RESUMO
Hair follicle morphogenesis is heavily dependent on reciprocal, sequential, and epithelial-mesenchymal interaction (EMI) between epidermal stem cells and the specialized cells of the underlying mesenchyme, which aggregate to form the dermal condensate (DC) and will later become the dermal papilla (DP). Similar models were developed with a co-culture of keratinocytes and DP cells. Previous studies have demonstrated that co-culture with keratinocytes maintains the in vivo characteristics of the DP. However, it is often challenging to develop three-dimensional (3D) DP and keratinocyte co-culture models for long term in vitro studies, due to the poor intercellular adherence between keratinocytes. Keratinocytes exhibit exfoliative behavior, and the integrity of the DP and keratinocyte co-cultured spheroids cannot be maintained over prolonged culture. Short durations of culture are unable to sufficiently allow the differentiation and re-programming of the keratinocytes into hair follicular fate by the DP. In this study, we explored a microgel array approach fabricated with two different hydrogel systems. Using poly (ethylene glycol) diacrylate (PEGDA) and gelatin methacrylate (GelMA), we compare their effects on maintaining the integrity of the cultures and their expression of important genes responsible for hair follicle morphogenesis, namely Wnt10A, Wnt10B, and Shh, over prolonged duration. We discovered that low attachment surfaces such as PEGDA result in the exfoliation of keratinocytes and were not suitable for long-term culture. GelMA, on the hand, was able to sustain the integrity of co-cultures and showed higher expression of the morphogens overtime.
Assuntos
Derme/citologia , Queratinócitos/citologia , Microgéis/química , Polietilenoglicóis/farmacologia , Adesão Celular/efeitos dos fármacos , Agregação Celular/efeitos dos fármacos , Linhagem Celular , Técnicas de Cocultura , Proteínas de Fluorescência Verde/metabolismo , Células HaCaT/citologia , Células HaCaT/efeitos dos fármacos , Humanos , Hidrogéis/farmacologia , Proteínas Luminescentes/metabolismo , Esferoides Celulares/citologia , Esferoides Celulares/efeitos dos fármacos , Proteínas Wnt/metabolismo , Proteína Vermelha FluorescenteRESUMO
Direct contact-based coculture of human dermal fibroblasts and epidermal keratinocytes has been a long-standing and challenging issue owing to different serum and growth factor requirements of the two cell types. Existing protocols employ high serum concentrations (up to 10% fetal bovine serum), complex feeder systems and a range of supplemental factors. These approaches are technically demanding and labor intensive, and pose scientific and ethical limitations associated with the high concentrations of animal serum. On the other hand, serum-free conditions often fail to support the proliferation of one or both cell types when they are cultured together. We have developed two reduced serum approaches (1-2% serum) that support the contact-based coculture of human dermal fibroblasts and immortalized keratinocytes and enable the study of cell migration and wound closure.
Assuntos
Técnicas de Cocultura/métodos , Derme/citologia , Células Epidérmicas/citologia , Fibroblastos/citologia , Queratinócitos/citologia , Soro/metabolismo , Adulto , Movimento Celular , Forma Celular , Meios de Cultura , Células Epidérmicas/metabolismo , Fibroblastos/metabolismo , Células HaCaT/citologia , Humanos , Queratinócitos/metabolismo , CicatrizaçãoRESUMO
Psoriasis is an immune-mediated chronic inflammatory skin disease. Keratinocyte hyperproliferation has been regarded as a significant event in psoriasis pathogenesis. Considering the vital role of miRNA-mediated mRNA repression in psoriasis pathogenesis, in the present study, we attempted to investigate the mechanism of keratinocyte overproliferation from the point of miRNA-mRNA regulation. Both online microarray expression profiles and experimental results indicated that the expression of LXR-α and PPAR-γ was downregulated in psoriasis lesion skin. LXR-α or PPAR-γ overexpression alone was sufficient to inhibit keratinocyte proliferation, decrease KRT5 and KRT14 protein levels and increase KRT1 and KRT10 protein levels. miR-203 negatively regulated LXR-α and PPAR-γ expression through direct targeting. miR-203 inhibition exerted the opposite effects to LXR-α or PPAR-γ overexpression on HaCaT cells. More importantly, LXR-α or PPAR-γ overexpression could markedly remarkably attenuate the effects of miR-203 overexpression in keratinocytes, indicating that miR-203 promotes keratinocyte proliferation by targeting LXR-α and PPAR-γ. In conclusion, the miR-203-LXR-α/PPAR-γ axis modulates the proliferation of keratinocytes and might be a novel target for psoriasis treatment, which needs further in vivo investigation.
Assuntos
Células HaCaT/citologia , Células HaCaT/metabolismo , Receptores X do Fígado/metabolismo , MicroRNAs/metabolismo , PPAR gama/metabolismo , Proliferação de Células/genética , Humanos , Queratinócitos/metabolismo , Queratinócitos/patologia , MicroRNAs/genética , Psoríase/genética , Psoríase/patologiaRESUMO
Regeneration and wound healing are vital to tissue homeostasis and organism survival. One of the biggest challenges of today's science and medicine is finding methods and factors to stimulate these processes in the human body. Effective solutions to promote regenerative responses will accelerate advances in tissue engineering, regenerative medicine, transplantology, and a number of other clinical specialties. In this study, we assessed the potential efficacy of a synthetic hexapeptide, RDKVYR, for the stimulation of tissue repair and wound healing. The hexapeptide is marketed under the name "Imunofan" (IM) as an immunostimulant. IM displayed stability in aqueous solutions, while in plasma it was rapidly bound by albumins. Structural analyses demonstrated the conformational flexibility of the peptide. Tests in human fibroblast and keratinocyte cell lines showed that IM exerted a statistically significant (p < 0.05) pro-proliferative activity (30-40% and 20-50% increase in proliferation of fibroblast and keratinocytes, respectively), revealed no cytotoxicity over a vast range of concentrations (p < 0.05), and had no allergic properties. IM was found to induce significant transcriptional responses, such as enhanced activity of genes involved in active DNA demethylation (p < 0.05) in fibroblasts and activation of genes involved in immune responses, migration, and chemotaxis in adipose-derived stem cells derived from surgery donors. Experiments in a model of ear pinna injury in mice indicated that IM moderately promoted tissue repair (8% in BALB/c and 36% in C57BL/6 in comparison to control).
Assuntos
Proliferação de Células/efeitos dos fármacos , Oligopeptídeos/farmacologia , Pele/patologia , Cicatrização , Albuminas/metabolismo , Animais , Basófilos/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular , Quimiotaxia/efeitos dos fármacos , Citocinas/metabolismo , Metilação de DNA/efeitos dos fármacos , Orelha/patologia , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Células HaCaT/citologia , Células HaCaT/efeitos dos fármacos , Humanos , Injeções Subcutâneas , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Oligopeptídeos/sangue , Oligopeptídeos/química , Oligopeptídeos/metabolismo , Estabilidade Proteica/efeitos dos fármacos , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacosRESUMO
Acetyl-hexapeptide-3 (AHP-3) is a small peptide with good anti-wrinkle efficacy and safety profile. However, due to its hydrophilicity and high molecular weight, its skin permeation is generally poor. An innovative microneedle (MN) patch such as the curved, flexible or personalised MN patch is a viable avenue to deliver AHP-3. However, the well-researched geometrical relationship of MN on a flat MN patch cannot be assumed for these novel MN patches due to a complex mix of axial and shear forces. In this study, 3D printing was used for the fabrication of various MN patches with different MN geometries and curvatures. Both mechanical strength and skin penetration efficiency were used to determine the optimal MN geometry. The optimal MN geometry was then applied to the fabrication of a personalized MN patch (PMNP) for anti-wrinkle therapy, via 3D printing. In all, the general principles of MN geometrical effects on mechanical strength and skin penetration efficiency for a curved and a flat MN patch were similar. A MN height of 800 µm, tip diameter of 100 µm, interspacing of 800 µm and base diameter of 400 µm was observed to be the optimal MN geometry across all curvatures. In vitro skin permeation study demonstrated enhanced transdermal delivery of AHP-3 using the fabricated PMNP. Therefore, PMNP with optimized MN geometry can potentially be a novel approach to augment transdermal delivery of AHP-3 for effective wrinkle management.