Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 180
Filtrar
1.
Nature ; 618(7967): 992-999, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37316666

RESUMO

In the ongoing debates about eukaryogenesis-the series of evolutionary events leading to the emergence of the eukaryotic cell from prokaryotic ancestors-members of the Asgard archaea play a key part as the closest archaeal relatives of eukaryotes1. However, the nature and phylogenetic identity of the last common ancestor of Asgard archaea and eukaryotes remain unresolved2-4. Here we analyse distinct phylogenetic marker datasets of an expanded genomic sampling of Asgard archaea and evaluate competing evolutionary scenarios using state-of-the-art phylogenomic approaches. We find that eukaryotes are placed, with high confidence, as a well-nested clade within Asgard archaea and as a sister lineage to Hodarchaeales, a newly proposed order within Heimdallarchaeia. Using sophisticated gene tree and species tree reconciliation approaches, we show that analogous to the evolution of eukaryotic genomes, genome evolution in Asgard archaea involved significantly more gene duplication and fewer gene loss events compared with other archaea. Finally, we infer that the last common ancestor of Asgard archaea was probably a thermophilic chemolithotroph and that the lineage from which eukaryotes evolved adapted to mesophilic conditions and acquired the genetic potential to support a heterotrophic lifestyle. Our work provides key insights into the prokaryote-to-eukaryote transition and a platform for better understanding the emergence of cellular complexity in eukaryotic cells.


Assuntos
Archaea , Eucariotos , Filogenia , Archaea/classificação , Archaea/citologia , Archaea/genética , Eucariotos/classificação , Eucariotos/citologia , Eucariotos/genética , Células Eucarióticas/classificação , Células Eucarióticas/citologia , Células Procarióticas/classificação , Células Procarióticas/citologia , Conjuntos de Dados como Assunto , Duplicação Gênica , Evolução Molecular
2.
Cell ; 185(9): 1471-1486.e19, 2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35381200

RESUMO

Argonaute proteins use single-stranded RNA or DNA guides to target complementary nucleic acids. This allows eukaryotic Argonaute proteins to mediate RNA interference and long prokaryotic Argonaute proteins to interfere with invading nucleic acids. The function and mechanisms of the phylogenetically distinct short prokaryotic Argonaute proteins remain poorly understood. We demonstrate that short prokaryotic Argonaute and the associated TIR-APAZ (SPARTA) proteins form heterodimeric complexes. Upon guide RNA-mediated target DNA binding, four SPARTA heterodimers form oligomers in which TIR domain-mediated NAD(P)ase activity is unleashed. When expressed in Escherichia coli, SPARTA is activated in the presence of highly transcribed multicopy plasmid DNA, which causes cell death through NAD(P)+ depletion. This results in the removal of plasmid-invaded cells from bacterial cultures. Furthermore, we show that SPARTA can be repurposed for the programmable detection of DNA sequences. In conclusion, our work identifies SPARTA as a prokaryotic immune system that reduces cell viability upon RNA-guided detection of invading DNA.


Assuntos
Proteínas Argonautas , Células Procarióticas/fisiologia , Proteínas Argonautas/metabolismo , DNA/metabolismo , Células Procarióticas/citologia , Células Procarióticas/metabolismo , RNA Guia de Cinetoplastídeos
3.
Nucleic Acids Res ; 50(D1): D785-D794, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34520557

RESUMO

The Genome Taxonomy Database (GTDB; https://gtdb.ecogenomic.org) provides a phylogenetically consistent and rank normalized genome-based taxonomy for prokaryotic genomes sourced from the NCBI Assembly database. GTDB R06-RS202 spans 254 090 bacterial and 4316 archaeal genomes, a 270% increase since the introduction of the GTDB in November, 2017. These genomes are organized into 45 555 bacterial and 2339 archaeal species clusters which is a 200% increase since the integration of species clusters into the GTDB in June, 2019. Here, we explore prokaryotic diversity from the perspective of the GTDB and highlight the importance of metagenome-assembled genomes in expanding available genomic representation. We also discuss improvements to the GTDB website which allow tracking of taxonomic changes, easy assessment of genome assembly quality, and identification of genomes assembled from type material or used as species representatives. Methodological updates and policy changes made since the inception of the GTDB are then described along with the procedure used to update species clusters in the GTDB. We conclude with a discussion on the use of average nucleotide identities as a pragmatic approach for delineating prokaryotic species.


Assuntos
Archaea/classificação , Bactérias/classificação , Bases de Dados Genéticas , Genoma Arqueal , Genoma Bacteriano , Software , Archaea/genética , Bactérias/genética , Sequência de Bases , Internet , Metagenoma , Filogenia , Células Procarióticas/classificação , Células Procarióticas/citologia , Células Procarióticas/metabolismo
4.
Nucleic Acids Res ; 50(D1): D295-D302, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34850133

RESUMO

PRODORIC is worldwide one of the largest collections of prokaryotic transcription factor binding sites from multiple bacterial sources with corresponding interpretation and visualization tools. With the introduction of PRODORIC2 in 2017, the transition to a modern web interface and maintainable backend was started. With this latest PRODORIC release the database backend is now fully API-based and provides programmatical access to the complete PRODORIC data. The visualization tools Genome Browser and ProdoNet from the original PRODORIC have been reintroduced and were integrated into the PRODORIC website. Missing input and output options from the original Virtual Footprint were added again for position weight matrix pattern-based searches. The whole PRODORIC dataset was reannotated. Every transcription factor binding site was re-evaluated to increase the overall database quality. During this process, additional parameters, like bound effectors, regulation type and different types of experimental evidence have been added for every transcription factor. Additionally, 109 new transcription factors and 6 new organisms have been added. PRODORIC is publicly available at https://www.prodoric.de.


Assuntos
Archaea/genética , Bactérias/genética , Bases de Dados Genéticas , Regulação da Expressão Gênica em Archaea , Regulação Bacteriana da Expressão Gênica , Genoma , Fatores de Transcrição/genética , Archaea/classificação , Archaea/metabolismo , Bactérias/classificação , Bactérias/metabolismo , Sítios de Ligação , Conjuntos de Dados como Assunto , Internet , Células Procarióticas/citologia , Células Procarióticas/metabolismo , Fatores de Transcrição/classificação , Fatores de Transcrição/metabolismo , Transcrição Gênica , Interface Usuário-Computador
5.
Nucleic Acids Res ; 50(D1): D801-D807, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34634793

RESUMO

Microbial systematics is heavily influenced by genome-based methods and challenged by an ever increasing number of taxon names and associated sequences in public data repositories. This poses a challenge for database systems, particularly since it is obviously advantageous if such data are based on a globally recognized approach to manage names, such as the International Code of Nomenclature of Prokaryotes. The amount of data can only be handled if accurate and reliable high-throughput platforms are available that are able to both comply with this demand and to keep track of all changes in an efficient and flexible way. The List of Prokaryotic names with Standing in Nomenclature (LPSN) is an expert-curated authoritative resource for prokaryotic nomenclature and is available at https://lpsn.dsmz.de. The Type (Strain) Genome Server (TYGS) is a high-throughput platform for accurate genome-based taxonomy and is available at https://tygs.dsmz.de. We here present important updates of these two previously introduced, heavily interconnected platforms for taxonomic nomenclature and classification, including new high-level facilities providing access to bioinformatic algorithms, a considerable expansion of the database content, and new ways to easily access the data.


Assuntos
Algoritmos , Bases de Dados Genéticas , Células Procarióticas/classificação , Software , Biologia Computacional/métodos , Humanos , Internet , Células Procarióticas/citologia , Células Procarióticas/metabolismo , Terminologia como Assunto
6.
Exp Cell Res ; 405(2): 112684, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34129847

RESUMO

Cytidine triphosphate synthase (CTPS) catalyzes the rate-limiting step of de novo CTP biosynthesis. An intracellular structure of CTPS, the cytoophidium, has been found in many organisms including prokaryotes and eukaryotes. Formation of the cytoophidium has been suggested to regulate the activity and stability of CTPS and may participate in certain physiological events. Herein, we demonstrate that both CTPS1a and CTPS1b in zebrafish are able to form the cytoophidium in cultured cells. A point mutation, H355A, abrogates cytoophidium assembly of zebrafish CTPS1a and CTPS1b. In addition, we show the presence of CTPS cytoophidia in multiple tissues of larval and adult fish under normal conditions, while treatment with a CTPS inhibitor 6-diazo-5-oxo-l-norleucine (DON) can induce more cytoophidia in some tissues. Our findings reveal that forming the CTPS cytoophidium is a natural phenomenon of zebrafish and provide valuable information for future research on the physiological importance of this intracellular structure in vertebrates.


Assuntos
Carbono-Nitrogênio Ligases/metabolismo , Citidina Trifosfato/metabolismo , Eucariotos/citologia , Células Procarióticas/citologia , Animais , Linhagem Celular , Óxido Nítrico Sintase/metabolismo , Peixe-Zebra
7.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34161262

RESUMO

The prokaryotic cell is traditionally seen as a "bag of enzymes," yet its organization is much more complex than in this simplified view. By now, various microcompartments encapsulating metabolic enzymes or pathways are known for Bacteria These microcompartments are usually small, encapsulating and concentrating only a few enzymes, thus protecting the cell from toxic intermediates or preventing unwanted side reactions. The hyperthermophilic, strictly anaerobic Crenarchaeon Ignicoccus hospitalis is an extraordinary organism possessing two membranes, an inner and an energized outer membrane. The outer membrane (termed here outer cytoplasmic membrane) harbors enzymes involved in proton gradient generation and ATP synthesis. These two membranes are separated by an intermembrane compartment, whose function is unknown. Major information processes like DNA replication, RNA synthesis, and protein biosynthesis are located inside the "cytoplasm" or central cytoplasmic compartment. Here, we show by immunogold labeling of ultrathin sections that enzymes involved in autotrophic CO2 assimilation are located in the intermembrane compartment that we name (now) a peripheric cytoplasmic compartment. This separation may protect DNA and RNA from reactive aldehydes arising in the I. hospitalis carbon metabolism. This compartmentalization of metabolic pathways and information processes is unprecedented in the prokaryotic world, representing a unique example of spatiofunctional compartmentalization in the second domain of life.


Assuntos
Compartimento Celular , Células Procarióticas/citologia , Células Procarióticas/metabolismo , Ciclo do Carbono , Dióxido de Carbono/metabolismo , DNA Arqueal/metabolismo , Desulfurococcaceae/citologia , Desulfurococcaceae/metabolismo , Desulfurococcaceae/ultraestrutura , Células Procarióticas/ultraestrutura , Frações Subcelulares/metabolismo
8.
Genome Biol ; 22(1): 178, 2021 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-34120611

RESUMO

Genomes are critical units in microbiology, yet ascertaining quality in prokaryotic genome assemblies remains a formidable challenge. We present GUNC (the Genome UNClutterer), a tool that accurately detects and quantifies genome chimerism based on the lineage homogeneity of individual contigs using a genome's full complement of genes. GUNC complements existing approaches by targeting previously underdetected types of contamination: we conservatively estimate that 5.7% of genomes in GenBank, 5.2% in RefSeq, and 15-30% of pre-filtered "high-quality" metagenome-assembled genomes in recent studies are undetected chimeras. GUNC provides a fast and robust tool to substantially improve prokaryotic genome quality.


Assuntos
Quimerismo , Biologia Computacional/métodos , Genoma Bacteriano , Metagenoma , Proteobactérias/genética , Software , Mapeamento de Sequências Contíguas , Metagenômica/métodos , Filogenia , Células Procarióticas/citologia , Células Procarióticas/metabolismo
9.
Nat Chem Biol ; 16(12): 1314-1320, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33199904

RESUMO

Electrical signaling was a dramatic development in evolution, allowing complex single-cell organisms like Paramecium to coordinate movement and early metazoans like worms and jellyfish to send regulatory signals rapidly over increasing distances. But how are electrical signals generated in biology? In fact, voltage-gated sodium channels conduct sodium currents that initiate electrical signals in all kingdoms of life, from bacteria to man. They are responsible for generating the action potential in vertebrate nerve and muscle, neuroendocrine cells, and other cell types1,2. Because of the high level of conservation of their core structure, it is likely that their fundamental mechanisms of action are conserved as well. Here we describe the complete cycle of conformational changes that a bacterial sodium channel undergoes as it transitions from resting to activated/open and inactivated/closed states, based on high-resolution structural studies of a single sodium channel. We further relate this conformational cycle of the ancestral sodium channel to the function of its vertebrate orthologs. The strong conservation of amino acid sequence and three-dimensional structure suggests that this model, at a fundamental level, is relevant for both prokaryotic and eukaryotic sodium channels, as well as voltage-gated calcium and potassium channels.


Assuntos
Potenciais de Ação/fisiologia , Bactérias/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5/química , Células Procarióticas/metabolismo , Sequência de Aminoácidos , Animais , Bactérias/genética , Sequência Conservada , Evolução Molecular , Expressão Gênica , Humanos , Modelos Moleculares , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Paramecium/genética , Paramecium/metabolismo , Células Procarióticas/citologia , Estrutura Secundária de Proteína
10.
EcoSal Plus ; 9(1)2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33030141

RESUMO

Bacterial microcompartments (MCPs) are proteinaceous organelles consisting of a metabolic pathway encapsulated within a selectively permeable protein shell. Hundreds of species of bacteria produce MCPs of at least nine different types, and MCP metabolism is associated with enteric pathogenesis, cancer, and heart disease. This review focuses chiefly on the four types of catabolic MCPs (metabolosomes) found in Escherichia coli and Salmonella: the propanediol utilization (pdu), ethanolamine utilization (eut), choline utilization (cut), and glycyl radical propanediol (grp) MCPs. Although the great majority of work done on catabolic MCPs has been carried out with Salmonella and E. coli, research outside the group is mentioned where necessary for a comprehensive understanding. Salient characteristics found across MCPs are discussed, including enzymatic reactions and shell composition, with particular attention paid to key differences between classes of MCPs. We also highlight relevant research on the dynamic processes of MCP assembly, protein targeting, and the mechanisms that underlie selective permeability. Lastly, we discuss emerging biotechnology applications based on MCP principles and point out challenges, unanswered questions, and future directions.


Assuntos
Proteínas de Bactérias/metabolismo , Compartimento Celular , Escherichia coli/metabolismo , Células Procarióticas/citologia , Salmonella/metabolismo , Proteínas de Bactérias/genética , Escherichia coli/citologia , Escherichia coli/genética , Organelas , Salmonella/citologia , Salmonella/genética
11.
Biosystems ; 198: 104270, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33038464

RESUMO

M systems are mathematical models of morphogenesis developed to gain insights into its relations to phenomena such as self-assembly, self-controlled growth, homeostasis, self-healing and self-reproduction, in both natural and artificial systems. M systems rely on basic principles of membrane computing and self-assembly, as well as explicit emphasis on geometrical structures (location and shape) in 2D, 3D or higher dimensional Euclidean spaces. They can be used for principled studies of these phenomena, both theoretically and experimentally, at a computational level abstracted from their detailed implementation. In particular, they afford 2D and 3D models to explore biological morphogenetic processes. Theoretical studies have shown that M systems are powerful tools (e.g., computational universal, i.e. can become as complex as any computer program) and their parallelism allows for trading space for time in solving efficiently problems considered infeasible on conventional computers (NP-hard problems). In addition, they can also exhibit properties such as robustness to injuries and degrees of self-healing. This paper focuses on the experimental side of M systems. To this end, we have developed a high-level morphogenetic simulator, Cytos, to implement and visualize M systems in silico in order to verify theoretical results and facilitate research in M systems. We summarize the software package and make a brief comparison with some other simulators of membrane systems. The core of the article is a description of a range of experiments inspired by aspects of morphogenesis in both prokaryotic and eukaryotic cells. The experiments explore the regulatory role of the septum and of the cytoskeleton in cell fission, the robustness of cell models against injuries, and, finally, the impact of changing nutrient concentration on population growth.


Assuntos
Algoritmos , Biologia Computacional/métodos , Modelos Teóricos , Morfogênese , Software , Divisão Celular , Simulação por Computador , Citoesqueleto/metabolismo , Células Eucarióticas/citologia , Células Eucarióticas/metabolismo , Células Procarióticas/citologia , Células Procarióticas/metabolismo
12.
Nature ; 577(7791): 519-525, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31942073

RESUMO

The origin of eukaryotes remains unclear1-4. Current data suggest that eukaryotes may have emerged from an archaeal lineage known as 'Asgard' archaea5,6. Despite the eukaryote-like genomic features that are found in these archaea, the evolutionary transition from archaea to eukaryotes remains unclear, owing to the lack of cultured representatives and corresponding physiological insights. Here we report the decade-long isolation of an Asgard archaeon related to Lokiarchaeota from deep marine sediment. The archaeon-'Candidatus Prometheoarchaeum syntrophicum' strain MK-D1-is an anaerobic, extremely slow-growing, small coccus (around 550 nm in diameter) that degrades amino acids through syntrophy. Although eukaryote-like intracellular complexes have been proposed for Asgard archaea6, the isolate has no visible organelle-like structure. Instead, Ca. P. syntrophicum is morphologically complex and has unique protrusions that are long and often branching. On the basis of the available data obtained from cultivation and genomics, and reasoned interpretations of the existing literature, we propose a hypothetical model for eukaryogenesis, termed the entangle-engulf-endogenize (also known as E3) model.


Assuntos
Archaea/classificação , Archaea/isolamento & purificação , Células Eucarióticas/classificação , Modelos Biológicos , Células Procarióticas/classificação , Aminoácidos/metabolismo , Archaea/metabolismo , Archaea/ultraestrutura , Células Eucarióticas/citologia , Células Eucarióticas/metabolismo , Células Eucarióticas/ultraestrutura , Evolução Molecular , Genoma Arqueal/genética , Sedimentos Geológicos/microbiologia , Lipídeos/análise , Lipídeos/química , Filogenia , Células Procarióticas/citologia , Células Procarióticas/metabolismo , Células Procarióticas/ultraestrutura , Simbiose
13.
Nature ; 573(7772): 144-148, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31435012

RESUMO

The ability of proteins and nucleic acids to undergo liquid-liquid phase separation has recently emerged as an important molecular principle of how cells rapidly and reversibly compartmentalize their components into membrane-less organelles such as the nucleolus, processing bodies or stress granules1,2. How the assembly and turnover of these organelles are controlled, and how these biological condensates selectively recruit or release components are poorly understood. Here we show that members of the large and highly abundant family of RNA-dependent DEAD-box ATPases (DDXs)3 are regulators of RNA-containing phase-separated organelles in prokaryotes and eukaryotes. Using in vitro reconstitution and in vivo experiments, we demonstrate that DDXs promote phase separation in their ATP-bound form, whereas ATP hydrolysis induces compartment turnover and release of RNA. This mechanism of membrane-less organelle regulation reveals a principle of cellular organization that is conserved from bacteria to humans. Furthermore, we show that DDXs control RNA flux into and out of phase-separated organelles, and thus propose that a cellular network of dynamic, DDX-controlled compartments establishes biochemical reaction centres that provide cells with spatial and temporal control of various RNA-processing steps, which could regulate the composition and fate of ribonucleoprotein particles.


Assuntos
Adenosina Trifosfatases/metabolismo , Compartimento Celular , RNA Helicases DEAD-box/metabolismo , Células Eucarióticas/enzimologia , Organelas/enzimologia , Organelas/metabolismo , Células Procarióticas/enzimologia , Biocatálise , Linhagem Celular , Sequência Conservada , Grânulos Citoplasmáticos/metabolismo , Células Eucarióticas/citologia , Evolução Molecular , Humanos , Células Procarióticas/citologia , RNA/metabolismo , Transporte de RNA , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/metabolismo
14.
Proc Biol Sci ; 286(1902): 20190128, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-31039713

RESUMO

The mutation rate is a fundamental factor in evolutionary genetics. Recently, mutation rates were found to be strongly reduced at high density in a wide range of unicellular organisms, prokaryotic and eukaryotic. Independently, cell division was found to become more asymmetrical at increasing density in diverse organisms; some 'mother' cells continue dividing, while their 'offspring' cells do not divide further. Here, we investigate how this increased asymmetry in cell division at high density can be reconciled with reduced mutation-rate estimates. We calculated the expected number of mutant cells due to replication errors under various modes of segregation of template-DNA strands and copy-DNA strands, both under symmetrical (exponential) and asymmetrical (linear) growth. We show that the observed reduction in the mutation rate at high density can be explained if mother cells preferentially retain the template-DNA strands, since new mutations are then confined to non-dividing daughter cells, thus reducing the spread of mutant cells. Any other inheritance mode results in an increase in the number of mutant cells at higher density. The proposed hypothesis that patterns of DNA-strand segregation are density-dependent fundamentally challenges our current understanding of mutation-rate estimates and extends the distinction between germline and soma to unicellular organisms.


Assuntos
Divisão Celular , Células Germinativas , Taxa de Mutação , Evolução Biológica , Células Eucarióticas/citologia , Densidade Demográfica , Células Procarióticas/citologia
15.
Nat Rev Genet ; 20(5): 283-297, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30886348

RESUMO

Sophisticated gene-regulatory mechanisms probably evolved in prokaryotes billions of years before the emergence of modern eukaryotes, which inherited the same basic enzymatic machineries. However, the epigenomic landscapes of eukaryotes are dominated by nucleosomes, which have acquired roles in genome packaging, mitotic condensation and silencing parasitic genomic elements. Although the molecular mechanisms by which nucleosomes are displaced and modified have been described, just how transcription factors, histone variants and modifications and chromatin regulators act on nucleosomes to regulate transcription is the subject of considerable ongoing study. We explore the extent to which these transcriptional regulatory components function in the context of the evolutionarily ancient role of chromatin as a barrier to processes acting on DNA and how chromatin proteins have diversified to carry out evolutionarily recent functions that accompanied the emergence of differentiation and development in multicellular eukaryotes.


Assuntos
Montagem e Desmontagem da Cromatina , DNA/genética , Genoma , Nucleossomos/genética , Transcrição Gênica , Animais , Evolução Biológica , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/história , Proteínas Cromossômicas não Histona/metabolismo , DNA/história , DNA/metabolismo , Células Eucarióticas/citologia , Células Eucarióticas/metabolismo , Genômica/métodos , Histonas/genética , Histonas/história , Histonas/metabolismo , História do Século XXI , História Antiga , Humanos , Nucleossomos/química , Nucleossomos/metabolismo , Células Procarióticas/citologia , Células Procarióticas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/história , Fatores de Transcrição/metabolismo
16.
Cytoskeleton (Hoboken) ; 75(6): 231-243, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29573204

RESUMO

Metazoans evolved from a single protist lineage. While all eukaryotes share a conserved actin and tubulin-based cytoskeleton, it is commonly perceived that intermediate filaments (IFs), including lamin, vimentin or keratin among many others, are restricted to metazoans. Actin and tubulin proteins are conserved enough to be detectable across all eukaryotic genomes using standard phylogenetic methods, but IF proteins, in contrast, are notoriously difficult to identify by such means. Since the 1950s, dozens of cytoskeletal proteins in protists have been identified that seemingly do not belong to any of the IF families described for metazoans, yet, from a structural and functional perspective fit criteria that define metazoan IF proteins. Here, we briefly review IF protein discovery in metazoans and the implications this had for the definition of this protein family. We argue that the many cytoskeletal and filament-forming proteins of protists should be incorporated into a more comprehensive picture of IF evolution by aligning it with the recent identification of lamins across the phylogenetic diversity of eukaryotic supergroups. This then brings forth the question of how the diversity of IF proteins has unfolded. The evolution of IF proteins likely represents an example of convergent evolution, which, in combination with the speed with which these cytoskeletal proteins are evolving, generated their current diversity. IF proteins did not first emerge in metazoa, but in protists. Only the emergence of cytosolic IF proteins that appear to stem from a nuclear lamin is unique to animals and coincided with the emergence of true animal multicellularity.


Assuntos
Evolução Biológica , Células Eucarióticas/citologia , Filamentos Intermediários , Células Procarióticas/citologia , Animais
17.
Nucleic Acids Res ; 46(D1): D399-D405, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29036719

RESUMO

ChannelsDB (http://ncbr.muni.cz/ChannelsDB) is a database providing information about the positions, geometry and physicochemical properties of channels (pores and tunnels) found within biomacromolecular structures deposited in the Protein Data Bank. Channels were deposited from two sources; from literature using manual deposition and from a software tool automatically detecting tunnels leading to the enzymatic active sites and selected cofactors, and transmembrane pores. The database stores information about geometrical features (e.g. length and radius profile along a channel) and physicochemical properties involving polarity, hydrophobicity, hydropathy, charge and mutability. The stored data are interlinked with available UniProt annotation data mapping known mutation effects to channel-lining residues. All structures with channels are displayed in a clear interactive manner, further facilitating data manipulation and interpretation. As such, ChannelsDB provides an invaluable resource for research related to deciphering the biological function of biomacromolecular channels.


Assuntos
Aminoácidos/química , Citocromo P-450 CYP2D6/química , Bases de Dados de Proteínas , Canais Iônicos/química , Poro Nuclear/química , Software , Aminoácidos/metabolismo , Animais , Domínio Catalítico , Coenzimas/química , Coenzimas/metabolismo , Citocromo P-450 CYP2D6/genética , Citocromo P-450 CYP2D6/metabolismo , Células Eucarióticas/citologia , Células Eucarióticas/enzimologia , Expressão Gênica , Humanos , Interações Hidrofóbicas e Hidrofílicas , Canais Iônicos/genética , Canais Iônicos/metabolismo , Mutação , Poro Nuclear/genética , Poro Nuclear/metabolismo , Células Procarióticas/citologia , Células Procarióticas/enzimologia , Eletricidade Estática
18.
Bioessays ; 39(12)2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29068466

RESUMO

The realization that prokaryotes naturally and frequently disperse genes across steep taxonomic boundaries via lateral gene transfer (LGT) gave wings to the idea that eukaryotes might do the same. Eukaryotes do acquire genes from mitochondria and plastids and they do transfer genes during the process of secondary endosymbiosis, the spread of plastids via eukaryotic algal endosymbionts. From those observations it, however, does not follow that eukaryotes transfer genes either in the same ways as prokaryotes do, or to a quantitatively similar degree. An important illustration of the difference is that eukaryotes do not exhibit pangenomes, though prokaryotes do. Eukaryotes reveal no detectable cumulative effects of LGT, though prokaryotes do. A critical analysis suggests that something is deeply amiss with eukaryote LGT theories.


Assuntos
Eucariotos/genética , Evolução Molecular , Transferência Genética Horizontal , Genoma , Simbiose/genética , Animais , Eucariotos/classificação , Células Eucarióticas/citologia , Células Eucarióticas/metabolismo , Mitocôndrias/genética , Filogenia , Plantas/classificação , Plantas/genética , Plastídeos/genética , Células Procarióticas/citologia , Células Procarióticas/metabolismo
19.
Exp Cell Res ; 358(2): 421-426, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28189637

RESUMO

Lateral gene transfer (LGT) is an all-encompassing term for the movement of DNA between diverse organisms. LGT is synonymous with horizontal gene transfer, and the terms are used interchangeably throughout the scientific literature. While LGT has been recognized within the bacteria domain of life for decades, inter-domain LGTs are being increasingly described. LGTs between bacteria and complex multicellular organisms are of interest because they challenge the long-held dogma that such transfers could only occur in closely-related, single-celled organisms. Scientists will continue to challenge our understanding of LGT as we sequence more, diverse organisms, as we sequence more endosymbiont-colonized arthropods, and as we continue to appreciate LGT events, both young and old.


Assuntos
Eucariotos/genética , Evolução Molecular , Transferência Genética Horizontal/genética , Células Procarióticas/citologia , Animais , Bactérias/genética , Transferência Genética Horizontal/fisiologia , Humanos , Mitocôndrias/metabolismo
20.
BMC Evol Biol ; 16(1): 215, 2016 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-27756227

RESUMO

BACKGROUND: A defining feature of eukaryotic cells is the presence of various distinct membrane-bound compartments with different metabolic roles. Material exchange between most compartments occurs via a sophisticated vesicle trafficking system. This intricate cellular architecture of eukaryotes appears to have emerged suddenly, about 2 billion years ago, from much less complex ancestors. How the eukaryotic cell acquired its internal complexity is poorly understood, partly because no prokaryotic precursors have been found for many key factors involved in compartmentalization. One exception is the Cdc48 protein family, which consists of several distinct classical ATPases associated with various cellular activities (AAA+) proteins with two consecutive AAA domains. RESULTS: Here, we have classified the Cdc48 family through iterative use of hidden Markov models and tree building. We found only one type, Cdc48, in prokaryotes, although a set of eight diverged members that function at distinct subcellular compartments were retrieved from eukaryotes and were probably present in the last eukaryotic common ancestor (LECA). Pronounced changes in sequence and domain structure during the radiation into the LECA set are delineated. Moreover, our analysis brings to light lineage-specific losses and duplications that often reflect important biological changes. Remarkably, we also found evidence for internal duplications within the LECA set that probably occurred during the rise of the eukaryotic cell. CONCLUSIONS: Our analysis corroborates the idea that the diversification of the Cdc48 family is closely intertwined with the development of the compartments of the eukaryotic cell.


Assuntos
Adenosina Trifosfatases/química , Proteínas de Ciclo Celular/química , Células Eucarióticas/metabolismo , Evolução Molecular , Adenosina Trifosfatases/genética , Evolução Biológica , Proteínas de Ciclo Celular/genética , Células Eucarióticas/citologia , Células Eucarióticas/ultraestrutura , Cadeias de Markov , Filogenia , Células Procarióticas/citologia , Células Procarióticas/metabolismo , Células Procarióticas/ultraestrutura , Domínios Proteicos , Proteína com Valosina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA