Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 18.349
Filtrar
1.
Front Endocrinol (Lausanne) ; 15: 1345996, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38742198

RESUMO

Introduction: Circulating levels of the antiangiogenic protein vasoinhibin, a fragment of prolactin, are of interest in vasoproliferative retinopathies, preeclampsia, and peripartum cardiomyopathy; however, it is difficult to determine the circulating levels of vasoinhibin due to the lack of quantitative assays. Methods: This study used human serum samples to assess the concentration and bioactivity of vasoinhibin using a novel enzyme-linked immunosorbent assay (ELISA) for human vasoinhibin, which employs an anti-vasoinhibin monoclonal antibody, a human umbilical vein endothelial cell (HUVEC) proliferation assay, and a chick chorioallantoic membrane (CAM) angiogenesis assay. Results: Serum samples from 17 pregnant women without (one group) and with preeclampsia and pregnancy induced hypertension (another group) demonstrated endogenous vasoinhibin concentrations in the range of 5-340 ng/ml. Immunoactive vasoinhibin levels were significantly higher in preeclampsia serum compared to healthy pregnancy serum (mean 63.09 ± 22.15 SD vs. 19.67 ± 13.34 ng/ml, p = 0.0003), as was the bioactive vasoinhibin level as determined by the HUVEC proliferation assay (56.12 ± 19.83 vs. 13.38 ± 4.88 ng/ml, p < 0.0001). There was a correlation between the concentration of vasoinhibin measured by ELISA and the HUVEC proliferation assay (Pearson r = 0.95, p < 0.0001). Healthy serum demonstrated a proangiogenic effect in the CAM assay (p < 0.05, compared to control), while serum from preeclamptic patients demonstrated an antiangiogenic effect (p < 0.05 vs. control), as did recombinant human vasoinhibin and a synthetic circular retro-inverse vasoinhibin analogue (CRIVi45-51). The antiangiogenic effects in the CAM assay and the inhibition of HUVEC proliferation were abolished by addition of the ELISA anti-vasoinhibin monoclonal antibody, but not by mouse IgG. Discussion: These results demonstrate the first quantitation of endogenous vasoinhibin in human sera and the elevation of it levels and antiangiogenic activity in sera from women with preeclampsia. The development and implementation of a quantitative assay for vasoinhibin overcomes a long-standing barrier and suggests the thorough clinical verification of vasoinhibin as a relevant biomarker.


Assuntos
Proliferação de Células , Ensaio de Imunoadsorção Enzimática , Células Endoteliais da Veia Umbilical Humana , Pré-Eclâmpsia , Humanos , Feminino , Gravidez , Pré-Eclâmpsia/sangue , Células Endoteliais da Veia Umbilical Humana/metabolismo , Adulto , Animais , Embrião de Galinha , Membrana Corioalantoide/irrigação sanguínea , Proteínas de Ciclo Celular/sangue
2.
Commun Biol ; 7(1): 541, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714838

RESUMO

Age-related diseases pose great challenges to health care systems worldwide. During aging, endothelial senescence increases the risk for cardiovascular disease. Recently, it was described that Phosphatase 1 Nuclear Targeting Subunit (PNUTS) has a central role in cardiomyocyte aging and homeostasis. Here, we determine the role of PNUTS in endothelial cell aging. We confirm that PNUTS is repressed in senescent endothelial cells (ECs). Moreover, PNUTS silencing elicits several of the hallmarks of endothelial aging: senescence, reduced angiogenesis and loss of barrier function. Findings are validate in vivo using endothelial-specific inducible PNUTS-deficient mice (Cdh5-CreERT2;PNUTSfl/fl), termed PNUTSEC-KO. Two weeks after PNUTS deletion, PNUTSEC-KO mice present severe multiorgan failure and vascular leakage. Transcriptomic analysis of PNUTS-silenced HUVECs and lungs of PNUTSEC-KO mice reveal that the PNUTS-PP1 axis tightly regulates the expression of semaphorin 3B (SEMA3B). Indeed, silencing of SEMA3B completely restores barrier function after PNUTS loss-of-function. These results reveal a pivotal role for PNUTS in endothelial homeostasis through a SEMA3B downstream pathway that provides a potential target against the effects of aging in ECs.


Assuntos
Senescência Celular , Células Endoteliais da Veia Umbilical Humana , Camundongos Knockout , Semaforinas , Animais , Camundongos , Humanos , Semaforinas/metabolismo , Semaforinas/genética , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais/metabolismo , Envelhecimento/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Camundongos Endogâmicos C57BL , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Endotélio Vascular/metabolismo
3.
Mol Biol Rep ; 51(1): 635, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38727850

RESUMO

BACKGROUND: Psoriasis, a chronic inflammatory skin disease, is increasingly effectively managed with the targeted immunotherapy; however, long-term immunotherapy carries health risks, and loss of response. Therefore, we need to develop the alternative treatment strategies. Mesenchymal stem/stromal cell (M.S.C.) exosomes stand out for their remarkable immunomodulatory properties, gaining widespread recognition. This study investigated whether M.S.C. exosomes can reduce psoriasis-induced hyperplasia by inducing Transforming Growth Factor beta 2 (TGF-beta2) signaling. METHODOLOGY: Exosomes were isolated from M.S.C.s by ultracentrifugation. Then, scanning electron microscopy was used for the morphology of exosomes. To ascertain the exosome concentration, the Bradford test was used. To ascertain the cellular toxicity of exosomes in Human Umbilical Vein Endothelial Cells ( H.U.V.E.C), an MTT experiment was then conducted. Real-time PCR was used to quantify TGF beta2 expression levels, whereas an ELISA immunosorbent assay was used to determine the protein concentration of TGF beta2. RESULTS: In this study, the exosomes of 15-30 nm in size that were uniform, and cup-shaped were isolated. Moreover, the IC50 value for this Treatment was calculated to be 181.750 µg/ml. The concentration of TGF-ß2 gene in the target cells significantly increased following Treatment with the exosomes. Furthermore, the expression level of the studied gene significantly increased due to the Treatment. CONCLUSION: Upregulating the expression of TGF-ß2 in psoriatic cells via TGF-ß2 signaling is one way exosomes can help reduce hyperplasia.


Assuntos
Exossomos , Células Endoteliais da Veia Umbilical Humana , Hiperplasia , Células-Tronco Mesenquimais , Psoríase , Fator de Crescimento Transformador beta2 , Exossomos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Psoríase/metabolismo , Humanos , Fator de Crescimento Transformador beta2/metabolismo , Hiperplasia/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Transdução de Sinais , Animais
4.
Cell Mol Life Sci ; 81(1): 205, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38703204

RESUMO

BACKGROUND: Exposure to chronic psychological stress (CPS) is a risk factor for thrombotic cardiocerebrovascular diseases (CCVDs). The expression and activity of the cysteine cathepsin K (CTSK) are upregulated in stressed cardiovascular tissues, and we investigated whether CTSK is involved in chronic stress-related thrombosis, focusing on stress serum-induced endothelial apoptosis. METHODS AND RESULTS: Eight-week-old wild-type male mice (CTSK+/+) randomly divided to non-stress and 3-week restraint stress groups received a left carotid artery iron chloride3 (FeCl3)-induced thrombosis injury for biological and morphological evaluations at specific timepoints. On day 21 post-stress/injury, the stress had enhanced the arterial thrombi weights and lengths, in addition to harmful alterations of plasma ADAMTS13, von Willebrand factor, and plasminogen activation inhibitor-1, plus injured-artery endothelial loss and CTSK protein/mRNA expression. The stressed CTSK+/+ mice had increased levels of injured arterial cleaved Notch1, Hes1, cleaved caspase8, matrix metalloproteinase-9/-2, angiotensin type 1 receptor, galactin3, p16IN4A, p22phox, gp91phox, intracellular adhesion molecule-1, TNF-α, MCP-1, and TLR-4 proteins and/or genes. Pharmacological and genetic inhibitions of CTSK ameliorated the stress-induced thrombus formation and the observed molecular and morphological changes. In cultured HUVECs, CTSK overexpression and silencing respectively increased and mitigated stressed-serum- and H2O2-induced apoptosis associated with apoptosis-related protein changes. Recombinant human CTSK degraded γ-secretase substrate in a dose-dependent manor and activated Notch1 and Hes1 expression upregulation. CONCLUSIONS: CTSK appeared to contribute to stress-related thrombosis in mice subjected to FeCl3 stress, possibly via the modulation of vascular inflammation, oxidative production and apoptosis, suggesting that CTSK could be an effective therapeutic target for CPS-related thrombotic events in patients with CCVDs.


Assuntos
Apoptose , Catepsina K , Cloretos , Modelos Animais de Doenças , Compostos Férricos , Trombose , Animais , Humanos , Masculino , Camundongos , Proteína ADAMTS13/metabolismo , Proteína ADAMTS13/genética , Catepsina K/metabolismo , Catepsina K/genética , Cloretos/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Inibidor 1 de Ativador de Plasminogênio/genética , Estresse Psicológico/complicações , Estresse Psicológico/metabolismo , Trombose/metabolismo , Trombose/patologia , Fatores de Transcrição HES-1/metabolismo , Fatores de Transcrição HES-1/genética
5.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(4): 712-719, 2024 Apr 20.
Artigo em Chinês | MEDLINE | ID: mdl-38708505

RESUMO

OBJECTIVE: To explore the mechanism underlying the protective effect of α2-macroglobulin (A2M) against glucocorticoid-induced femoral head necrosis. METHODS: In a human umbilical vein endothelial cell (HUVEC) model with injuries induced by gradient concentrations of dexamethasone (DEX; 10-8-10-5 mol/L), the protective effects of A2M at 0.05 and 0.1 mg/mL were assessed by examining the changes in cell viability, migration, and capacity of angiogenesis using CCK-8 assay, Transwell and scratch healing assays and angiogenesis assay. The expressions of CD31 and VEGF-A proteins in the treated cells were detected using Western blotting. In BALB/c mouse models of avascular necrosis of the femoral head induced by intramuscular injections of methylprednisolone, the effects of intervention with A2M on femoral trabecular structure, histopathological characteristics, and CD31 expression were examined with Micro-CT, HE staining and immunohistochemical staining. RESULTS: In cultured HUVECs, DEX treatment significantly reduced cell viability, migration and angiogenic ability in a concentration- and time-dependent manner (P<0.05), and these changes were obviously reversed by treatment with A2M in positive correlation with A2M concentration (P<0.05). DEX significantly reduced the expression of CD31 and VEGF-A proteins in HUVECs, while treatment with A2M restored CD31 and VEGF-A expressions in the cells (P<0.05). The mouse models of femoral head necrosis showed obvious trabecular damages in the femoral head, where a large number of empty lacunae and hypertrophic fat cells could be seen and CD31 expression was significantly decreased (P<0.05). A2M treatment of the mouse models significantly improved trabecular damages, maintained normal bone tissue structures, and increased CD31 expression in the femoral head (P<0.05). CONCLUSION: A2M promotes proliferation, migration, and angiogenesis of DEX-treated HUVECs and alleviates methylprednisolone-induced femoral head necrosis by improving microcirculation damages and maintaining microcirculation stability in the femoral head.


Assuntos
Movimento Celular , Proliferação de Células , Dexametasona , Necrose da Cabeça do Fêmur , Glucocorticoides , Células Endoteliais da Veia Umbilical Humana , Camundongos Endogâmicos BALB C , Animais , Camundongos , Necrose da Cabeça do Fêmur/induzido quimicamente , Necrose da Cabeça do Fêmur/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Glucocorticoides/efeitos adversos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Dexametasona/efeitos adversos , Dexametasona/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Cabeça do Fêmur/patologia , Cabeça do Fêmur/irrigação sanguínea , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Angiogênese
6.
Front Immunol ; 15: 1359097, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38698864

RESUMO

Introduction: In septic patients the damage of the endothelial barrier is decisive leading to circulatory septic shock with disseminated vascular coagulation, edema and multiorgan failure. Hemadsorption therapy leads to rapid resolution of clinical symptoms. We propose that the isolation of proteins adsorbed to hemadsorption devices contributes to the identification of mediators responsible for endothelial barrier dysfunction. Material and methods: Plasma materials enriched to hemadsorption filters (CytoSorb®) after therapy of patients in septic shock were fractionated and functionally characterized for their effect on cell integrity, viability, proliferation and ROS formation by human endothelial cells. Fractions were further studied for their contents of oxidized nucleic acids as well as peptides and proteins by mass spectrometry. Results: Individual fractions exhibited a strong effect on endothelial cell viability, the endothelial layer morphology, and ROS formation. Fractions with high amounts of DNA and oxidized DNA correlated with ROS formation in the target endothelium. In addition, defined proteins such as defensins (HNP-1), SAA1, CXCL7, and the peptide bikunin were linked to the strongest additive effects in endothelial damage. Conclusion: Our results indicate that hemadsorption is efficient to transiently remove strong endothelial damage mediators from the blood of patients with septic shock, which explains a rapid clinical improvement of inflammation and endothelial function. The current work indicates that a combination of stressors leads to the most detrimental effects. Oxidized ssDNA, likely derived from mitochondria, SAA1, the chemokine CXCL7 and the human neutrophil peptide alpha-defensin 1 (HNP-1) were unique for their significant negative effect on endothelial cell viability. However, the strongest damage effect occurred, when, bikunin - cleaved off from alpha-1-microglobulin was present in high relative amounts (>65%) of protein contents in the most active fraction. Thus, a relevant combination of stressors appears to be removed by hemadsorption therapy which results in fulminant and rapid, though only transient, clinical restitution.


Assuntos
Estresse do Retículo Endoplasmático , Choque Séptico , Humanos , Choque Séptico/metabolismo , Choque Séptico/terapia , Choque Séptico/sangue , Biomarcadores , alfa-Globulinas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Sobrevivência Celular , Células Endoteliais/metabolismo , Masculino
7.
Cardiovasc Diabetol ; 23(1): 150, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702777

RESUMO

BACKGROUND: Vasculopathy is the most common complication of diabetes. Endothelial cells located in the innermost layer of blood vessels are constantly affected by blood flow or vascular components; thus, their mechanosensitivity plays an important role in mediating vascular regulation. Endothelial damage, one of the main causes of hyperglycemic vascular complications, has been extensively studied. However, the role of mechanosensitive signaling in hyperglycemic endothelial damage remains unclear. METHODS: Vascular endothelial-specific Piezo1 knockout mice were generated to investigate the effects of Piezo1 on Streptozotocin-induced hyperglycemia and vascular endothelial injury. In vitro activation or knockdown of Piezo1 was performed to evaluate the effects on the proliferation, migration, and tubular function of human umbilical vein endothelial cells in high glucose. Reactive oxygen species production, mitochondrial membrane potential alternations, and oxidative stress-related products were used to assess the extent of oxidative stress damage caused by Piezo1 activation. RESULTS: Our study found that in VECreERT2;Piezo1flox/flox mice with Piezo1 conditional knockout in vascular endothelial cells, Piezo1 deficiency alleviated streptozotocin-induced hyperglycemia with reduced apoptosis and abscission of thoracic aortic endothelial cells, and decreased the inflammatory response of aortic tissue caused by high glucose. Moreover, the knockout of Piezo1 showed a thinner thoracic aortic wall, reduced tunica media damage, and increased endothelial nitric oxide synthase expression in transgenic mice, indicating the relief of endothelial damage caused by hyperglycemia. We also showed that Piezo1 activation aggravated oxidative stress injury and resulted in severe dysfunction through the Ca2+-induced CaMKII-Nrf2 axis in human umbilical vein endothelial cells. In Piezo1 conditional knockout mice, Piezo1 deficiency partially restored superoxide dismutase activity and reduced malondialdehyde content in the thoracic aorta. Mechanistically, Piezo1 deficiency decreased CaMKII phosphorylation and restored the expression of Nrf2 and its downstream molecules HO-1 and NQO1. CONCLUSION: In summary, our study revealed that Piezo1 is involved in high glucose-induced oxidative stress injury and aggravated endothelial dysfunction, which have great significance for alleviating endothelial damage caused by hyperglycemia.


Assuntos
Glicemia , Diabetes Mellitus Experimental , Células Endoteliais da Veia Umbilical Humana , Canais Iônicos , Camundongos Knockout , Óxido Nítrico Sintase Tipo III , Estresse Oxidativo , Animais , Humanos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/patologia , Diabetes Mellitus Experimental/metabolismo , Canais Iônicos/metabolismo , Canais Iônicos/genética , Glicemia/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Mecanotransdução Celular , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/deficiência , Células Cultivadas , Proliferação de Células , Apoptose , Masculino , Angiopatias Diabéticas/metabolismo , Angiopatias Diabéticas/fisiopatologia , Angiopatias Diabéticas/patologia , Angiopatias Diabéticas/genética , Angiopatias Diabéticas/etiologia , Movimento Celular , Camundongos Endogâmicos C57BL , Espécies Reativas de Oxigênio/metabolismo , Aorta Torácica/metabolismo , Aorta Torácica/patologia , Aorta Torácica/fisiopatologia , Camundongos , Estreptozocina , Endotélio Vascular/metabolismo , Endotélio Vascular/fisiopatologia , Endotélio Vascular/patologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética
8.
FASEB J ; 38(10): e23653, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38738548

RESUMO

Hypoxic preconditioning has been recognized as a promotive factor for accelerating cutaneous wound healing. Our previous study uncovered that exosomal lncRNA H19, derived from adipose-derived stem cells (ADSCs), plays a crucial role in orchestrating cutaneous wound healing. Herein, we aimed to explore whether there is a connection between hypoxia and ADSC-derived exosomes (ADSCs-exos) in cutaneous wound healing. Exosomes extracted from ADSCs under normoxic and hypoxic conditions were identified using transmission electron microscope (TEM) and particle size analysis. The effects of ADSCs-exos on the proliferation, migration, and angiogenesis of human umbilical vein endothelial cells (HUVECs) were evaluated by CCK-8, EdU, wound healing, and tube formation assays. Expression patterns of H19, HIF-1α, and USP22 were measured. Co-immunoprecipitation, chromatin immunoprecipitation, ubiquitination, and luciferase reporter assays were conducted to confirm the USP22/HIF-1α/H19 axis, which was further validated in a mice model of skin wound. Exosomes extracted from hypoxia-treated ADSCs (termed as H-ADSCs-exos) significantly increased cell proliferation, migration, and angiogenesis in H2O2-exposed HUVECs, and promoted cutaneous wound healing in vivo. Moreover, H-ADSCs and H-ADSCs-exos, which exhibited higher levels of H19, were found to be transcriptionally activated by HIF-1α. Mechanically, H-ADSCs carrying USP22 accounted for deubiquitinating and stabilizing HIF-1α. Additionally, H-ADSCs-exos improved cell proliferation, migration, and angiogenesis in H2O2-triggered HUVECs by activating USP22/HIF-1α axis and promoting H19 expression, which may provide a new clue for the clinical treatment of cutaneous wound healing.


Assuntos
Exossomos , Células Endoteliais da Veia Umbilical Humana , Subunidade alfa do Fator 1 Induzível por Hipóxia , RNA Longo não Codificante , Ubiquitina Tiolesterase , Cicatrização , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Ubiquitina Tiolesterase/metabolismo , Ubiquitina Tiolesterase/genética , Exossomos/metabolismo , Humanos , Animais , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Camundongos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Proliferação de Células , Tecido Adiposo/metabolismo , Tecido Adiposo/citologia , Masculino , Regulação para Cima , Células-Tronco/metabolismo , Movimento Celular , Pele/metabolismo , Hipóxia Celular , Camundongos Endogâmicos C57BL
9.
Zhonghua Zhong Liu Za Zhi ; 46(5): 399-408, 2024 May 23.
Artigo em Chinês | MEDLINE | ID: mdl-38742353

RESUMO

Objectives: To investigate the effect of the expression of low-density lipoprotein receptor associated protein (LDLR) on the vascular abnormalities in hepatocellular carcinoma (HCC) and its mechanisms. Methods: Based on the information of Oncomine Cancer GeneChip database, we analyzed the correlation between the expression level of LDLR and the expression level of carcinoembryonic antigen (CEA) and CD31 in hepatocellular carcinoma tissues. Lentiviral transfection of short hairpin RNA target genes was used to construct LDLR-knockdown MHCC-97H and HLE hepatocellular carcinoma cells. The differential genes and their expression level changes in LDLR-knockdown hepatocellular carcinoma cells were detected by transcriptome sequencing, real-time fluorescence quantitative polymerase chain reaction, and protein immunoblotting. The gene-related signaling pathways that involve LDLR were clarified by enrichment analysis. The effect of LDLR on CEA was assessed by the detection of CEA content in conditioned medium of hepatocellular carcinoma cells. Angiogenesis assay was used to detect the effect of LDLR on the angiogenic capacity of human umbilical vein endothelial cells, as well as the role of CEA in the regulation of angiogenesis by LDLR. Immunohistochemical staining was used to detect the expression levels of LDLR in 176 hepatocellular carcinoma tissues, and CEA and CD31 in 146 hepatocellular carcinoma tissues, and analyze the correlations between the expression levels of LDLR, CEA, and CD31 in the tissues, serum CEA, and alanine transaminase (ALT). Results: Oncomine database analysis showed that the expressions of LDLR and CEA in the tissues of hepatocellular carcinoma patients with portal vein metastasis were negatively correlated (r=-0.64, P=0.001), whereas the expressions of CEA and CD31 in these tissues were positively correlated ( r=0.46, P=0.010). The transcriptome sequencing results showed that there were a total of 1 032 differentially expressed genes in the LDLR-knockdown group and the control group of MHCC-97H cells, of which 517 genes were up-regulated and 515 genes were down-regulated. The transcript expression level of CEACAM5 was significantly up-regulated in the cells of the LDLR-knockdown group. The Gene Ontology (GO) function enrichment analysis showed that the differential genes were most obviously enriched in the angiogenesis function. The Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathway enrichment analysis showed that the relevant pathways involved mainly included the cellular adhesion patch, the extracellular matrix receptor interactions, and the interactions with the extracellular matrix receptors. The CEA content in the conditioned medium of the LDLR-knockdown group was 43.75±8.43, which was higher than that of the control group (1.15±0.14, P<0.001). The results of angiogenesis experiments showed that at 5 h, the number of main junctions, the number of main segments, and the total area of the lattice formed by HUVEC cells cultured with the conditioned medium of MHCC-97H cells in the LDLR-knockdown group were 295.3±26.4, 552.5±63.8, and 2 239 781.0±13 8211.9 square pixels, which were higher than those of the control group (113.3±23.5, 194.8±36.5, and 660 621.0±280 328.3 square pixels, respectively, all P<0.01).The number of vascular major junctions, the number of major segments, and the total area of the lattice formed by HUVEC cells cultured in conditioned medium with HLE cells in the LDLR-knockdown group were 245.3±42.4, 257.5±20.4, and 2 535 754.5±249 094.2 square pixels, respectively, which were all higher than those of the control group (113.3±23.5, 114.3±12.2, and 1 565 456.5±219 259.7 square pixels, respectively, all P<0.01). In the conditioned medium for the control group of MHCC-97H cells,the number of main junctions, the number of main segments, and the total area of the lattice formed by the addition of CEA to cultured HUVEC cells were 178.9±12.0, 286.9±12.3, and 1 966 990.0±126 249.5 spixels, which were higher than those in the control group (119.7±22.1, 202.7±33.7, and 1 421 191.0±189 837.8 square pixels, respectively). The expression of LDLR in hepatocellular carcinoma tissues was not correlated with the expression of CEA, but was negatively correlated with the expression of CD31 (r=-0.167, P=0.044), the level of serum CEA (r=-0.061, P=0.032), and the level of serum ALT(r=-0.147,P=0.05). The expression of CEA in hepatocellular carcinoma tissues was positively correlated with the expression of CD31 (r=0.192, P=0.020). The level of serum CEA was positively correlated with the level of serum ALT (r=0.164, P=0.029). Conclusion: Knocking down LDLR can promote vascular abnormalities in HCC by releasing CEA.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Neovascularização Patológica , Receptores de LDL , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/irrigação sanguínea , Receptores de LDL/metabolismo , Receptores de LDL/genética , Linhagem Celular Tumoral , Neovascularização Patológica/metabolismo , Antígeno Carcinoembrionário/metabolismo , Antígeno Carcinoembrionário/genética , Células Endoteliais da Veia Umbilical Humana/metabolismo , Transdução de Sinais , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Transcriptoma , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Molécula-1 de Adesão Celular Endotelial a Plaquetas/genética
10.
Atherosclerosis ; 392: 117527, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38583286

RESUMO

BACKGROUND AND AIMS: Diabetic atherosclerotic vascular disease is characterized by extensive vascular calcification. However, an elevated blood glucose level alone does not explain this pathogenesis. We investigated the metabolic markers underlying diabetic atherosclerosis and whether extracellular Hsp90α (eHsp90α) triggers vascular endothelial calcification in this particular metabolic environment. METHODS: A parallel human/animal model metabolomics approach was used. We analyzed 40 serum samples collected from 24 patients with atherosclerosis and from the STZ-induced ApoE-/- mouse model. A multivariate statistical analysis of the data was performed, and mouse aortic tissue was collected for the assessment of plaque formation. In vitro, the effects of eHsp90α on endothelial cell calcification were assessed by serum analysis, Western blotting and immunoelectron microscopy. RESULTS: Diabetic ApoE-/- mice showed more severe plaque lesions and calcification damage. Stearamide, oleamide, l-thyroxine, l-homocitrulline and l-citrulline are biomarkers of diabetic ASVD; l-thyroxine was downregulated in both groups, and the thyroid sensitivity index was correlated with serum Hsp90α concentration. In vitro studies showed that eHsp90α increased Runx2 expression in endothelial cells through the LRP1 receptor. l-thyroxine reduced the increase in Runx2 levels caused by eHsp90α and affected the distribution and expression of LRP1 through hydrogen bonding with glutamine at position 1054 in the extracellular segment of LRP1. CONCLUSIONS: This study provides a mechanistic link between characteristic serum metabolites and diabetic atherosclerosis and thus offers new insight into the role of extracellular Hsp90α in promoting vascular calcification.


Assuntos
Diabetes Mellitus Experimental , Proteínas de Choque Térmico HSP90 , Camundongos Knockout para ApoE , Placa Aterosclerótica , Tiroxina , Calcificação Vascular , Humanos , Animais , Proteínas de Choque Térmico HSP90/metabolismo , Calcificação Vascular/metabolismo , Calcificação Vascular/patologia , Masculino , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/complicações , Tiroxina/sangue , Feminino , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Pessoa de Meia-Idade , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Camundongos , Aterosclerose/metabolismo , Aterosclerose/patologia , Angiopatias Diabéticas/metabolismo , Angiopatias Diabéticas/patologia , Angiopatias Diabéticas/etiologia , Metabolômica/métodos , Células Endoteliais/metabolismo , Células Endoteliais/efeitos dos fármacos , Metaboloma/efeitos dos fármacos , Idoso , Camundongos Endogâmicos C57BL , Doenças da Aorta/metabolismo , Doenças da Aorta/patologia , Doenças da Aorta/sangue , Biomarcadores/sangue , Células Endoteliais da Veia Umbilical Humana/metabolismo
11.
ACS Biomater Sci Eng ; 10(5): 3306-3315, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38634810

RESUMO

Tissue engineering primarily aimed to alleviate the insufficiency of organ donations worldwide. Nonetheless, the survival of the engineered tissue is often compromised due to the complexity of the natural organ architectures, especially the vascular system inside the organ, which allows food-waste transfer. Thus, vascularization within the engineered tissue is of paramount importance. A critical aspect of this endeavor is the ability to replicate the intricacies of the extracellular matrix and promote the formation of functional vascular networks within engineered constructs. In this study, human adipose-derived stem cells (hADSCs) and human umbilical vein endothelial cells (HUVECs) were cocultured in different types of gelatin methacrylate (GelMA). In brief, pro-angiogenic signaling growth factors (GFs), vascular endothelial growth factor (VEGF165) and basic fibroblast growth factor (bFGF), were conjugated onto GelMA via an EDC/NHS coupling reaction. The GelMA hydrogels conjugated with VEGF165 (GelMA@VEGF165) and bFGF (GelMA@bFGF) showed marginal changes in the chemical and physical characteristics of the GelMA hydrogels. Moreover, the conjugation of these growth factors demonstrated improved cell viability and cell proliferation within the hydrogel construct. Additionally, vascular-like network formation was observed predominantly on GelMA@GrowthFactor (GelMA@GF) hydrogels, particularly on GelMA@bFGF. This study suggests that growth factor-conjugated GelMA hydrogels would be a promising biomaterial for 3D vascular tissue engineering.


Assuntos
Técnicas de Cocultura , Fator 2 de Crescimento de Fibroblastos , Gelatina , Células Endoteliais da Veia Umbilical Humana , Hidrogéis , Metacrilatos , Engenharia Tecidual , Fator A de Crescimento do Endotélio Vascular , Humanos , Hidrogéis/química , Hidrogéis/farmacologia , Gelatina/química , Gelatina/farmacologia , Fator 2 de Crescimento de Fibroblastos/farmacologia , Fator 2 de Crescimento de Fibroblastos/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/farmacologia , Metacrilatos/química , Metacrilatos/farmacologia , Engenharia Tecidual/métodos , Neovascularização Fisiológica/efeitos dos fármacos , Tecido Adiposo/citologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células-Tronco/citologia , Células-Tronco/metabolismo , Células-Tronco/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo
12.
ACS Biomater Sci Eng ; 10(5): 3057-3068, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38641433

RESUMO

Blood-contacting catheters play a pivotal role in contemporary medical treatments, particularly in the management of cardiovascular diseases. However, these catheters exhibit inappropriate wettability and lack antimicrobial characteristics, which often lead to catheter-related infections and thrombosis. Therefore, there is an urgent need for blood contact catheters with antimicrobial and anticoagulant properties. In this study, we employed tannic acid (TA) and 3-aminopropyltriethoxysilane (APTES) to create a stable hydrophilic coating under mild conditions. Heparin (Hep) and poly(lysine) (PL) were then modified on the TA-APTES coating surface using the layer-by-layer (LBL) technique to create a superhydrophilic TA/APTES/(LBL)4 coating on silicone rubber (SR) catheters. Leveraging the superhydrophilic nature of this coating, it can be effectively applied to blood-contacting catheters to impart antibacterial, antiprotein adsorption, and anticoagulant properties. Due to Hep's anticoagulant attributes, the activated partial thromboplastin time and thrombin time tests conducted on SR/TA-APTES/(LBL)4 catheters revealed remarkable extensions of 276 and 103%, respectively, when compared to uncoated commercial SR catheters. Furthermore, the synergistic interaction between PL and TA serves to enhance the resistance of SR/TA-APTES/(LBL)4 catheters against bacterial adherence, reducing it by up to 99.9% compared to uncoated commercial SR catheters. Remarkably, the SR/TA-APTES/(LBL)4 catheter exhibits good biocompatibility with human umbilical vein endothelial cells in culture, positioning it as a promising solution to address the current challenges associated with blood-contact catheters.


Assuntos
Catéteres , Materiais Revestidos Biocompatíveis , Heparina , Polifenóis , Taninos , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Humanos , Catéteres/microbiologia , Polifenóis/química , Polifenóis/farmacologia , Heparina/química , Heparina/farmacologia , Taninos/química , Taninos/farmacologia , Silanos/química , Silanos/farmacologia , Anticoagulantes/química , Anticoagulantes/farmacologia , Propilaminas/química , Aminas/química , Aminas/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Polilisina/química , Polilisina/farmacologia , Propriedades de Superfície , Interações Hidrofóbicas e Hidrofílicas , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Elastômeros de Silicone/química , Adsorção , Escherichia coli/efeitos dos fármacos
13.
Mol Immunol ; 170: 119-130, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38657333

RESUMO

BACKGROUND: Endothelial cell injury and dysfunction lead to cholesterol and lipid accumulation and atherosclerotic plaque formation in the arterial wall during atherosclerosis (AS) progression, Ubiquitin-like containing PHD and RING finger domain 1 (UHRF1), a DNA methylation regulator, was strongly upregulated in atherosclerotic plaque lesions in mice. This study aimed to investigate the precise biological functions and regulatory mechanisms of UHRF1 on endothelial dysfunction during AS development. METHODS: UHRF1 levels in the atherosclerotic plaque tissues and normal arterial intima from AS patients were tested with Western blot analysis and immunohistochemistry assays. Human umbilical vein endothelial cells (HUVECs) were stimulated with oxidized low-density lipoprotein (ox-LDL) to induce an injury model and then transfected with short hairpin RNA targeting UHRF1 (sh-UHRF1). Cell proliferation, migration, apoptosis, the levels of inflammatory cytokines including tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6), and the protein levels adhesion molecules including vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) were measured. Moreover, co-immunoprecipitation assay was used to determine the interactions between UHRF1 and DNA methyltransferases 1 (DNMT1), As well as mothers against DPP homolog 7 (SMAD7) and yes-associated protein 1 (YAP1). SMAD7 promoter methylation was examined with methylation-specific PCR. In addition, we established an AS mouse model to determine the in vivo effects of UHRF1 on AS progression. RESULTS: UHRF1 was upregulated in atherosclerotic plaque tissues and ox-LDL-treated HUVECs. UHRF1 knockdown mitigated ox-LDL-induced proliferation and migration inhibition, apoptosis and the production of TNF-α, IL-6, VCAM-1, and ICAM-1 in HUVECs. Mechanistically, UHRF1 promoted DNMT1-mediated SMAD7 promoter methylation and inhibited its expression. SMAD7 knockdown abolished the protective effects of UHRF1 knockdown on ox-LDL-induced HUVEC injury. Moreover, SMAD7 interacted with YAP1 and inhibited YAP1 expression by promoting YAP1 protein ubiquitination-independent degradation in HUVECs. YAP1 overexpression abrogated SMAD7 overexpression-mediated protective effects on ox-LDL-induced HUVEC injury. Finally, UHRF1 knockdown alleviated atherosclerotic plaque deposition and arterial lesions in AS mice. CONCLUSION: UHRF1 inhibition mitigates vascular endothelial cell injury and ameliorates AS progression in mice by regulating the SMAD7/YAP1 axis.


Assuntos
Aterosclerose , Células Endoteliais da Veia Umbilical Humana , Proteína Smad7 , Ubiquitina-Proteína Ligases , Proteínas de Sinalização YAP , Animais , Aterosclerose/metabolismo , Proteínas de Sinalização YAP/metabolismo , Humanos , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Camundongos , Proteína Smad7/metabolismo , Masculino , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Camundongos Endogâmicos C57BL , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Lipoproteínas LDL/metabolismo , Proliferação de Células , Transdução de Sinais , Apoptose/efeitos dos fármacos , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patologia
14.
Biochem Biophys Res Commun ; 715: 150006, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38678786

RESUMO

Vascular endothelial cells play a critical role in maintaining the health of blood vessels, but dysfunction can lead to cardiovascular diseases. The impact of arsenite exposure on cardiovascular health is a significant concern due to its potential adverse effects. This study aims to explore how NBR1-mediated autophagy in vascular endothelial cells can protect against oxidative stress and apoptosis induced by arsenite. Initially, our observations revealed that arsenite exposure increased oxidative stress and triggered apoptotic cell death in human umbilical vein endothelial cells (HUVECs). However, treatment with the apoptosis inhibitor Z-VAD-FMK notably reduced arsenite-induced apoptosis. Additionally, arsenite activated the autophagy pathway and enhanced autophagic flux in HUVECs. Interestingly, inhibition of autophagy exacerbated arsenite-induced apoptotic cell death. Our findings also demonstrated the importance of autophagy receptor NBR1 in arsenite-induced cytotoxicity, as it facilitated the recruitment of caspase 8 to autophagosomes for degradation. The protective effect of NBR1 against arsenite-induced apoptosis was compromised when autophagy was inhibited using pharmacological inhibitors or through genetic knockdown of essential autophagy genes. Conversely, overexpression of NBR1 facilitated caspase 8 degradation and reduced apoptotic cell death in arsenite-treated HUVECs. In conclusion, our study highlights the vital role of NBR1-mediated autophagic degradation of caspase 8 in safeguarding vascular endothelial cells from arsenite-induced oxidative stress and apoptotic cell death. Targeting this pathway could offer a promising therapeutic approach to mitigate cardiovascular diseases associated with arsenite exposure.


Assuntos
Apoptose , Arsenitos , Autofagia , Caspase 8 , Células Endoteliais da Veia Umbilical Humana , Estresse Oxidativo , Humanos , Arsenitos/toxicidade , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Caspase 8/metabolismo , Caspase 8/genética , Estresse Oxidativo/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteólise/efeitos dos fármacos , Células Cultivadas
15.
Circ Res ; 134(10): e93-e111, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38563147

RESUMO

BACKGROUND: Endothelial activation promotes the release of procoagulant extracellular vesicles and inflammatory mediators from specialized storage granules. Endothelial membrane exocytosis is controlled by phosphorylation. We hypothesized that the absence of PTP1B (protein tyrosine phosphatase 1B) in endothelial cells promotes venous thromboinflammation by triggering endothelial membrane fusion and exocytosis. METHODS: Mice with inducible endothelial deletion of PTP1B (End.PTP1B-KO) underwent inferior vena cava ligation to induce stenosis and venous thrombosis. Primary endothelial cells from transgenic mice and human umbilical vein endothelial cells were used for mechanistic studies. RESULTS: Vascular ultrasound and histology showed significantly larger venous thrombi containing higher numbers of Ly6G (lymphocyte antigen 6 family member G)-positive neutrophils in mice with endothelial PTP1B deletion, and intravital microscopy confirmed the more pronounced neutrophil recruitment following inferior vena cava ligation. RT2 PCR profiler array and immunocytochemistry analysis revealed increased endothelial activation and adhesion molecule expression in primary End.PTP1B-KO endothelial cells, including CD62P (P-selectin) and VWF (von Willebrand factor). Pretreatment with the NF-κB (nuclear factor kappa B) kinase inhibitor BAY11-7082, antibodies neutralizing CD162 (P-selectin glycoprotein ligand-1) or VWF, or arginylglycylaspartic acid integrin-blocking peptides abolished the neutrophil adhesion to End.PTP1B-KO endothelial cells in vitro. Circulating levels of annexin V+ procoagulant endothelial CD62E+ (E-selectin) and neutrophil (Ly6G+) extracellular vesicles were also elevated in End.PTP1B-KO mice after inferior vena cava ligation. Higher plasma MPO (myeloperoxidase) and Cit-H3 (citrullinated histone-3) levels and neutrophil elastase activity indicated neutrophil activation and extracellular trap formation. Infusion of End.PTP1B-KO extracellular vesicles into C57BL/6J wild-type mice most prominently enhanced the recruitment of endogenous neutrophils, and this response was blunted in VWF-deficient mice or by VWF-blocking antibodies. Reduced PTP1B binding and tyrosine dephosphorylation of SNAP23 (synaptosome-associated protein 23) resulting in increased VWF exocytosis and neutrophil adhesion were identified as mechanisms, all of which could be restored by NF-κB kinase inhibition using BAY11-7082. CONCLUSIONS: Our findings show that endothelial PTP1B deletion promotes venous thromboinflammation by enhancing SNAP23 phosphorylation, endothelial VWF exocytosis, and neutrophil recruitment.


Assuntos
Exocitose , Camundongos Knockout , Proteína Tirosina Fosfatase não Receptora Tipo 1 , Trombose Venosa , Fator de von Willebrand , Animais , Proteína Tirosina Fosfatase não Receptora Tipo 1/genética , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 1/deficiência , Humanos , Camundongos , Fator de von Willebrand/metabolismo , Fator de von Willebrand/genética , Trombose Venosa/metabolismo , Trombose Venosa/genética , Trombose Venosa/patologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Inflamação/metabolismo , Inflamação/genética , Camundongos Endogâmicos C57BL , Neutrófilos/metabolismo , Células Endoteliais/metabolismo , Células Cultivadas , Veia Cava Inferior/metabolismo , Veia Cava Inferior/patologia , Masculino , Infiltração de Neutrófilos , NF-kappa B/metabolismo
16.
Colloids Surf B Biointerfaces ; 238: 113891, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38615392

RESUMO

The three-dimensional-printed Ti6Al4V implant (3DTi) has been widely accepted for the reconstruction of massive bone defects in orthopedics owing to several advantages, such as its tailored shape design, avoiding bone graft and superior bone-implant interlock. However, the osteoinduction activity of 3DTi is inadequate when applied clinically even though it exhibits osteoconduction. This study developes a comprehensive coatless strategy for the surface improvement of 3DTi through copper (Cu) ion implantation and ultraviolet (UV) photofunctionalization to enhance osteoinductivity. The newly constructed functional 3DTi (UV/Ti-Cu) achieved stable and controllable Cu doping, sustained Cu2+ releasing, and increased surface hydrophilicity. By performing cellular experiments, we determined that the safe dose range of Cu ion implantation was less than 5×1016 ions/cm2. The implanted Cu2+ enhanced the ALP activity and the apatite formation ability of bone marrow stromal cells (BMSCs) while slightly decreasing proliferation ability. When combined with UV photofunctionalization, cell adhesion and proliferation were significantly promoted and bone mineralization was further increased. Meanwhile, UV/Ti-Cu was conducive to the migration and angiogenesis of human umbilical vein endothelial cells (HUVECs) in vitro, theoretically facilitating vascular coupling osteogenesis. In conclusion, UV/Ti-Cu is a novel attempt to apply two coatless techniques for the surface modification of 3DTi. In addition, it is considered a potential bone substrate for repairing bone defects.


Assuntos
Ligas , Adesão Celular , Cobre , Células Endoteliais da Veia Umbilical Humana , Neovascularização Fisiológica , Osteogênese , Impressão Tridimensional , Titânio , Raios Ultravioleta , Titânio/química , Titânio/farmacologia , Ligas/química , Ligas/farmacologia , Osteogênese/efeitos dos fármacos , Cobre/química , Cobre/farmacologia , Adesão Celular/efeitos dos fármacos , Humanos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Animais , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Propriedades de Superfície , Íons/química , Proliferação de Células/efeitos dos fármacos , Próteses e Implantes , Células Cultivadas , Angiogênese
17.
Int J Biol Macromol ; 267(Pt 1): 131369, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38580026

RESUMO

Chitosan acts as a versatile carrier in polymeric nanoparticle (NP) for diverse drug administration routes. Delivery of antioxidants, such as quercetin (Qu) showcases potent antioxidant and anti-inflammatory properties for reduction of various cardiovascular diseases, but low water solubility limits uptake. To address this, we developed a novel layer-by-layer zein/gamma-polyglutamic acid (γPGA)/low-molecular-weight chitosan (LC)/fucoidan NP for encapsulating Qu and targeting inflamed vessel endothelial cells. We used zein (Z) and γPGA (r) to encapsulate Qu (Qu-Zr NP) exhibited notably higher encapsulation efficiency compared to zein alone. Qu-Zr NP coated with LC (Qu-ZrLC2 NP) shows a lower particle size (193.2 ± 2.9 nm), and a higher zeta potential value (35.2 ± 0.4 mV) by zeta potential and transmission electron microscopy analysis. After coating Qu-ZrLC2 NP with fucoidan, Qu-ZrLC2Fa NP presented particle size (225.16 ± 0.92 nm), zeta potential (-25.66 ± 0.51 mV) and maintained antioxidant activity. Further analysis revealed that Qu-ZrLC2Fa NP were targeted and taken up by HUVEC cells and EA.hy926 endothelial cells. Notably, we observed Qu-ZrLC2Fa NP targeting zebrafish vessels and isoproterenol-induced inflamed vessels of rat. Our layer-by-layer formulated zein/γPGA/LC/fucoidan NP show promise as a targeted delivery system for water-insoluble drugs. Qu-ZrLC2Fa NP exhibit potential as an anti-inflammatory therapeutic for blood vessels.


Assuntos
Antioxidantes , Quitosana , Nanopartículas , Ácido Poliglutâmico , Ácido Poliglutâmico/análogos & derivados , Polissacarídeos , Quercetina , Peixe-Zebra , Zeína , Quercetina/farmacologia , Quercetina/química , Quitosana/química , Animais , Polissacarídeos/química , Polissacarídeos/farmacologia , Zeína/química , Nanopartículas/química , Ratos , Ácido Poliglutâmico/química , Ácido Poliglutâmico/farmacologia , Humanos , Antioxidantes/farmacologia , Antioxidantes/química , Inflamação/tratamento farmacológico , Inflamação/patologia , Peso Molecular , Portadores de Fármacos/química , Tamanho da Partícula , Vasos Sanguíneos/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Masculino , Nanopartículas em Multicamadas
18.
Int J Biol Macromol ; 267(Pt 1): 131387, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38582470

RESUMO

A novel Lentinus edodes mycelia polysaccharide (LMP) prepared in our laboratory has been identified to be effective in inhibiting the damage of islet ß cells induced by glucose toxicity. However, whether it can effectively alleviate the pyroptosis of human umbilical vein endothelial cells (HUVECs) induced by advanced glycation end products (AGEs) remains unclear. Bioinformatics and cell biology techniques were used to explore the mechanism of LMP inhibiting AGEs-induced HUVECs damage. The results indicated that AGEs significantly increased the expression of LncRNA MALAT1, decreased cell viability to 79.67 %, increased intracellular ROS level to 248.19 % compared with the control group, which further led to cell membrane rupture. The release of LDH in cellular supernatant was increased to 149.42 %, and the rate of propidium iodide staining positive cells increased to 277.19 %, indicating the cell pyroptosis occurred. However, the above trend was effectively retrieved after the treatment with LMP. LMP effectively decreased the expression of LncRNA MALAT1 and mTOR, promoted the expression of miR-199b, inhibited AGEs-induced HUVECs pyroptosis by regulating the NLRP3/Caspase-1/GSDMD pathway. LncRNA MALAT1 might be a new target for LMP to inhibit AGEs-induced HUVECs pyroptosis. This study manifested the role of LMP in improving diabetes angiopathy and broadens the application of polysaccharide.


Assuntos
Caspase 1 , Gasderminas , Produtos Finais de Glicação Avançada , Células Endoteliais da Veia Umbilical Humana , MicroRNAs , Micélio , Proteína 3 que Contém Domínio de Pirina da Família NLR , Piroptose , RNA Longo não Codificante , Cogumelos Shiitake , Transdução de Sinais , Serina-Treonina Quinases TOR , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Piroptose/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Serina-Treonina Quinases TOR/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Caspase 1/metabolismo , Cogumelos Shiitake/química , Produtos Finais de Glicação Avançada/metabolismo , Transdução de Sinais/efeitos dos fármacos , Micélio/química , Proteínas de Ligação a Fosfato/metabolismo , Proteínas de Ligação a Fosfato/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Polissacarídeos Fúngicos/farmacologia , Polissacarídeos Fúngicos/química , Sobrevivência Celular/efeitos dos fármacos , Polissacarídeos/farmacologia , Polissacarídeos/química
19.
Int J Cardiol ; 406: 132035, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38604450

RESUMO

BACKGROUND: Secreted glycoproteins of the Dickkopf (DKK) family modify Wnt signaling and may influence plaque destabilization but their modulation by statins in MI patients is not known. METHODS: We measured plasma DKK-1 and DKK-3 in patients with acute ST-segment elevation MI (STEMI) before percutaneous coronary intervention (PCI) and after 2 and 7 days and 2 months in patients receiving short-term high-dose (40 mg rosuvastatin, given before PCI; n = 25) and moderate dose (20 mg simvastatin, given the day after PCI; n = 34). In vitro modulation of DKK-1 in human umbilical vein endothelial cells (HUVECs) by statins were assessed. RESULTS: (i) Patients receiving high dose rosuvastatin had a marked decline in DKK-1 at day 2 which was maintained throughout the study period. However, a more prevalent use of ß-blockers in the simvastatin group, that could have contributed to higher DKK-1 levels in these patients. (ii) There was a strong correlation between baseline DKK-1 levels and change in DKK-1 from baseline to day 2 in patients receiving high dose rosuvastatin treatment. (iii) DKK-3 increased at day 2 but returned to baseline levels at 2 months in both treatment groups. (iv) Statin treatment dose-dependently decreased DKK-1 mRNA and protein levels in HUVEC. CONCLUSIONS: Our findings suggest that high dose statin treatment with 40 mg rosuvastatin could persistently down-regulate DKK-1 levels, even at 2 months after the initial event in STEMI patients.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Inibidores de Hidroximetilglutaril-CoA Redutases , Peptídeos e Proteínas de Sinalização Intercelular , Rosuvastatina Cálcica , Humanos , Masculino , Feminino , Rosuvastatina Cálcica/administração & dosagem , Rosuvastatina Cálcica/uso terapêutico , Pessoa de Meia-Idade , Inibidores de Hidroximetilglutaril-CoA Redutases/administração & dosagem , Idoso , Peptídeos e Proteínas de Sinalização Intercelular/sangue , Relação Dose-Resposta a Droga , Sinvastatina/administração & dosagem , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/sangue , Biomarcadores/sangue , Infarto do Miocárdio com Supradesnível do Segmento ST/sangue , Infarto do Miocárdio com Supradesnível do Segmento ST/tratamento farmacológico , Células Cultivadas
20.
Bioorg Med Chem ; 105: 117716, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38608329

RESUMO

In this study, a series of new formylpiperazine-derived ferroptosis inhibitors were designed and synthesized based on the structure of a known ferroptosis inhibitor, ferrostatin-1 (Fer-1). The anti-ferroptosis activity of these synthetic compounds in human umbilical vein endothelial cells (HUVECs) induced by Erastin was evaluated. It was found that some of the new compounds, especially compound 26, showed potent anti-ferroptosis activity, as evidenced by its ability to restore cell viability, reduce iron accumulation, scavenge reactive oxygen species, maintain mitochondrial membrane potential, increase GSH levels, decrease LPO and MDA content, and upregulate GPX4 expression. Moreover, compound 26 exhibited superior microsomal stability than Fer-1. The present results suggest that compound 26 is a promising lead compound for the development of new ferroptosis inhibitors for the treatment of vascular diseases.


Assuntos
Sobrevivência Celular , Cicloexilaminas , Desenho de Fármacos , Ferroptose , Células Endoteliais da Veia Umbilical Humana , Piperazinas , Humanos , Ferroptose/efeitos dos fármacos , Piperazinas/farmacologia , Piperazinas/síntese química , Piperazinas/química , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Relação Estrutura-Atividade , Cicloexilaminas/farmacologia , Cicloexilaminas/química , Cicloexilaminas/síntese química , Sobrevivência Celular/efeitos dos fármacos , Estrutura Molecular , Fenilenodiaminas/farmacologia , Fenilenodiaminas/química , Fenilenodiaminas/síntese química , Relação Dose-Resposta a Droga , Espécies Reativas de Oxigênio/metabolismo , Compostos Ferrosos/farmacologia , Compostos Ferrosos/química , Compostos Ferrosos/síntese química , Potencial da Membrana Mitocondrial/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA