisplatin) or antagonist (ferrostatin-1) intraperitoneally. Western blotting, autophagic flux measurement, reactive oxygen species level detection, and coimmunoprecipitation assay were carried out in vitro. Furthermore, to determine the effect of ferritinophagy inhibition on RIA, in vivo knockdown of NCOA4 was carried out by pluronic gel. RESULTS: We verified that accelerated plaque progression was concomitant with endothelial cell (EC) ferroptosis after IR induction, as suggested by a higher level of lipid peroxidation and changes in ferroptosis-associated genes in the PCL + IR group than in the PCL group within vasculature. In vitro experiments further validated the devastating effects of IR on oxidative stress and ferritinophagy in ECs. Mechanistic experiments revealed that IR induced EC ferritinophagy and subsequent ferroptosis in a P38/NCOA4-dependent manner. Both in vitro and in vivo experiments confirmed the therapeutic effect of NCOA4 knockdown in alleviating IR-induced ferritinophagy/ferroptosis of EC and RIA. CONCLUSIONS: Our findings provide novel insights into the regulatory mechanisms of RIA and first prove that IR accelerates atherosclerotic plaque progression by regulating ferritinophagy/ferroptosis of ECs in a P38/NCOA4-dependent manner.
Assuntos
Ferroptose , Placa Aterosclerótica , Lesões por Radiação , Animais , Camundongos , Células Endoteliais/patologia , Células Endoteliais/efeitos da radiação , Placa Aterosclerótica/patologia , Radioterapia/efeitos adversos , Doses de Radiação , Lesões por Radiação/patologiaRESUMO
Objective: Glomerular endothelium functions as a filtration barrier of metabolites in the kidney. Although X-ray irradiation modulated the permeability of the vascular endothelium, the response of human renal glomerular endothelial cells (HRGECs) to low-dose X-ray irradiation has not been investigated. We evaluated the impacts of low-dose X-ray irradiation on HRGECs and revealed the underlying mechanism. Methods: HRGECs were exposed to X-ray with doses of 0, 0.1, 0.5, 1.0, and 2.0 Gy. The proliferation, viability, and apoptosis of HRGECs were examined by MTT assay, trypan blue staining assay, and TUNEL staining, respectively. The paracellular permeability was assessed by paracellular permeability assay. The expression of VE-cadherin was investigated via immunofluorescence assay. Western blot and qRT-PCR detected the expression levels of VE-cadherin and CLDN5. Besides, the expression levels of pVE-cadherin (pY658), TGF-ß, TGF-ßRI, Src, p-Src, Smad2, p-Smad2, Smad3, p-Smad3, SNAIL, SLUG, and apoptosis-related proteins were tested by Western blot. Results: The proliferation, viability, and apoptosis of HRGECs were not affected by low-dose (<2.0 Gy) X-ray irradiation. X-ray irradiation dose-dependently reduced the level of VE-cadherin, and VE-cadherin and CLDN5 levels were reduced with X-ray irradiation. The levels of pY658, p-Src, p-Smad2, and p-Smad3 were upregulated with the increase in X-ray dose. Besides, the paracellular permeability of HRGECs was increased by even low-dose (<2.0 Gy) X-ray irradiation. Therefore, low-dose X-ray irradiation reduced the cumulative content of VE-cadherin and increased the level of pY658 via activation of the TGF-ß signaling pathway. Conclusion: Even though low-dose X-ray exposure had no impact on proliferation, viability, and apoptosis of HRGECs, it increased the paracellular permeability by deterioration and downregulation of VE-cadherin through stimulating the TGF-ß signaling pathway. This study built the framework for kidney response to low-dose irradiation exposure.
Assuntos
Células Endoteliais , Azul Tripano , Humanos , Células Endoteliais/metabolismo , Células Endoteliais/efeitos da radiação , Raios X , Azul Tripano/metabolismo , Caderinas/genética , Permeabilidade/efeitos da radiação , Rim , Fator de Crescimento Transformador beta/metabolismoRESUMO
The human corneal endothelial cells (HCEnCs) play a vital role in the maintenance of corneal transparency and visual acuity. In our daily life, HCEnCs are inevitably exposed to ultraviolet B (UVB) radiation leading to decreases of visual acuity and corneal transparency resulting in visual loss eventually. Therefore, understanding the UVB-induced cytotoxicity in HCEnCs is of importance for making efficient strategies to protect our vision from UVB-damage. However, in-depth knowledge about UVB-induced cytotoxicity in HCEnCs is missing. Herein, we pulse-irradiated the HCEnCs in vitro with 150 mJ/cm2 UVB (the environmental dose) at each subculture for 4 passages to explore the insights into UVB-induced phototoxicity. The results showed that the UVB-treated HCEnCs exhibit typical senescent characteristics, including significantly enlarged relative cell area, increased senescence-associated ß-galactosidase positive staining, and upregulated p16INK4A and senescence associated secretory phenotypes (SASPs) such as CCL-27, IL-1α/6/8/10, TGF-ß1 and TNF-α, as well as decreased cell proliferation and Lamin B1 expression, and translocation of Lamin B1. Furthermore, we explored the causative mechanisms of senescence and found that 150 mJ/cm2 UVB pulse-irradiation impairs DNA to activate DNA damage response (DDR) pathway of ATM-p53-p21WAF1/CIP1 with downregulated DNA repair enzyme PARP1, leading to cell cycle arrest resulting in DDR-mediated senescence. Meanwhile, UVB pulse-irradiation also elicits a consistent increase of ROS production to aggravate DNA damage and impose oxidative stress on energy metabolism leading to metabolic disturbance resulting in metabolic disturbance-mediated senescence. Altogether, the repeated pulse-irradiation of 150 mJ/cm2 UVB induces HCEnC senescence via both DDR pathway and energy metabolism disturbance.
Assuntos
Senescência Celular , Dano ao DNA , Células Endoteliais , Estresse Oxidativo , Raios Ultravioleta , Células Cultivadas , Senescência Celular/efeitos da radiação , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Células Endoteliais/citologia , Células Endoteliais/efeitos da radiação , Humanos , Espécies Reativas de Oxigênio/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Raios Ultravioleta/efeitos adversos , beta-Galactosidase/metabolismoRESUMO
Pediatric patients with constitutively active mutations in the cytosolic double-stranded-DNA-sensing adaptor STING develop an autoinflammatory syndrome known as STING-associated vasculopathy with onset in infancy (SAVI). SAVI patients have elevated interferon-stimulated gene expression and suffer from interstitial lung disease (ILD) with lymphocyte predominate bronchus-associated lymphoid tissue (BALT). Mice harboring SAVI mutations (STING V154M [VM]) that recapitulate human disease also develop lymphocyte-rich BALT. Ablation of either T or B lymphocytes prolongs the survival of SAVI mice, but lung immune aggregates persist, indicating that T cells and B cells can independently be recruited as BALT. VM T cells produced IFNγ, and IFNγR deficiency prolonged the survival of SAVI mice; however, T-cell-dependent recruitment of infiltrating myeloid cells to the lung was IFNγ independent. Lethally irradiated VM recipients fully reconstituted with wild type bone-marrow-derived cells still developed ILD, pointing to a critical role for VM-expressing radioresistant parenchymal and/or stromal cells in the recruitment and activation of pathogenic lymphocytes. We identified lung endothelial cells as radioresistant cells that express STING. Transcriptional analysis of VM endothelial cells revealed up-regulation of chemokines, proinflammatory cytokines, and genes associated with antigen presentation. Together, our data show that VM-expressing radioresistant cells play a key role in the initiation of lung disease in VM mice and provide insights for the treatment of SAVI patients, with implications for ILD associated with other connective tissue disorders.
Assuntos
Células Endoteliais , Doenças Pulmonares Intersticiais , Proteínas de Membrana , Linfócitos T , Doenças Vasculares , Animais , Criança , Células Endoteliais/imunologia , Células Endoteliais/efeitos da radiação , Mutação com Ganho de Função , Humanos , Interferon gama/genética , Interferon gama/metabolismo , Doenças Pulmonares Intersticiais/genética , Doenças Pulmonares Intersticiais/imunologia , Depleção Linfocítica , Tecido Linfoide/imunologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Tolerância a Radiação , Linfócitos T/imunologia , Doenças Vasculares/genética , Doenças Vasculares/imunologiaRESUMO
Microgravity and space radiation (SR) are two highly influential factors affecting humans in space flight (SF). Many health problems reported by astronauts derive from endothelial dysfunction and impaired homeostasis. Here, we describe the adaptive response of human, capillary endothelial cells to SF. Reference samples on the ground and at 1g onboard permitted discrimination between the contribution of microgravity and SR within the combined responses to SF. Cell softening and reduced motility occurred in SF cells, with a loss of actin stress fibers and a broader distribution of microtubules and intermediate filaments within the cytoplasm than in control cells. Furthermore, in space the number of primary cilia per cell increased and DNA repair mechanisms were found to be activated. Transcriptomics revealed the opposing effects of microgravity from SR for specific molecular pathways: SR, unlike microgravity, stimulated pathways for endothelial activation, such as hypoxia and inflammation, DNA repair and apoptosis, inhibiting autophagic flux and promoting an aged-like phenotype. Conversely, microgravity, unlike SR, activated pathways for metabolism and a pro-proliferative phenotype. Therefore, we suggest microgravity and SR should be considered separately to tailor effective countermeasures to protect astronauts' health.
Assuntos
Autofagia , Capilares/citologia , Radiação Cósmica , Células Endoteliais/efeitos da radiação , Transdução de Sinais , Ausência de Peso , Apoptose , Biomarcadores/metabolismo , Linhagem Celular , Sobrevivência Celular , Cromossomos Humanos/metabolismo , Citoesqueleto/metabolismo , Dano ao DNA , Fluorescência , Regulação da Expressão Gênica , Genoma Humano , Humanos , Masculino , Mecanotransdução Celular , Modelos Biológicos , Transdução de Sinais/efeitos da radiação , Voo Espacial , Estresse Fisiológico , Homeostase do Telômero , Transcriptoma/genéticaRESUMO
Anti-inflammatory low-dose therapy is well established, whereas the immunomodulatory impact of doses below 0.1 Gy is much less clear. In this study, we investigated dose, dose rate and time-dependent effects in a dose range of 0.005 to 2 Gy on immune parameters after whole body irradiation (IR) using a pro-inflammatory (ApoE-/-) and a wild type mouse model. Long-term effects on spleen function (proliferation, monocyte expression) were analyzed 3 months, and short-term effects on immune plasma parameters (IL6, IL10, IL12p70, KC, MCP1, INFγ, TGFß, fibrinogen, sICAM, sVCAM, sE-selectin/CD62) were analyzed 1, 7 and 28 days after Co60 γ-irradiation (IR) at low dose rate (LDR, 0.001 Gy/day) and at high dose rate (HDR). In vitro measurements of murine monocyte (WEHI-274.1) adhesion and cytokine release (KC, MCP1, IL6, TGFß) after low-dose IR (150 kV X-ray unit) of murine endothelial cell (EC) lines (H5V, mlEND1, bEND3) supplement the data. RT-PCR revealed significant reduction of Ki67 and CD68 expression in the spleen of ApoE-/- mice after 0.025 to 2 Gy exposure at HDR, but only after 2 Gy at LDR. Plasma levels in wild type mice, showed non-linear time-dependent induction of proinflammatory cytokines and reduction of TGFß at doses as low as 0.005 Gy at both dose rates, whereas sICAM and fibrinogen levels changed in a dose rate-specific manner. In ApoE-/- mice, levels of sICAM increased and fibrinogen decreased at both dose rates, whereas TGFß increased mainly at HDR. Non-irradiated plasma samples revealed significant age-related enhancement of cytokines and adhesion molecules except for sICAM. In vitro data indicate that endothelial cells may contribute to systemic IR effects and confirm changes of adhesion properties suggested by altered sICAM plasma levels. The differential immunomodulatory effects shown here provide insights in inflammatory changes occurring at doses far below standard anti-inflammatory therapy and are of particular importance after diagnostic and chronic environmental exposures.
Assuntos
Apolipoproteínas E/deficiência , Inflamação/patologia , Radiação Ionizante , Envelhecimento/sangue , Animais , Adesão Celular/efeitos da radiação , Linhagem Celular , Citocinas/metabolismo , Relação Dose-Resposta à Radiação , Células Endoteliais/efeitos da radiação , Feminino , Inflamação/sangue , Interleucina-6/metabolismo , Camundongos Endogâmicos C57BL , Monócitos/efeitos da radiação , Baço/efeitos da radiação , Fatores de TempoRESUMO
During radiotherapy, microenvironments neighboring the tumor are also exposed to gamma irradiation; this results in unexpected side effects. Blood vessels can serve as microenvironments for tumors and they play an important role in providing nutrients to tumors. This is mostly related to tumor progression, metastasis, and relapse after therapy. Many studies have been performed to obtain a better understanding of tumor vasculature after radiotherapy with in vitro models. However, compared to 3-D models, 2-D in vitro endothelial monolayers cannot physiologically reflect in vivo blood vessels. We previously remodeled the extracellular matrix (ECM) hydrogel that enhanced the tight barrier formation of 3-D blood vessels and the vascular endothelial growth factor (VEGF) gradient induced angiogenesis in a microfluidic device. In this study, the blood vessel model is further introduced to understand how gamma irradiation affects the endothelial monolayer. After the gamma irradiation exposure, we observed a collapsed endothelial barrier and a reduced angiogenic potential. Changes in the cell behaviors of the tip and stalk cells were also detected in the angiogenesis model after irradiation, which is difficult to observe in 2-D monolayer models. Therefore, the 3-D in vitro blood vessel model can be used to understand radiation-induced endothelial injuries.
Assuntos
Células Endoteliais/efeitos da radiação , Raios gama , Neovascularização Patológica/metabolismo , Engenharia Tecidual/métodos , Células Cultivadas , Células Endoteliais/metabolismo , Células Endoteliais/fisiologia , Endotélio Vascular/citologia , Matriz Extracelular/química , Humanos , Hidrogéis/química , Microfluídica/métodos , Junções Íntimas/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismoRESUMO
Radiation therapy-mediated salivary gland destruction is characterized by increased inflammatory cell infiltration and fibrosis, both of which ultimately lead to salivary gland hypofunction. However, current treatments (e.g., artificial saliva and sialagogues) only promote temporary relief of symptoms. As such, developing alternative measures against radiation damage is critical for restoring salivary gland structure and function. One promising option for managing radiation therapy-mediated damage in salivary glands is by activation of specialized proresolving lipid mediator receptors due to their demonstrated role in resolution of inflammation and fibrosis in many tissues. Nonetheless, little is known about the presence and function of these receptors in healthy and/or irradiated salivary glands. Therefore, the goal of this study was to detect whether these specialized proresolving lipid mediator receptors are expressed in healthy salivary glands and, if so, if they are maintained after radiation therapy-mediated damage. Our results indicate that specialized proresolving lipid mediator receptors are heterogeneously expressed in inflammatory as well as in acinar and ductal cells within human submandibular glands and that their expression persists after radiation therapy. These findings suggest that epithelial cells as well as resident immune cells represent potential targets for modulation of resolution of inflammation and fibrosis in irradiated salivary glands.
Assuntos
Tolerância a Radiação , Receptores de Quimiocinas/genética , Receptores de Formil Peptídeo/genética , Receptores Acoplados a Proteínas G/genética , Receptores do Leucotrieno B4/genética , Receptores de Lipoxinas/genética , Glândula Submandibular/efeitos da radiação , Células Acinares/citologia , Células Acinares/metabolismo , Células Acinares/efeitos da radiação , Adulto , Idoso , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Células Endoteliais/efeitos da radiação , Feminino , Raios gama , Expressão Gênica , Humanos , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/efeitos da radiação , Masculino , Pessoa de Meia-Idade , Receptores de Quimiocinas/metabolismo , Receptores de Formil Peptídeo/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores do Leucotrieno B4/metabolismo , Receptores de Lipoxinas/metabolismo , Glândula Submandibular/citologia , Glândula Submandibular/metabolismoRESUMO
UV-B stimulation can induce retinopathy, whose pathogenesis is currently unclear. UV-B mediated inflammation in retinal endothelial cells is reported to be involved in the pathogenesis of retinopathy. S14G-humanin (HNG) is a neuroprotective peptide that has recently been reported to exert significant anti-inflammatory effects and protective properties against cell death. The present study aims to investigate the protective effects of HNG against UV-B-challenged retinal endothelial cells and explore the underlying mechanism. UV-B radiation was used to induce an injury model in human retinal endothelial cells (HRECs). First, exposure to UV-B induced the expression of TXNIP. Additionally, we found that treatment with HNG inhibited the activation of the TXNIP/NLRP3 signaling pathway and mitigated the excessive release of IL-1ß and IL-18 in UV-B-challenged HRECs. UV-B increased the expression of the transcriptional factor endothelial growth response-1 (Egr-1). Interestingly, overexpression of Egr-1 increased the luciferase activity of the TXNIP promoter as well as the mRNA and protein expression of TXNIP. In contrast, the knockdown of Egr-1 reduced the expression of TXNIP under both the normal and UV-B exposure conditions. Importantly, treatment with HNG attenuated UV-B-induced expression of Egr-1. However, overexpression of Egr-1 abolished the inhibitory effects of HNG-induced activation of NLRP3 as well as the production of IL-1ß and IL-18. Taken together, our findings reveal that HNG protected retinal endothelial cells from UV-B-induced NLRP3 inflammation activation through inhibiting TXNIP mediated by Egr-1.
Assuntos
Células Endoteliais/efeitos dos fármacos , Células Endoteliais/efeitos da radiação , Peptídeos/farmacologia , Protetores contra Radiação/farmacologia , Retina/citologia , Raios Ultravioleta , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Células Cultivadas , Proteína 1 de Resposta de Crescimento Precoce/genética , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Células Endoteliais/metabolismo , Humanos , Inflamassomos/genética , Inflamassomos/metabolismo , Inflamação/genética , Inflamação/metabolismo , Interleucina-18/genética , Interleucina-18/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismoRESUMO
The cardiotoxicity of various anticancer therapies, including radiotherapy, can lead to cardiovascular complications. These complications can range from damaging cardiac tissues within the irradiation field to increasing the long-term risks of developing heart failure, coronary artery disease, and myocardial infarction. We analyzed radiation-induced metabolites capable of mediating critical biological processes, such as inflammation, senescence, and apoptosis. Previously, by applying QTOF-MASS analysis to irradiated human fibroblasts, we identified that metabolite sets of lysophosphatidylcholine (LPC) were increased in these cells. In this study, radiation-induced LPC accumulation in human aortic endothelial cells (HAECs) increased reactive oxygen species (ROS) production and senescence-associated-beta-galactosidase staining, in addition to decreasing their tube-forming ability. Knockdown of lipoprotein-associated phospholipase A2 (Lp-PLA2) with small interfering RNA (siRNA) inhibited the increased LPC production induced by radiation, and reduced the radiation-induced cell damage produced by ROS and oxidized low-density lipoprotein (LDL). Lp-PLA2 depletion abolished the induction of proinflammatory factors, such as interleukin 1ß, tumor necrosis factor-alpha, matrix metalloproteinase 2, and matrix metalloproteinase 9, as well as adhesion molecules, such as intercellular adhesion molecule 1 (ICAM-1) and E-selection. Likewise, we showed that Lp-PLA2 expression was upregulated in the vasculature of irradiated rat, resulting in increased LPC production and LDL oxidation. Our data demonstrate that radiation-induced LPC production is a potential risk factor for cardiotoxicity that is mediated by Lp-PLA2 activity, suggesting that LPC and Lp-PLA2 offer potential diagnostic and therapeutic approaches to cardiovascular damage during radiotherapy.
Assuntos
1-Alquil-2-acetilglicerofosfocolina Esterase/metabolismo , 1-Alquil-2-acetilglicerofosfocolina Esterase/efeitos da radiação , Células Endoteliais/patologia , Células Endoteliais/efeitos da radiação , Lisofosfatidilcolinas/metabolismo , Fosfolipases A2/metabolismo , Fosfolipases A2/efeitos da radiação , Animais , Aorta/patologia , Aorta/efeitos da radiação , Citocinas/metabolismo , Feminino , Técnicas de Silenciamento de Genes , Humanos , Inflamação/metabolismo , Microtúbulos/efeitos dos fármacos , Microtúbulos/efeitos da radiação , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/efeitos da radiação , Radiação Ionizante , Ratos , Ratos Endogâmicos F344 , Espécies Reativas de Oxigênio/metabolismoRESUMO
Targeting the molecular pathways underlying the cardiotoxicity associated with thoracic irradiation and doxorubicin (Dox) could reduce the morbidity and mortality associated with these anticancer treatments. Here, we find that vascular endothelial cells (ECs) with persistent DNA damage induced by irradiation and Dox treatment exhibit a fibrotic phenotype (endothelial-mesenchymal transition, EndMT) correlating with the colocalization of L1CAM and persistent DNA damage foci. We demonstrate that treatment with the anti-L1CAM antibody Ab417 decreases L1CAM overexpression and nuclear translocation and persistent DNA damage foci. We show that in whole-heart-irradiated mice, EC-specific p53 deletion increases vascular fibrosis and the colocalization of L1CAM and DNA damage foci, while Ab417 attenuates these effects. We also demonstrate that Ab417 prevents cardiac dysfunction-related decrease in fractional shortening and prolongs survival after whole-heart irradiation or Dox treatment. We show that cardiomyopathy patient-derived cardiovascular ECs with persistent DNA damage show upregulated L1CAM and EndMT, indicating clinical applicability of Ab417. We conclude that controlling vascular DNA damage by inhibiting nuclear L1CAM translocation might effectively prevent anticancer therapy-associated cardiotoxicity.
Assuntos
Anticorpos Neutralizantes/farmacologia , Cardiomiopatias/prevenção & controle , Cardiotoxicidade/prevenção & controle , Doxorrubicina/toxicidade , Raios gama/efeitos adversos , Molécula L1 de Adesão de Célula Nervosa/genética , Animais , Antibióticos Antineoplásicos/toxicidade , Cardiomiopatias/etiologia , Cardiomiopatias/genética , Cardiomiopatias/metabolismo , Cardiotoxicidade/etiologia , Cardiotoxicidade/genética , Cardiotoxicidade/metabolismo , Estudos de Casos e Controles , Técnicas de Cocultura , Dano ao DNA , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Células Endoteliais/efeitos da radiação , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transição Epitelial-Mesenquimal/genética , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos da radiação , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Miócitos Cardíacos/efeitos da radiação , Molécula L1 de Adesão de Célula Nervosa/antagonistas & inibidores , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Transdução de Sinais , Proteína Supressora de Tumor p53/deficiência , Proteína Supressora de Tumor p53/genéticaRESUMO
Thrombocytopenia is a major complication in hematopoietic-acute radiation syndrome (H-ARS) that increases the risk of mortality from uncontrolled hemorrhage. There is a great demand for new therapies to improve survival and mitigate bleeding in H-ARS. Thrombopoiesis requires interactions between megakaryocytes (MKs) and endothelial cells. 16, 16-dimethyl prostaglandin E2 (dmPGE2), a longer-acting analogue of PGE2, promotes hematopoietic recovery after total-body irradiation (TBI), and various angiotensin-converting enzyme (ACE) inhibitors mitigate endothelial injury after radiation exposure. Here, we tested a combination therapy of dmPGE2 and lisinopril to mitigate thrombocytopenia in murine models of H-ARS following TBI. After 7.75 Gy TBI, dmPGE2 and lisinopril each increased survival relative to vehicle controls. Importantly, combined dmPGE2 and lisinopril therapy enhanced survival greater than either individual agent. Studies performed after 4 Gy TBI revealed reduced numbers of marrow MKs and circulating platelets. In addition, sublethal TBI induced abnormalities both in MK maturation and in in vitro and in vivo platelet function. dmPGE2, alone and in combination with lisinopril, improved recovery of marrow MKs and peripheral platelets. Finally, sublethal TBI transiently reduced the number of marrow Lin-CD45-CD31+Sca-1- sinusoidal endothelial cells, while combined dmPGE2 and lisinopril treatment, but not single-agent treatment, accelerated their recovery. Taken together, these data support the concept that combined dmPGE2 and lisinopril therapy improves thrombocytopenia and survival by promoting recovery of the MK lineage, as well as the MK niche, in the setting of H-ARS.