Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
1.
Front Immunol ; 11: 580968, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33013934

RESUMO

Non-alcoholic fatty liver disease (NAFLD) has been on a global rise. While animal models have rendered valuable insights to the pathogenesis of NAFLD, discrepancy with patient data still exists. Since non-alcoholic steatohepatitis (NASH) involves chronic inflammation, and CD4+ T cell infiltration of the liver is characteristic of NASH patients, we established and characterized a humanized mouse model to identify human-specific immune response(s) associated with NAFLD progression. Immunodeficient mice engrafted with human immune cells (HIL mice) were fed with high fat and high calorie (HFHC) or chow diet for 20 weeks. Liver histology and immune profile of HIL mice were analyzed and compared with patient data. HIL mice on HFHC diet developed steatosis, inflammation and fibrosis of the liver. Human CD4+ central and effector memory T cells increased within the liver and in the peripheral blood of our HIL mice, accompanied by marked up-regulation of pro-inflammatory cytokines (IL-17A and IFNγ). In vivo depletion of human CD4+ T cells in HIL mice reduced liver inflammation and fibrosis, but not steatosis. Our results highlight CD4+ memory T cell subsets as important drivers of NAFLD progression from steatosis to fibrosis and provides a humanized mouse model for pre-clinical evaluation of potential therapeutics.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Cirrose Hepática Experimental/etiologia , Cirrose Hepática Experimental/imunologia , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/imunologia , Animais , Linfócitos T CD4-Positivos/patologia , Citocinas/sangue , Dieta Hiperlipídica/efeitos adversos , Feminino , Células-Tronco Fetais/transplante , Hepatócitos/transplante , Xenoenxertos , Humanos , Subunidade gama Comum de Receptores de Interleucina/deficiência , Subunidade gama Comum de Receptores de Interleucina/genética , Cirrose Hepática Experimental/patologia , Depleção Linfocítica , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Hepatopatia Gordurosa não Alcoólica/patologia
2.
Stem Cell Res Ther ; 11(1): 337, 2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32746939

RESUMO

PURPOSE: Selected placental mesenchymal stromal cells isolated from the fetal mesenchymal placental tissues (f-hPSCs) were tested as cell therapy of lethal acute radiation syndrome (ARS) with bone marrow regeneration and induced extramedullary hematopoiesis. METHODS AND MATERIALS: f-hPSCs were isolated from the chorionic plate of human placentae and further expanded in regular culture conditions. 2 × 106 f-hPSCs were injected on days 1 and 4 to 8-Gy total body irradiated (TBI) C3H mice, both intramuscularly and subcutaneously. Pre-splenectomized TBI mice were used to test the involvement of extramedullary spleen hematopoiesis in the f-hPSC-induced hematopoiesis recovery in the TBI mice. Weight and survival of the mice were followed up within the morbid period of up to 23 days following irradiation. The role of hematopoietic progenitors in the recovery of treated mice was evaluated by flow cytometry, blood cell counts, and assay of possibly relevant growth factors. RESULTS AND CONCLUSIONS: The survival rate of all groups of TBI f-hPSC-treated mice at the end of the follow-up was dramatically elevated from < 10% in untreated to ~ 80%, with a parallel regain of body weight, bone marrow (BM) recovery, and elevated circulating progenitors of blood cell lineages. Blood erythropoietin levels were elevated in all f-hPSC-treated mice. Extramedullary splenic hematopoiesis was recorded in the f-hPSC-treated mice, though splenectomized mice still had similar survival rate. Our findings suggest that the indirect f-hPSC life-saving therapy of ARS may also be applied for treating other conditions with a failure of the hematopoietic system and severe pancytopenia.


Assuntos
Transtornos da Insuficiência da Medula Óssea , Células-Tronco Fetais , Hematopoese , Células Estromais , Irradiação Corporal Total , Animais , Transtornos da Insuficiência da Medula Óssea/terapia , Feminino , Células-Tronco Fetais/transplante , Humanos , Hibridização in Situ Fluorescente , Masculino , Camundongos , Camundongos Endogâmicos C3H , Placenta , Gravidez
3.
Stem Cell Reports ; 15(1): 80-94, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32619494

RESUMO

Duchenne muscular dystrophy (DMD) is a progressive and fatal muscle-wasting disease caused by DYSTROPHIN deficiency. Cell therapy using muscle stem cells (MuSCs) is a potential cure. Here, we report a differentiation method to generate fetal MuSCs from human induced pluripotent stem cells (iPSCs) by monitoring MYF5 expression. Gene expression profiling indicated that MYF5-positive cells in the late stage of differentiation have fetal MuSC characteristics, while MYF5-positive cells in the early stage of differentiation have early myogenic progenitor characteristics. Moreover, late-stage MYF5-positive cells demonstrated good muscle regeneration potential and produced DYSTROPHIN in vivo after transplantation into DMD model mice, resulting in muscle function recovery. The engrafted cells also generated PAX7-positive MuSC-like cells under the basal lamina of DYSTROPHIN-positive fibers. These findings suggest that MYF5-positive fetal MuSCs induced in the late stage of iPSC differentiation have cell therapy potential for DMD.


Assuntos
Células-Tronco Fetais/transplante , Distrofia Muscular de Duchenne/terapia , Mioblastos/transplante , Animais , Biomarcadores/metabolismo , Diferenciação Celular , Linhagem da Célula , Modelos Animais de Doenças , Distrofina/metabolismo , Genes Reporter , Proteínas de Fluorescência Verde/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Camundongos , Desenvolvimento Muscular , Distrofia Muscular de Duchenne/patologia , Fator Regulador Miogênico 5/metabolismo , Fator de Transcrição PAX3/metabolismo , Recuperação de Função Fisiológica , Regeneração
4.
Curr Osteoporos Rep ; 18(4): 337-343, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32710427

RESUMO

PURPOSE OF REVIEW: Osteogenesis imperfecta (OI) is a chronic disease with few treatment options available. The purpose of this review is to provide an overview on treating OI with mesenchymal stem cells (MSC). RECENT FINDINGS: Off-the-shelf MSC have a good safety profile and exhibit multilineage differentiation potential and a low immunogenic profile and are easy to manufacture. Their ability to migrate, engraft, and differentiate into bone cells, and also to act via paracrine effects on the recipient's tissues, makes MSC candidates as a clinical therapy for OI. Due to their high osteogenic potency, fetal MSC offer an even higher therapeutic potential in OI compared with MSC derived from adult sources. Preclinical and initial clinical data support the use of MSC in treating OI. The characteristics of MSC make them of great interest in treating OI. MSC may be safely transplanted via intravenous administration and show potential positive clinical effects.


Assuntos
Células-Tronco Fetais/transplante , Transplante de Células-Tronco Mesenquimais/métodos , Osteogênese Imperfeita/terapia , Animais , Transplante de Medula Óssea , Intervenção Médica Precoce , Terapias Fetais , Humanos , Ratos
5.
Mol Ther ; 28(7): 1645-1657, 2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32353323

RESUMO

Retinal pigment epithelial (RPE) cell replacement therapy has provided promising outcomes in the treatment of retinal degenerative diseases (RDDs), but the resulting limited visual improvement has raised questions about graft survival and differentiation. Through combined treatment with vitamin C and valproic acid (together, VV), we activated human fetal RPE (fRPE) cells to become highly proliferative fetal RPE stem-like cells (fRPESCs). In this study, we report that SOX2 (SRY-box 2) activation contributed to mesenchymal-epithelial transition and elevated the retinal progenitor and mesenchymal stromal markers expressions of fRPESCs. These fRPESCs could differentiate into RPE cells, rod photoreceptors, and mesenchymal lineage progenies under defined conditions. Finally, fRPESCs were transplanted into the subretinal space of an RDD mouse model, and a photoreceptor rescue benefit was demonstrated. The RPE and rod photoreceptor differentiation of transplanted fRPESCs may account for the neural retinal recovery. This study establishes fRPESCs as a highly proliferative, multi-lineage differentiation potential (including RPE, rod photoreceptor, and mesenchymal lineage differentiation), mesenchymal-to-epithelial-transitioned retinal stem-like cell source for cell-based therapy of RDDs.


Assuntos
Ácido Ascórbico/farmacologia , Células-Tronco Fetais/transplante , Degeneração Retiniana/terapia , Epitélio Pigmentado da Retina/embriologia , Fatores de Transcrição SOXB1/metabolismo , Ácido Valproico/farmacologia , Animais , Biomarcadores/metabolismo , Diferenciação Celular , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Transição Epitelial-Mesenquimal , Células-Tronco Fetais/citologia , Células-Tronco Fetais/efeitos dos fármacos , Células-Tronco Fetais/metabolismo , Regulação da Expressão Gênica , Humanos , Camundongos , Degeneração Retiniana/metabolismo , Epitélio Pigmentado da Retina/citologia , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/metabolismo , Resultado do Tratamento , Regulação para Cima
6.
Sci Rep ; 10(1): 5722, 2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-32235934

RESUMO

The aim of this study was to develop a fetal cartilage-derived progenitor cell (FCPC) based cartilage gel through self-assembly for cartilage repair surgery, with clinically useful properties including adhesiveness, plasticity, and continued chondrogenic remodeling after transplantation. Characterization of the gels according to in vitro self-assembly period resulted in increased chondrogenic features over time. Adhesion strength of the cartilage gels were significantly higher compared to alginate gel, with the 2-wk group showing a near 20-fold higher strength (1.8 ± 0.15 kPa vs. 0.09 ± 0.01 kPa, p < 0.001). The in vivo remodeling process analysis of the 2 wk cultured gels showed increased cartilage repair characteristics and stiffness over time, with higher integration-failure stress compared to osteochondral autograft controls at 4 weeks (p < 0.01). In the nonhuman primate investigation, cartilage repair scores were significantly better in the gel group compared to defects alone after 24 weeks (p < 0.001). Cell distribution analysis at 24 weeks showed that human cells remained within the transplanted defects only. A self-assembled, FCPC-based cartilage gel showed chondrogenic repair potential as well as adhesive properties, beneficial for cartilage repair.


Assuntos
Cartilagem Articular/citologia , Cartilagem Articular/transplante , Condrócitos/citologia , Condrogênese/fisiologia , Células-Tronco Fetais/citologia , Engenharia Tecidual/métodos , Alginatos , Animais , Condrócitos/transplante , Células-Tronco Fetais/transplante , Humanos , Macaca fascicularis , Masculino , Camundongos , Transplante de Células-Tronco
7.
Bull Exp Biol Med ; 168(4): 589-596, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32152851
8.
Artif Organs ; 44(4): E161-E171, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31609006

RESUMO

Chronic and acute tendon injuries are frequent afflictions, for which treatment is often long and unsatisfactory. When facing extended injuries, matrices and scaffolds with sufficient biomechanical properties are required for surgical repair and could additionally serve as supports for cellular therapies to improve healing. In this study, protocols of either commonly used detergents only (SDS 1%, Triton 1%, TBP 1%, and Tween-20 1%) or a combination of freeze/thaw (F/T) cycles with decellularization agents (NaCl 1M, ddH2 O) were evaluated for the decellularization of horse equine superficial digital flexor tendon (SDFT) for hand flexor or extensor tendon reconstruction. Decellularization efficiency was assessed microscopically by histological staining (HE, DAPI) and DNA quantification. Macroscopical structure and biomechanical integrity of the tendon matrices were further assessed by gross observation, histological staining (SR), and mechanical testing (ultimate strain and stress, Young's modulus, energy to failure) for select protocols. Decellularization with hypertonic NaCl 1M in association with F/T cycles produced the most robust tendon matrices, which were nontoxic after 10 days for subsequent recellularization with human fetal progenitor tendon cells (hFPTs). This standardized protocol uses a less aggressive decellularization agent than current practice, which allows subsequent reseeding with allogenic cells, therefore making them very suitable and bioengineered tendon matrices for human tendon reconstruction in the clinic.


Assuntos
Matriz Extracelular/transplante , Tendões , Alicerces Teciduais , Animais , Fenômenos Biomecânicos , Células-Tronco Fetais/transplante , Congelamento , Cavalos , Humanos , Teste de Materiais , Cloreto de Sódio , Traumatismos dos Tendões/cirurgia
9.
Regen Med ; 14(7): 703-714, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31393226

RESUMO

Stem cell transplantation exhibited a promising lifesaving therapy for various end-stage liver diseases and could serve as a salvaging bridge until curative methods can be performed. In past decades, mature hepatocytes, liver progenitor cells, mesenchymal stem cells and induced pluripotent stem cells have been practiced in above settings. However, long-term survival rates and continuous proliferation ability of these cells in vivo are unsatisfactory, whereas, fetal liver stem cells (FLSCs), given their unique superiority, may be the best candidate for stem cell transplantation technique. Recent studies have revealed that FLSCs could be used as an attractive genetic therapy or regenerative treatments for inherited metabolic or other hepatic disorders. In this study, we reviewed current status and advancements of FLSCs-based treatment.


Assuntos
Células-Tronco Fetais/transplante , Doenças Genéticas Inatas/terapia , Terapia Genética , Hepatopatias/terapia , Transplante de Células-Tronco , Animais , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/metabolismo , Doenças Genéticas Inatas/patologia , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Células-Tronco Pluripotentes Induzidas/transplante , Hepatopatias/genética , Hepatopatias/metabolismo , Hepatopatias/patologia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/patologia
10.
Curr Neurovasc Res ; 16(3): 187-193, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31258084

RESUMO

BACKGROUND: Retinal degeneration and related eye disorders have limited treatment interventions. Since stem cell therapy has shown promising results, ciliary epithelium (CE) derived stem cells could be a better choice given the fact that cells from eye niche can better integrate with the degenerating retina, rewiring the synaptic damage. OBJECTIVE: To test the effect of human fetal pigmented ciliary epithelium-derived neurospheres in the mouse model of laser-induced retinal degeneration. METHODS: C57 male mice were subjected to retinal injury by Laser photocoagulation. Human fetal pigmented ciliary epithelium was obtained from post-aborted human eyeballs and cultured with epidermal growth factor (rhEGF) and fibroblast growth factor (rhFGF). The six day neurospheres were isolated, dissociated and transplanted into the subretinal space of the laser injured mice at the closest proximity to Laser shots. Mice were analyzed for functional vision through electroretinogram (ERG) and sacrificed at 1 week and 12 week time points. Retinal, Neurotropic, Apoptotic and proliferation markers were analysed using real-time polymerase chain reaction (PCR). RESULTS: The CE neurospheres showed an increase in the expression of candidate genes analyzed in the study at 1 week time point, which sustained for longer time point of 12 weeks. CONCLUSION: We showed the efficacy of human CE cells in the regeneration of retinal degeneration in murine model for the first time. CE cells need to be explored comprehensively both in disease and degeneration.


Assuntos
Células-Tronco Fetais/fisiologia , Lasers/efeitos adversos , Regeneração Nervosa/fisiologia , Degeneração Retiniana/terapia , Epitélio Pigmentado da Retina/fisiologia , Transplante de Células-Tronco/métodos , Animais , Células Cultivadas , Cílios/fisiologia , Cílios/transplante , Células Epiteliais/fisiologia , Células Epiteliais/transplante , Células-Tronco Fetais/química , Células-Tronco Fetais/transplante , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Degeneração Retiniana/etiologia , Degeneração Retiniana/patologia , Epitélio Pigmentado da Retina/transplante
11.
Stem Cells ; 37(9): 1176-1188, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31116895

RESUMO

In utero transplantation (IUT) of hematopoietic stem cells (HSCs) has been proposed as a strategy for the prenatal treatment of congenital hematological diseases. However, levels of long-term hematopoietic engraftment achieved in experimental IUT to date are subtherapeutic, likely due to host fetal HSCs outcompeting their bone marrow (BM)-derived donor equivalents for space in the hematopoietic compartment. In the present study, we demonstrate that amniotic fluid stem cells (AFSCs; c-Kit+/Lin-) have hematopoietic characteristics and, thanks to their fetal origin, favorable proliferation kinetics in vitro and in vivo, which are maintained when the cells are expanded. IUT of autologous/congenic freshly isolated or cultured AFSCs resulted in stable multilineage hematopoietic engraftment, far higher to that achieved with BM-HSCs. Intravascular IUT of allogenic AFSCs was not successful as recently reported after intraperitoneal IUT. Herein, we demonstrated that this likely due to a failure of timely homing of donor cells to the host fetal thymus resulted in lack of tolerance induction and rejection. This study reveals that intravascular IUT leads to a remarkable hematopoietic engraftment of AFSCs in the setting of autologous/congenic IUT, and confirms the requirement for induction of central tolerance for allogenic IUT to be successful. Autologous, gene-engineered, and in vitro expanded AFSCs could be used as a stem cell/gene therapy platform for the in utero treatment of inherited disorders of hematopoiesis. Stem Cells 2019;37:1176-1188.


Assuntos
Líquido Amniótico/citologia , Células-Tronco Fetais/citologia , Transplante de Células-Tronco Hematopoéticas/métodos , Células-Tronco Hematopoéticas/citologia , Transplante de Células-Tronco/métodos , Animais , Células Cultivadas , Feminino , Doenças Fetais/terapia , Células-Tronco Fetais/transplante , Sobrevivência de Enxerto , Doenças Hematológicas/terapia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Gravidez , Transplante Autólogo
12.
Eur J Hum Genet ; 27(8): 1244-1253, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30918362

RESUMO

The Boost Brittle Bones Before Birth (BOOSTB4) clinical trial is investigating the safety and efficacy of transplanting fetal derived mesenchymal stromal cells (MSCs) prenatally and/or in early postnatal life to treat severe Osteogenesis Imperfecta (OI). This study aimed to explore stakeholder views to understand perceived benefits or concerns, identify ethical issues and establish protocols for support and counselling. Semi-structured qualitative interviews were conducted with three groups; 1. Adults affected with OI, with and without children, and parents of children affected with OI; 2. Health professionals who work with patients with OI; 3. Patient advocates from relevant patient support groups. Interviews were digitally recorded, transcribed verbatim and analysed using thematic analysis. Interviews with 56 participants revealed generally positive views towards using fetal MSC transplantation to treat OI. Early treatment was considered advantageous for preventing fractures and reducing severity and could bring psychological benefits for parents. Common concerns were procedure safety, short/long-term side effects and whether transplantation would be effective. Difficulties inherent in decision-making were frequently discussed, as treatment efficacy is unknown and, by necessity, parents will make decisions at a time when they are vulnerable. Support needs may differ where there is a family history of OI compared to an unexpected diagnosis of OI. Explaining fetal MSC transplantation in a way that all parents can understand, clear expectation setting, psychological support and time for reflection during the decision-making process will be crucial to allow parents to make informed decisions about participation in the BOOSTB4 clinical trial.


Assuntos
Células-Tronco Fetais/transplante , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/citologia , Osteogênese Imperfeita/terapia , Transplante de Células-Tronco/métodos , Adulto , Atitude , Criança , Feminino , Humanos , Masculino , Transplante de Células-Tronco Mesenquimais/psicologia , Pessoa de Meia-Idade , Avaliação de Resultados em Cuidados de Saúde , Pais/psicologia , Transplante de Células-Tronco/psicologia , Adulto Jovem
13.
Cell Tissue Bank ; 20(1): 11-24, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30535614

RESUMO

Regenerative medicine as a background of stem cell research and therapy has a long history. A wide variety of diseases including Parkinson's disease, heart diseases, multiple sclerosis, spinal cord injury, diabetes mellitus and etc. are candidate to be treated using different types of stem cells. There are several sources of stem cells such as bone marrow, umbilical cord, peripheral blood, germ cells and the embryo/fetus tissues. Fetal stem cells (FSCs) and embryonic stem cells (ESCs) have been described as the most potent stem cell source. Although their pluri- or multipotent properties leads to promising reports for their clinical applications, owning to some ethical and legal obstacles in different communities such as Muslim countries, care should be taken for therapeutic applications of FSCs and ESCs. Derivation of these cell types needs termination of pregnancy and embryo or fetus life that is prohibited according to almost all rules and teaches in Muslim communities. Abortion and termination of pregnancy under a normal condition for the procurement of stem cell materials is forbidden by nearly all the major world religions such as Islam. Legislated laws in the most of Muslim countries permit termination of pregnancy and abortion only when the life of the mother is severely threatened or when continuing pregnancy may lead to the birth of a mentally retarded, genetically or anatomically malformed child. Based on the rules and conditions in Islamic countries, finding an alternative and biologically normal source for embryonic or fetal stem cell isolation will be too difficult. On the one hand, Muslim scientists have the feasibility for finding of genetically and anatomically normal embryonic or fetal stem cell sources for research or therapy, but on the other hand they should adhere to the law and related regional and local rules in all parts of their investigation. The authors suggest that the utilization of ectopic pregnancy (EP) conceptus, extra-embryonic tissues, and therapeutic abortion materials as a valuable source of stem cells for research and medical purposes can overcome limitations associated with finding the appropriate stem cell source. Pregnancy termination because of the mentioned subjects is accepted by almost all Islamic laws because of maternal lifesaving. Also, there are no ethical or legal obstacles in the use of extra-embryonic or EP derived tissues which lead to candidate FSCs as a valuable source for stem cell researches and therapeutic applications.


Assuntos
Aborto Terapêutico , Células-Tronco Fetais/transplante , Gravidez Ectópica/terapia , Pesquisa com Células-Tronco , Diferenciação Celular , Ensaios Clínicos como Assunto , Feminino , Humanos , Irã (Geográfico) , Gravidez , Pesquisa com Células-Tronco/ética , Pesquisa com Células-Tronco/legislação & jurisprudência
14.
World J Gastroenterol ; 24(42): 4759-4772, 2018 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-30479463

RESUMO

AIM: To investigate whether Yiguanjian decoction (YGJ) has an anti-liver cirrhotic effect and whether it regulates hepatic stem cell differentiation. METHODS: A rat model of liver cirrhosis was established via subcutaneous injection of carbon tetrachloride (CCl4) for 8 wk. From the beginning of the ninth week, the rats received 2-acetylaminofluorene (2-AAF) by oral gavage and a DLK-1+ fetal liver stem/progenitor cell (FLSPC) transplant or an FLSPC transplant in combination with YGJ treatment for 4 wk. In vitro, lipopolysaccharide (LPS)-activated macrophages were co-cultured with WB-F344 cells, and the differentiation of WB-F344 cells was observed in the presence and absence of YGJ treatment. RESULTS: FLSPC transplantation improved liver function and histopathology, and inhibited the activation of the non-canonical Wnt signaling pathway, while activating the canonical Wnt signaling pathway. YGJ enhanced the therapeutic effects of FLSPCs and also promoted the liver regeneration differentiation of FLSPCs into hepatocytes. In vitro, LPS-activated macrophages promoted the differentiation of WB-F344 cells into myofibroblasts, and the canonical Wnt signaling was inhibited while the non-canonical Wnt signaling was activated in WB-F344 cells. YGJ suppressed the activation of macrophages and then inhibited non-canonical Wnt signaling and promoted canonical Wnt signaling. CONCLUSION: YGJ enhances FLSPC-mediated repair of liver cirrhosis through regulation of macrophage activation state, and YGJ in combination with stem cell transplantation may be a suitable treatment for end-stage liver cirrhosis.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Células-Tronco Fetais/transplante , Cirrose Hepática Experimental/terapia , Regeneração Hepática/imunologia , Ativação de Macrófagos/efeitos dos fármacos , Animais , Tetracloreto de Carbono/toxicidade , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/imunologia , Linhagem Celular , Técnicas de Cocultura , Terapia Combinada/métodos , Medicamentos de Ervas Chinesas/uso terapêutico , Hepatócitos/efeitos dos fármacos , Hepatócitos/imunologia , Humanos , Cirrose Hepática Experimental/induzido quimicamente , Cirrose Hepática Experimental/imunologia , Cirrose Hepática Experimental/patologia , Masculino , Miofibroblastos , Ratos , Ratos Endogâmicos F344 , Ratos Wistar , Resultado do Tratamento , Via de Sinalização Wnt/efeitos dos fármacos
15.
Stem Cell Rev Rep ; 14(5): 632-641, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29948753

RESUMO

Chimerism occurs naturaly throughout gestation and can also occur as a consequence of transfusion and transplantation therapy. It consists of the acquisition and long-term persistence of a genetically distinct population of allogenic cells inside another organism. Previous reports have suggested that feto-maternal microchimerism could exert a beneficial effect on the treatment of hematological and solid tumors in patients treated by PBSCT. In this review we report the mechanism of transplacental fetal stem cell trafficking during pregnancy and the effect of their long-term persistence on autoimmunity, GVHD, PBSCT, cancer and stem cell treatment.


Assuntos
Doenças Autoimunes/fisiopatologia , Quimerismo , Células-Tronco Fetais/fisiologia , Feminino , Células-Tronco Fetais/patologia , Células-Tronco Fetais/transplante , Feto/citologia , Feto/fisiologia , Humanos , Placenta/citologia , Placenta/fisiologia , Gravidez
16.
Exp Clin Transplant ; 16 Suppl 1(Suppl 1): 168-170, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29528020

RESUMO

OBJECTIVES: Our objective was to determine transforming growth factor ß1 levels in patients with type 2 diabetes mellitus after fetal pancreatic stem cell transplant. MATERIALS AND METHODS: We examined 10 patients (age range, 41-65 y) with type 2 diabetes mellitus, which we subsequently divided into 2 groups. Group 1 comprised 5 patients who received fetal pancreatic stem cell transplant (cells were 16-18 wk gestation) performed by intravenous infusion. Group 2 comprised 5 patients (control group) who were on hypoglycemic tablet therapy or insulin therapy. The quantity of fetal stem cells infused was 5 to 6 × 106. We analyzed transforming growth factor ß1, C-peptide, and glycated hemoglobin levels in patients before and 3 months after fetal pancreatic stem cell transplant. RESULTS: In patients with type 2 diabetes mellitus, fetal pancreatic stem cell transplant led to a significant increase in transforming growth factor ß1 levels, from 16 364.8 to 35 730.4 ng/mL (P = .008), with trend in decreased glycated hemoglobin levels, from 7.96% to 6.98% (P = .088) after 3 months. CONCLUSIONS: Transforming growth factor ß1 levels increased significantly within 3 months after fetal pancreatic stem cell transplant in patients with type 2 diabetes mellitus.


Assuntos
Diabetes Mellitus Tipo 2/cirurgia , Células-Tronco Fetais/transplante , Transplante de Pâncreas/métodos , Fator de Crescimento Transformador beta1/sangue , Adulto , Idoso , Biomarcadores/sangue , Glicemia/metabolismo , Peptídeo C/sangue , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/diagnóstico , Células-Tronco Fetais/metabolismo , Hemoglobinas Glicadas/metabolismo , Humanos , Pessoa de Meia-Idade , Transplante de Pâncreas/efeitos adversos , Fenótipo , Estudos Prospectivos , Recuperação de Função Fisiológica , Fatores de Tempo , Resultado do Tratamento
17.
J Pediatr Surg ; 53(6): 1134-1136, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29580785

RESUMO

PURPOSE: We sought to examine donor mesenchymal stem cell (MSC) kinetics after transamniotic stem cell therapy (TRASCET) in experimental spina bifida. METHODS: Pregnant Sprague-Dawley dams exposed to retinoic acid for the induction of fetal neural tube defects received volume-matched intra-amniotic injections on gestational day 17 (E17; term=E22): either amniotic fluid MSCs (afMSCs) labeled with a luciferase reporter gene (n=78), or luciferase protein alone (n=66). Samples from twelve organ systems from each surviving fetus with spina bifida (total n=60) were screened via microplate luminometry at term. RESULTS: Donor afMSCs were identified exclusively in the placenta, umbilical cord, spleen, bone marrow, hip bones, defect, and brain. Luminometry was negative in control fetuses receiving luciferase alone (p<0.001). Signal intensity in relative light units (RLUs) was moderately correlated between the defect and the hip bones (rho=0.38, p=0.048), and between the placenta and the brain (rho=0.40, p=0.038). CONCLUSIONS: Amniotic mesenchymal stem cells engraft to specific sites after concentrated intra-amniotic injection in the setting of spina bifida. A hematogenous route encompassing the bone marrow as well as distant central nervous system homing are fundamental constituents of cell trafficking. These findings must be considered during eventual patient selection for transamniotic stem cell therapy in the prenatal management of spina bifida.


Assuntos
Movimento Celular , Células-Tronco Fetais/transplante , Terapias Fetais/métodos , Transplante de Células-Tronco Mesenquimais/métodos , Disrafismo Espinal/terapia , Líquido Amniótico/citologia , Animais , Feminino , Células-Tronco Fetais/fisiologia , Células-Tronco Mesenquimais/fisiologia , Gravidez , Ratos Endogâmicos Lew , Ratos Sprague-Dawley , Disrafismo Espinal/embriologia
19.
J Neuropathol Exp Neurol ; 77(4): 325-343, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29420729

RESUMO

When spinal roots are torn off from the spinal cord, both the peripheral and central nervous system get damaged. As the motoneurons lose their axons, they start to die rapidly, whereas target muscles atrophy due to the denervation. In this kind of complicated injury, different processes need to be targeted in the search for the best treatment strategy. In this study, we tested glial cell-derived neurotrophic factor (GDNF) treatment and fetal lumbar cell transplantation for their effectiveness to prevent motoneuron death and muscle atrophy after the spinal root avulsion and delayed reimplantation. Application of exogenous GDNF to injured spinal cord greatly prevented the motoneuron death and enhanced the regeneration and axonal sprouting, whereas no effect was seen on the functional recovery. In contrast, cell transplantation into the distal nerve did not affect the host motoneurons but instead mitigated the muscle atrophy. The combination of GDNF and cell graft reunited the positive effects resulting in better functional recovery and could therefore be considered as a promising strategy for nerve and spinal cord injuries that involve the avulsion of spinal roots.


Assuntos
Células-Tronco Fetais/transplante , Fator Neurotrófico Derivado de Linhagem de Célula Glial/uso terapêutico , Neurônios Motores/fisiologia , Recuperação de Função Fisiológica/efeitos dos fármacos , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/cirurgia , Animais , Sobrevivência Celular , Colina O-Acetiltransferase/metabolismo , Embrião de Mamíferos , Feminino , Células-Tronco Fetais/fisiologia , Asseio Animal/fisiologia , Proteínas de Homeodomínio/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Bainha de Mielina/metabolismo , Regeneração Nervosa , Proteínas de Neurofilamentos/metabolismo , Ratos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica/fisiologia , Reimplante , Medula Espinal/citologia , Tubulina (Proteína)/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA